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Abstract
By introducing two pairs of conjugate exponents and estimating the weight
coefficients, we establish reverse versions of Hilbert-type inequalities, as described by
Jin (J. Math. Anal. Appl. 340:932-942, 2008), and we prove that the constant factors are
the best possible. As applications, some particular results are considered.
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1 Introduction
If both an and bn ≥ , such that  <

∑∞
n= an < ∞ and  <

∑∞
n= bn < ∞, then we have

(see [])

∞∑
n=

∞∑
m=

ambn
m + n

< π

{ ∞∑
n=

an

} 

{ ∞∑

n=

bn

} 


, (.)

where the constant factor π has the best possible value. Inequality (.) is the well-known
Hilbert inequality, introduced in ; inequality (.) has been generalized by Hardy as
follows.
If p > , 

p +

q = , and both an and bn ≥ , such that  <

∑∞
n= a

p
n < ∞ and  <

∑∞
n= b

q
n <

∞, then we have

∞∑
n=

∞∑
m=

ambn
m + n

<
π

sin(π/p)

{ ∞∑
n=

apn

} 
p
{ ∞∑

n=

bqn

} 
q

, (.)

where the constant factor π
sin(π/p) is the best possible. Inequality (.) is the well-known

Hardy-Hilbert inequality, which is important in analysis and applications (see []). In re-
cent years, many results with generalizations of this type of inequality have been obtained
(see []).
Under the same conditions as in (.), there are some Hilbert-type inequalities that are

similar to (.), which also have been studied and generalized by some mathematicians.
Recently, by studying a Hilbert-type operator, Jin [] obtained a new bilinear operator

inequality with the norm, and he provided some new Hilbert-type inequalities with the
best constant factor. First, we repeat the results of [].

Definition . Let Hp,q(r, s) be the set of functions k(x, y) satisfying the following condi-
tions.
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Let p > , 
p +


q = , r > , 

r +

s = , suppose that k(x, y) is continuous in (,∞)× (,∞)

and satisfies:
() k(x, y) = k(y,x) > , where x, y ∈ (,∞).
() For ε ≥  and x > , the function k(x, t)( xt )

+ε
l (l = r, s) is decreasing in t ∈ (,∞).

For ε ≥  small enough, x > , and kl(ε,x) can be written as

kl(ε,x) :=
∫ ∞


k(x, t)

(
x
t

) +ε
l
dt (l = r, s),

where kl(ε,x) is independent of x, kl(,x) :=
∫ ∞
 k(x, t)( xt )


l dt = kp (l = r, s), kp is a positive

constant independent of x, and kl(ε,x) = kp(ε) = kp + o() (ε → +).

()
∞∑
m=


m+ε

∫ 


k(m, t)

(
m
t

) +ε(s/q)
s

dt =O()
(
ε → +

)
,

∞∑
m=


m+ε

∫ 


k(m, t)

(
m
t

) +ε(r/p)
r

dt =O()
(
ε → +

)
.

We have Jin’s result as follows.

Theorem . If p > , 
p +


q = , r > , 

r +

s = , and k(x, y) ∈Hp,q(r, s), an,bn ≥ , such that

 <
∑∞

n= n
p
r –apn <∞ and  <

∑∞
n= n

q
s –bqn < ∞, then we have

∞∑
n=

∞∑
m=

k(m,n)ambn < kr

{ ∞∑
n=

n
p
r –apn

} 
p
{ ∞∑

n=

n
q
s –bqn

} 
q

, (.)

∞∑
n=

n
p
r –

[ ∞∑
m=

k(m,n)am

]p

< (kr)p
∞∑
n=

n
p
r –apn. (.)

Here the constant factors kr and (kr)p are the best possible. Inequality (.) is equivalent
to (.).

If p = r and q = s in Theorem ., then Theorem . reduces to Yang’s result [] as follows.

Theorem . If p > , 
p + 

q = , k(x, y) ∈ H(p,q), and both an and bn ≥ , such that  <∑∞
n= a

p
n <∞ and  <

∑∞
n= a

p
n < ∞, then we have

∞∑
n=

∞∑
m=

k(m,n)anbn < kp

{ ∞∑
n=

apn

}{ ∞∑
n=

bqn

} 
q

, (.)

