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Abstract
The objective of this paper is to solve an optimal solutions for new nonlinear
mapping in the setting of metric spaces. Our results extend, generalize, and improve
some known results from best proximity point theory and fixed point theory.
Examples are given to support our main results.
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1 Introduction
Fixed point theory is one of the famous and traditional theories in mathematics and has a
large number of applications in various fields of pure and applied mathematics, as well as
in physical, chemical, life, and social sciences. It is an important tool for solving equations
of the form Tx = x, where T is a self-mapping on a subset of a metric space. On the other
hand, if T is not a self-mapping, say T : A → B where A and B are nonempty subsets of a
metric space, then T does not necessarily have a fixed point. Consequently, the equation
Tx = x could have no solutions, and in this case, it is of a certain interest to determine an el-
ement x that is in some sense closest to Tx. Here best approximation theorems explore the
existence of an approximate solution whereas best proximity point theorems analyze the
existence of an approximate solution that is optimal. Thus, we can say that the aim of the
best proximity point theorems is to provide sufficient conditions to solve a minimization
problem. In view of the fact that d(x,Tx) is at least d(A,B) := inf{d(x, y) : x ∈ A and y ∈ B},
a best proximity point theorem concerns the global minimum of the real valued function
x → d(x,Tx), that is, an indicator of the error involved for an approximate solution of
the equation Tx = x, by complying with the condition d(x,Tx) = d(A,B). A classical best
approximation theorem was introduced by Fan [], that is, if A is a nonempty compact
convex subset of a Hausdorff locally convex topological vector space B and T : A → B is
a continuous mapping, then there exists an element x ∈ A such that d(x,Tx) = d(Tx,A).
Afterward, several generalizations and extensions of this theorem appeared in the litera-
ture (see e.g. [–], and references cited therein). It turns out that many of the contractive
conditions which are investigated for fixed points ensure the existence of best proximity
points, and many results of this kind are obtained in [–].
In this paper, we introduce a new class of non-self-mappings, called proximal CN -con-

tractions of the first and second kinds, which contains the proximal contractions as a sub-
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class. In this class, we will consider the following nonlinear problem: Find

min
x∈A

d(x,Tx),

where T : A→ B belongs a to new class of non-self-mappings, and A and B are nonempty
subsets of a metric space (X,d). Also, we give some illustrative examples to support our
results.

2 Preliminaries
In the sequel, R and N denote the set of real numbers and the set of positive integers,
respectively. Let (X,d) be a metric space, A and B be two nonempty subsets of X and
T : A→ B be a non-self-mapping. The following notations will be used in the sequel:

d(A,B) := inf
{
d(x, y) : x ∈ A and y ∈ B

}
,

A :=
{
x ∈ A : d(x, y) = d(A,B) for some y ∈ B

}
,

B :=
{
y ∈ B : d(x, y) = d(A,B) for some x ∈ A

}
.

Kirk et al. [] gave sufficient conditions to ensure that A and B are nonempty. Also,
we find that if A and B are closed subsets of a normed linear space such that d(A,B) > ,
then A and B are contained in the boundaries of A and B, respectively (see []).
In , Efimov and Stechkin [] introduced the concept of an approximatively com-

pact set. The properties of approximatively compact sets have been largely studied. It is
well known that the concept of approximative compactness plays an important role in
the theory of approximation []. Borodin [] showed that in every infinite-dimensional
separable Banach space there exists a bounded approximatively compact set which is not
compact.

Remark . For a metric space (X,d), the bounded compactness of a set is equivalent to
its closure and the possibility of selecting from any bounded sequence contained in it a
converging subsequence.

Definition . LetA and B be two nonempty subsets ofmetric space (X,d). Then B is said
to be approximatively compact with respect to A if every sequence {yn} of B, satisfying the
condition d(x, yn) → d(x,B) as n→ ∞ for some x ∈ A, has a convergent subsequence.

We see that any set is approximatively compact with respect to itself.

3 Main results
In this section,we give sequentially twonewclasses of non-self-mappings that are essential
to state and prove the existence of best proximity point theorems.

Definition . Let (X,d) be a metric space and A and B are two nonempty subsets of X.
A mapping T : A→ B is said to be a proximal CN -contraction of the first kind if there exist
nonnegative real numbers α, β , and L with α + β < , such that the conditions

d(u,Tx) = d(A,B) and d(v,Ty) = d(A,B)
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imply that

d(u, v) ≤ αd(x, y) + β

[
 + d(x,u)
 + d(x, y)

d(y, v)
]

+ Lmin
{
d(y,u),d(x, v),d(x,u),d(y, v)

}
(.)

for all u, v,x, y ∈ A.