∞∑
n=

[ ∞∑
n=

k(m,n)am

]p

< (kp)p
∞∑
n=

apn, (.)

where the constant factors kp and (kp)p are the best possible. Inequality (.) is equivalent
to (.).

In this paper, by introducing some parameters, we establish a reverse version of the
inequality (.). As applications, some particular results are considered.
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2 Some lemmas
Definition . Let Hp,q(r, s) be the set of functions k(x, y) satisfying the following condi-
tions:
Let  < p < , 

p +

q = , r > , r +


s = , suppose that k(x, y) is continuous in (,∞)×(,∞)

and satisfies:
() k(x, y) = k(y,x) > , x, y ∈ (,∞).
() For ε ≥  and x > , the function k(x, t)( xt )

+ε
l (l = r, s) is decreasing in t ∈ (,∞).

For ε ≥  small enough, for x > , kl(ε,x) can be described as

kl(ε,x) :=
∫ ∞


k(x, t)

(
x
t

) +ε
l
dt (l = r, s),

where kl(ε,x) is independent of x, and kl(,x) :=
∫ ∞
 k(x, t)( xt )


l dt = kp (l = r, s), kp is a

positive constant independent of x, and kl(ε,x) = kp(ε) = kp + o() (ε → +).
() There exists a positive constant λ′ such that

θλ(s,m) =

kr

∫ 


k(m, t)

(
m
t

) 
s
dt =O

(
/mλ′) ∈ (, ) (m→ ∞),

θλ(r,n) =

kr

∫ 


k(t,n)

(
n
t

) 
r
dt =O

(
/nλ′) ∈ (, ) (n→ ∞).

Lemma . If  < p < , 
p +


q = , r > , 

r +

s = , k(x, y) ∈ Hp,q(r, s), and the weight coeffi-

cients w(r,p,m) and w(s,q,n) are defined as

ω(r,p,m) =
∞∑
n=

k(m,n)
m

p–
r

n 
s

, (.)

ω(s,q,n) =
∞∑
m=

k(m,n)
n

q–
s

m 
r
, (.)

then we have

m
p
r –kr

(
 – θλ(s,m)

)
< ω(r,p,m) <m

p
r –kr ,

n
q
s –kr

(
 – θλ(r,n)

)
< ω(s,q,n) < n

q
s –kr .

(.)

Proof By the assumption of the lemma, because k(x, t)( xt )

s (t ∈ (,∞)) is decreasing, then

we find

ω(r,p,m) =m
p
r –

∞∑
n=

k(m,n)
(
m
n

) 
s

≤m
p
r –

∫ ∞


k(m, t)

(
m
t

) 
s
dt

=m
p
r –kr .
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However, we find

ω(r,p,m) =m
p
r –

∞∑
n=

k(m,n)
(
m
n

) 
s
≥m

p
r –

∫ ∞


k(m, t)

(
m
t

) 
s
dt

=m
p
r –

∫ ∞


k(m, t)

(
m
t

) 
s
dt –m

p
r –

∫ 


k(m, t)

(
m
t

) 
s
dt

=m
p
r –kr –m

p
r –

∫ 


k(m, t)

(
m
t

) 
s
dt

=m
p
r –kr

(
 –


kr

∫ 


k(m, t)

(
m
t

) 
s
dt

)

=m
p
r –kr

(
 – θλ(s,m)

)
.

It is easy to show that the above inequalities take the form of a strict inequality. Hence,
we have m

p
r –kr( – θλ(s,m)) < ω(r,p,m) < m

p
r –kr . Similarly, we can obtain n

q
s –kr( –

θλ(r,n)) < ω(s,q,n) < n
q
s –kr . The lemma is proved. �

Lemma . If  < p < , 
p + 

q = , r > , 
r +


s = , and k(x, y) ∈ Hp,q(r, s), for ε >  small

enough, we have

∞∑
m=

∞∑
n=

k(m,n)m– 
r –

ε
p n–


s –

ε
q <

(
kr + o()

) ∞∑


m––ε
(
ε → +

)
. (.)

Proof For ε > , by Definition ., we have

∞∑
m=

∞∑
n=

k(m,n)m– 
r –

ε
p n–


s –

ε
q

=
∞∑
m=

m––εε

∞∑
n=

k(m,n)
(
m
n

) +ε(s/q)
s

≤
∞∑
m=

m––ε

∫ ∞


k(m, t)

(
m
t

) +ε(s/q)
s

dt

=
∞∑
m=

m––εkr
(

εs
q

)
=

(
kr + o()

) ∞∑


m––ε .

The lemma is proved. �

3 Main results
Theorem . If  < p < , 

p +

q = , r > , 

r +

s = , and k(x, y) ∈ Hp,q(r, s), an,bn ≥ , such

that  <
∑∞

n= n
p
r –apn < ∞ and  <

∑∞
n= n

q
s –bqn < ∞, then we have

∞∑
n=

∞∑
m=

k(m,n)ambn > kr

{ ∞∑
n=

[
 – θλ(s,n)

]
n

p
r –apn

} 
p
{ ∞∑

n=

n
q
s –bqn

} 
q

, (.)

∞∑
n=

n
p
r –

[ ∞∑
m=

k(m,n)am

]p

> (kr)p
∞∑
n=

[
 – θλ(s,n)

]
n

p
r –apn, (.)
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where the constant factor kr and (kr)p are the best possible. Inequality (.) is equivalent
to (.).

Proof By Hölder’s inequality, we have (see [])

∞∑
n=

∞∑
m=

k(m,n)ambn =
∞∑
n=

∞∑
m=

{[
k(m,n)

] 
q m


qr

n

ps
am

}{[
k(m,n)

] 
q n


ps

m 
qr
bn

}

≥
{ ∞∑

m=

∞∑
n=

k(m,n)
m

p–
r

n 
s

apm

} 
p
{ ∞∑

n=

∞∑
m=

k(m,n)
n

q–
s

m 
r
bqn

} 
q

=

{ ∞∑
m=

ω(r,p,m)apm

} 
p
{ ∞∑

n=

ω(s,q,n)bqn

} 
q

. (.)

Then, by (.), in view of  < p <  and q < , we have (.).
For ε > , setting an = n–


r –

ε
q and bn = n–


s –

ε
q , we find

{ ∞∑
n=

[
 – θλ(s,n)

]
n

p
r –apn

} 
p
{ ∞∑

n=

n
q
s –bqn

} 
q

=

{ ∞∑
n=

n––ε –
∞∑
n=

O
(
/nλ′)

n––ε

} 
p
{ ∞∑

n=

n––ε

} 
q

=
∞∑
n=

n––ε

[
 –

( ∞∑
n=

n––ε

)– ∞∑
n=

O
(
/nλ′)

n––ε

] 
p

. (.)

By virtue of (.), we have

∞∑
n=

∞∑
m=

k(m,n)ambn

=
∞∑
m=

∞∑
n=

k(m,n)m– 
r –

ε
p n–


s –

ε
q <

(
kr + o()

) ∞∑


m––ε
(
ε → +

)
. (.)

If the constant factor kr in (.) is not the best possible factor, then there exists a positive
number K (with K > kr), such that (.) is still valid if the constant factor kr is replaced
by K . In particular, by (.) and (.), we have

(
kr + o()

) ∞∑


n––ε > K
∞∑
n=

n––ε

[
 –

( ∞∑
n=

n––ε

)– ∞∑
n=

O
(
/nλ′)

n––ε

] 
p

,

that is,

(
kr + o()

)
> K

[
 –

( ∞∑
n=

n––ε

)– ∞∑
n=

O
(
/nλ′)

n––ε

] 
p

.

For ε → +, it follows that K ≤ kr , which contradicts the fact that K > kr . Hence, the con-
stant factor kr in (.) is the best possible.
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Setting bn as

bn := n
p
r –

[ ∞∑
m=

k(m,n)am

]p–

,

by (.), we have

{ ∞∑
n=

n
q
s –bqn

}p

=

{ ∞∑
n=

n
p
r –

[ ∞∑
m=

k(m,n)am

]p}p

=

{ ∞∑
n=

∞∑
m=

k(m,n)ambn

}p

≥ (kr)p
{ ∞∑

n=

[
 – θλ(s,n)

]
n

p
r –apn

}{ ∞∑
n=

n
q
s –bqn

}p–

. (.)

Hence, we obtain

∞ >
∞∑
n=

n
p
r –

[ ∞∑
m=

k(m,n)am

]p

≥ (kr)p
∞∑
n=

[
 – θλ(s,n)

]
n

p
r –apn > . (.)