Remark . If T is a self-mapping on A, then the requirement in the above definition
reduces to the following generalized contractive condition which is useful in establishing
a fixed point theorem:

d(Tx,Ty) ≤ αd(x, y) + β

[
 + d(x,Tx)
 + d(x, y)

d(y,Ty)
]

+ Lmin
{
d(y,Tx),d(x,Ty),d(x,Tx),d(y,Ty)

}
for all x, y ∈ X.

Definition . Let (X,d) be a metric space and A and B be two nonempty subsets of X.
A mapping T : A → B is said to be a proximal CN -contraction of the second kind if there
exist nonnegative real numbers α, β , and L with α + β < , such that the conditions

d(u,Tx) = d(A,B) and d(v,Ty) = d(A,B)

imply that

d(Tu,Tv) ≤ αd(Tx,Ty) + β

[
 + d(Tx,Tu)
 + d(Tx,Ty)

d(Ty,Tv)
]

+ Lmin
{
d(Ty,Tu),d(Tx,Tv),d(Tx,Tu),d(Ty,Tv)

}
(.)

for all u, v,x, y ∈ A.

Here, we give our first main result which is the best proximity point theorem for a prox-
imal CN -contraction of the first kind.

Theorem . Let (X,d) be a complete metric space and A and B be two nonempty, closed
subsets of X such that B is approximatively compact with respect to A.Assume that A and
B are nonempty and T : A→ B is a non-self-mapping such that:
(a) T is a proximal CN -contraction of the first kind;
(b) T(A) ⊆ B.

Then there exists a unique element x ∈ A such that d(x,Tx) = d(A,B). Moreover, for any
fixed x ∈ A, the sequence {xn}, defined by d(xn+,Txn) = d(A,B), converges to x.

Proof Let x ∈ A. Since T(A) ⊆ B, then by the definition of B, there exists x ∈ A

such that d(x,Tx) = d(A,B). Again, since Tx ∈ B, it follows that there is x ∈ A such
that d(x,Tx) = d(A,B). Continuing this process, we can construct a sequence {xn} in A,
such that

d(xn+,Txn) = d(A,B)
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for every nonnegative integer n. Since T is a proximal CN -contraction, we have

d(xn,xn+) ≤ αd(xn–,xn) + β

[
 + d(xn–,xn)
 + d(xn–,xn)

d(xn,xn+)
]

+ Lmin
{
d(xn,xn),d(xn–,xn+),d(xn–,xn),d(xn,xn+)

}
= αd(xn–,xn) + βd(xn,xn+).

It follows that d(xn,xn+) ≤ α
–β

d(xn–,xn), where α
–β

< . Therefore, {xn} is a Cauchy se-
quence. Now, since the space is complete and A is closed, the sequence {xn} converges to
some x ∈ A. Further, we have

d(x,B) ≤ d(x,Txn)

≤ d(x,xn+) + d(xn+,Txn)

= d(x,xn+) + d(A,B)

≤ d(x,xn+) + d(x,B).

Therefore, d(x,Txn) → d(x,B). Since B is approximatively compact with respect to A, the
sequence {Txn} has a subsequence {Txnk } converging to some element y ∈ B. Therefore,

d(x, y) = lim
k→∞

d(xnk+,Txnk ) = d(A,B),

and hence x must be a member of A. Because of the fact that T(A) is contained in B,
d(u,Tx) = d(A,B) for some element u in A. Since T is a proximal CN -contraction of the
first kind, we get

d(u,xn+) ≤ αd(x,xn) + β

[
 + d(x,u)
 + d(x,xn)

d(xn,xn+)
]

+ Lmin
{
d(xn,u),d(x,xn+),d(x,u),d(xn,xn+)

}
.

Taking the limit n → ∞, we have x = u. Thus, it follows that d(x,Tx) = d(u,Tx) = d(A,B).
Now, to prove the uniqueness of the best proximity point, assume that z is another best

proximity point of T so that d(z,Tz) = d(A,B). Since T is a proximalCN -contraction of the
first kind, we have

d(x, z) ≤ αd(x, z) + β

[
 + d(x,x)
 + d(x, z)

d(z, z)
]

+ Lmin
{
d(z,x),d(x, z),d(x,x),d(z, z)

}
,

which implies that x = z. Hence T has a unique best proximity point. �

It is easy to see that the preceding result yields the following corollaries.

Corollary . Let (X,d) be a complete metric space and A and B be two nonempty, closed
subsets of X such that B is approximatively compact with respect to A.Assume that A and
B are nonempty and T : A→ B is a non-self-mapping such that:

http://www.journalofinequalitiesandapplications.com/content/2014/1/193
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(a) there exist nonnegative real numbers α and L with α < , such that, for all
u, v,x, y ∈ A, the conditions d(u,Tx) = d(A,B) and d(v,Ty) = d(A,B) imply that

d(u, v)≤ αd(x, y) + Lmin
{
d(y,u),d(x, v),d(x,u),d(y, v)

}
;

(b) T(A) ⊆ B.
Then there exists a unique element x ∈ A such that d(x,Tx) = d(A,B). Moreover, for any
fixed x ∈ A, the sequence {xn}, defined by d(xn+,Txn) = d(A,B), converges to x.