By (.), both (.) and (.) take the form of a strict inequality, and we have (.).
However, if (.) is valid, by Hölder’s inequality, we find

∞∑
n=

∞∑
m=

k(m,n)ambn

=
∞∑
n=

[
n


q–


s

∞∑
m=

k(m,n)am

][
n


s –


q bn

]

≥
{ ∞∑

n=

n
p
r –

[ ∞∑
m=

k(m,n)am

]p} 
p
{ ∞∑

n=

n
q
s –bqn

} 
q

. (.)

Then, by (.), we have (.). Hence (.) and (.) are equivalent.
If the constant factor (kr)p in (.) is not the best possible, by using (.), we find the

contradiction that the constant factor kr in (.) is not the best possible. The theorem is
completed. �

4 Some particular results
() Setting

k(x, y) =
(xy) λ–



(x + y)λ

(
 – min

{

r
,

s

}
< λ ≤  + min

{

r
,

s

})
,

for  ≤ ε <min{p( λ+
 – 

r ),q(
λ+
 – 

s )}, and for fixed x > , we find (see [])

ks(ε,x) → B
(
s(λ + ) – 

s
,
r(λ + ) – 

r

)
= kr

(
ε → +

)
,

http://www.journalofinequalitiesandapplications.com/content/2014/1/198
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and ks(ε,x) → kr (ε → +);

 <
∫ 


k(m, t)

(
m
t

) 
s
dt =

∫ 



(mt) λ–


(m + t)λ

(
m
t

) 
s
dt

≤
∫ 



(mt) λ–


mλ

(
m
t

) 
s
dt =


( λ–

 + 
r )


m +λ

 – 
s
.

Hence, θλ(s,m) = O(m 
s –

+λ
 ). Similarly, we obtain θλ(r,n) = O(n 

r –
+λ
 ). For ε ≥ ,  –

min{ r , s } < λ ≤  + min{ r , s }, and fixed x > , the function

k(x, t)
(
x
t

) +ε
l
=

(xt) λ–


(x + t)λ

(
x
t

) +ε
l
=
x

+ε
l + λ–



(x + t)λ
t

λ–
 – +ε

l (l = r, s)

is decreasing in (,∞). Hence, k(x, y) ∈Hp(r, s). By Theorem ., we have the following.

Corollary . If  < p < , /p + /q = , /r + /s = ,  – min{ r , s } < λ ≤  + min{ r , s },
and both an,bn ≥  such that  <

∑∞
n= n

p
r –apn < ∞ and  <

∑∞
n= n

q
s –bqn < ∞, thenwe have

∞∑
n=

∞∑
m=

(mn) λ–


(m + n)λ
ambn

> B
(
s(λ + ) – 

s
,
r(λ + ) – 

r

){ ∞∑
n=

[
 – θλ(s,n)

]
n

p
r –apn

} 
p
{ ∞∑

n=

n
q
r –bqn

} 
q

, (.)

∞∑
n=

n
p
r –

[ ∞∑
m=

(mn) λ–


(m + n)λ
am

]p

>
[
B
(
s(λ + ) – 

s
,
r(λ + ) – 

r

)]p ∞∑
n=

[
 – θλ(s,n)

]
n

p
r –apn, (.)

where the constant factors

B
(
s(λ + ) – 

s
,
r(λ + ) – 

r

)
and

[
B
(
s(λ + ) – 

s
,
r(λ + ) – 

r

)]p

are the best possible. Inequality (.) is equivalent to (.).

In particular, (a) for r = q, s = p, and  – min{ 
p ,


q } < λ ≤  + min{ 

p ,

q }, we have

∞∑
n=

∞∑
m=

(mn) λ–


(m + n)λ
ambn

> B
(
p(λ + ) – 

p
,
q(λ + ) – 

q

){ ∞∑
n=

[
 – θλ(p,n)

]
np–apn

} 
p
{ ∞∑

n=

nq–bqn

} 
q

, (.)

∞∑
n=

np–
[ ∞∑
m=

(mn) λ–


(m + n)λ
am

]p

>
[
B
(
p(λ + ) – 

p
,
q(λ + ) – 

q

)]p ∞∑
n=

[
 – θλ(p,n)

]
np–apn. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/198
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(b) For r = s =  and  < λ ≤ , we have

∞∑
n=

∞∑
m=

(mn) λ–


(m + n)λ
ambn > B

(
λ


,
λ



){ ∞∑
n=

[
 – θλ(,n)

]
n

p
 –apn

} 
p
{ ∞∑

n=

n
q
 –bqn

} 
q

, (.)

∞∑
n=

n
p
 –

[ ∞∑
m=

(mn) λ–


(m + n)λ
am

]p

>
[
B
(

λ


,
λ



)]p ∞∑
n=

[
 – θλ(,n)

]
n

p
 –apn. (.)

() Let

k(x, y) =
(xy)

λ–


xλ + yλ

(
 – min

{

r
,

s

}
< λ ≤  + min

{

r
,

s

})
.

For  ≤ ε <min{p( λ+
 – 

r ),q(
λ+
 – 

s )} and x > , we find (see [])

ks(ε,x) → 
λ
B
(
s(λ + ) – 

sλ
,
r(λ + ) – 

rλ

)
= kr

(
ε → +

)
,

and ks(ε,x) → kr (ε → +);

∫ 


k(m, t)

(
m
t

) 
s
dt =

∫ 



(mt) λ–


mλ + tλ

(
m
t

) 
s
dt

≤
∫ 



(mt) λ–


mλ

(
m
t

) 
s
dt =


( λ–

 + 
r )
m


s –

+λ
 .

Hence, θλ(s,m) = O(m 
s –

+λ
 ). Similarly, we can obtain θλ(r,n) = O(n 

r –
+λ
 ). For ε ≥ ,  –

min{ r , s } < λ ≤  + min{ r , s }, and x > , the function

k(x, t)
(
x
t

) +ε
l
=
(xt) λ–



xλ + tλ

(
x
t

) +ε
l
=
x

+ε
l + λ–



xλ + tλ
t

λ–
 – +ε

l (l = r, s)

is decreasing in (,∞). Hence k(x, y) ∈ Hp(r, s). By Theorem ., we have the following
corollary.

Corollary . If  < p < , 
p +


q = , r > , r +


s = , –min{ r , s } < λ ≤ +min{ r , s }, and

both an,bn ≥  such that  <
∑∞

n= n
p
r –apn <∞ and  <

∑∞
n= n

q
s –bqn < ∞, then we have

∞∑
n=

∞∑
m=

(mn) λ–


mλ + nλ
ambn

>

λ
B
(
s(λ + ) – 

sλ
,
r(λ + ) – 

rλ

){ ∞∑
n=

[
 – θλ(s,n)

]
n

p
r –apn

} 
p
{ ∞∑

n=

n
q
r –bqn

} 
q

, (.)

∞∑
n=

n
p
r –

[ ∞∑
m=

(mn) λ–


mλ + nλ
am

]p

>
[

λ
B
(
s(λ + ) – 

sλ
,
r(λ + ) – 

rλ

)]p ∞∑
n=

[
 – θλ(s,n)

]
n

p
r –apn, (.)
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where the constant factors


λ
B
(
s(λ + ) – 

sλ
,
r(λ + ) – 

rλ

)
and

[

λ
B
(
s(λ + ) – 

sλ
,
r(λ + ) – 

rλ

)]p

are the best possible. Inequality (.) is equivalent to (.).

In particular, (a) for r = q, s = p, and  – min{ 
p ,


q } < λ ≤  + min{ 

p ,

q }, we have

∞∑
n=

∞∑
m=

(mn) λ–


mλ + nλ
ambn

>

λ
B
(
p(λ + ) – 

pλ
,
q(λ + ) – 

qλ

)

×
{ ∞∑

n=

[
 – θλ(p,n)

]
np–apn

} 
p
{ ∞∑

n=

nq–bqn

} 
q

, (.)

∞∑
n=

np–
[ ∞∑
m=

(mn) λ–


(m + n)λ
am

]p

>
[

λ
B
(
p(λ + ) – 

pλ
,
q(λ + ) – 

qλ

)]p ∞∑
n=

[
 – θλ(p,n)

]
np–apn. (.)

(b) For r = s =  and  < λ ≤ , we have

∞∑
n=

∞∑
m=

(mn) λ–


mλ + nλ
ambn >

π

λ

{ ∞∑
n=

[
 – θλ(,n)

]
n

p
 –apn

} 
p
{ ∞∑

n=

n
q
 –bqn

} 
q

, (.)

∞∑
n=

n
p
 –

[ ∞∑
m=

(mn) λ–


mλ + nλ
am

]p

>
[

π

λ

]p ∞∑
n=

[
 – θλ(,n)

]
n

p
 –apn. (.)

() Let

k(x, y) =
(xy) λ–



(max{x, y})λ
(
 – min

{

r
,

s

}
< λ ≤  + min

{

r
,

s

})
,

for  ≤ ε <min{p( λ+
 – 

r ),q(
λ+
 – 

s )} and x > , then we find (see [])

ks(ε,x) → rsλ
[r(λ + ) – ][s(λ + ) – ]

= kr
(
ε → +

)
,

and kr(ε,x)→ kr (ε → +)

 <
∫ 


k(m, t)

(
m
t

) 
s
dt =

∫ 



(mt) λ–


(max{m, t})λ
(
m
t

) 
s
dt

=
∫ 



(mt) λ–


mλ

(
m
t

) 
s
dt =


( λ–

 + 
r )


m +λ

 – 
s
.
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Hence, θλ(s,m) = O( 

m
+λ
 – 

s
). Similarly, we can obtain θλ(r,n) = O( 

n
+λ
 – 

r
). For ε ≥ ,  –

min{ r , s } < λ ≤  + min{ r , s }, and x > , the function

k(x, t)
(
x
t

) +ε
l
=

(mt) λ–


(max{m, t})λ
(
x
t

) +ε
l
=

x
+ε
l + λ–



(max{m, t})λ t
λ–
 – +ε

l (l = r, s)

is decreasing in (,∞). Hence, k(x, y) ∈ Hp,q(r, s). By Theorem ., we have the following
corollary.

Corollary . If  < p < , 
p + 

q = , r > , 
r +


s = ,  – min{ r , s } < λ ≤  + min{ r , s },

and both an,bn ≥ , such that  <
∑∞

n= n
p
r –apn < ∞ and  <

∑∞
n= n

q
s –bqn < ∞, then we

have

∞∑
n=

∞∑
m=

(mn) λ–


(max{m,n})λ ambn

>
rsλ

[r(λ + ) – ][s(λ + ) – ]

{ ∞∑
n=

[
 – θλ(s,n)

]
n

p
r –apn

} 
p
{ ∞∑

n=

n
q
s –bqn

} 
q

, (.)

∞∑
n=

n
p
r –

[
(mn) λ–



(max{m,n})λ am
]p

>
(

rsλ
[r(λ + ) – ][s(λ + ) – ]

)p ∞∑
n=

[
 – θλ(s,n)

]
n

p
r –apn. (.)

Here the constant factors rsλ
[r(λ+)–][s(λ+)–] and ( rsλ

[r(λ+)–][s(λ+)–] )
p are the best possible. In-

equality (.) is equivalent to (.).

In particular, (a) for r = q, s = p, and  – min{ 
p ,


q } < λ ≤  + min{ 

p ,

q }, we have

∞∑
n=

∞∑
m=

(mn) λ–


(max{m,n})λ ambn

>
pqλ

[p(λ + ) – ][q(λ + ) – ]

{ ∞∑
n=

[
 – θλ(p,n)

]
np–apn

} 
p
{ ∞∑

n=

nq–bqn

} 
q

, (.)

∞∑
n=

np–
[ ∞∑
m=

(mn) λ–


(max{m,n})λ am
]p

>
(

pqλ
[p(λ + ) – ][q(λ + ) – ]

)p ∞∑
n=

[
 – θλ(p,n)

]
np–apn. (.)

(b) For r = s =  and  < λ ≤ , we have

∞∑
n=

∞∑
m=

(mn) λ–


(max{m,n})λ ambn >

λ

{ ∞∑
n=

[
 – θλ(,n)

]
n

p
 –apn

} 
p
{ ∞∑

n=

n
q
 –bqn

} 
q

, (.)

∞∑
n=

n
p
 –

[ ∞∑
m=

(mn) λ–


(max{m,n})λ am
]p

>
(

λ

)p ∞∑
n=

[
 – θλ(,n)

]
n

p
 –apn. (.)
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