Corollary . Let (X,d) be a complete metric space and A and B be two nonempty, closed
subsets of X such that B is approximatively compact with respect to A.Assume that A and
B are nonempty and T : A→ B is a non-self-mapping such that:
(a) there exist nonnegative real numbers α <  such that, for all u, v,x, y ∈ A, the

conditions d(u,Tx) = d(A,B) and d(v,Ty) = d(A,B) imply that d(u, v)≤ αd(x, y);
(b) T(A) ⊆ B.

Then there exists a unique element x ∈ A such that d(x,Tx) = d(A,B). Moreover, for any
fixed x ∈ A, the sequence {xn}, defined by d(xn+,Txn) = d(A,B), converges to x.

In Theorem ., if T is a self-mapping, then we get the following fixed point theorem.

Corollary . Let T be a self-mapping of a completemetric space (X,d).Assume that there
exist nonnegative real numbers α, β , and L with α + β < , such that

d(Tx,Ty) ≤ αd(x, y) + β

[
 + d(x,Tx)
 + d(x, y)

d(y,Ty)
]

+ Lmin
{
d(y,Tx),d(x,Ty),d(x,Tx),d(y,Ty)

}
for all x, y ∈ X. Then T has a unique fixed point.

Remark . It is well known that a contraction mapping must be continuous. Therefore,
Corollary . is a real proper extension of the Banach contraction mapping principle of
Banach [] because the continuity of the mapping T is not required.

Next, we give the existence of best proximity point theorem for proximalCN -contraction
of the second kind.

Theorem . Let (X,d) be a complete metric space and A and B be two nonempty, closed
subsets of X such that A is approximatively compact with respect to B.Assume that A and
B are nonempty and T : A→ B is a non-self-mapping such that:
(a) T is a continuous proximal CN -contraction of the second kind;
(b) T(A) ⊆ B.

Then there exists x ∈ A such that d(x,Tx) = d(A,B). Moreover, for any fixed x ∈ A, the
sequence {xn}, defined by d(xn+,Txn) = d(A,B), converges to x. Further, Tx = Tz for all x
and z belong to best proximity of T .

Proof Following the arguments in Theorem ., we can construct a sequence {xn} in A,
such that

d(xn+,Txn) = d(A,B)

http://www.journalofinequalitiesandapplications.com/content/2014/1/193
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for every nonnegative integer n. Since T is a proximal CN -contraction of the second kind,
we have

d(Txn,Txn+) ≤ αd(Txn–,Txn) + β

[
 + d(Txn–,Txn)
 + d(Txn–,Txn)

d(Txn,Txn+)
]

+ Lmin
{
d(Txn,Txn),d(Txn–,Txn+),d(Txn–,Txn),d(Txn,Txn+)

}
= αd(Txn–,Txn) + βd(Txn,Txn+).

It follows that d(Txn,Txn+) ≤ α
–β

d(Txn–,Txn), where α
–β

< . Therefore, {Txn} is a Cauchy
sequence. Now, since the space is complete and B is closed, the sequence {Txn} converges
to some y ∈ B. Further, we have

d(y,A) ≤ d(y,xn+)

≤ d(y,Txn) + d(Txn,xn+)

= d(y,Txn) + d(A,B)

≤ d(y,Txn) + d(y,A).

Therefore, d(y,xn) → d(y,A). Since A is approximatively compact with respect to B, then
the sequence {xn} has a subsequence {xnk } converging to some element x ∈ A. Now, using
the continuity of T , we obtain d(x,Tx) = limk→∞ d(xnk+,Txnk ) = d(A,B).
Now, further assume that z is another best proximity point ofT so that d(z,Tz) = d(A,B).

Since T is a proximal CN -contraction of the second kind, we get

d(Tx,Tz) ≤ αd(Tx,Tz) + β

[
 + d(Tx,Tx)
 + d(Tx,Tz)

d(Tz,Tz)
]

+ Lmin
{
d(Tz,Tx),d(Tx,Tz),d(Tx,Tx),d(Tz,Tz)

}
,

which implies that Tx = Tz. �

As consequences of Theorem ., we state the following corollaries.

Corollary . Let (X,d) be a complete metric space and A and B be two nonempty, closed
subsets of X such that A is approximatively compact with respect to B.Assume that A and
B are nonempty and T : A→ B is a non-self-mapping such that:
(a) there exist nonnegative real numbers α and L with α <  such that, for all

u, v,x, y ∈ A, the conditions d(u,Tx) = d(A,B) and d(v,Ty) = d(A,B) imply that

d(Tu,Tv)≤ αd(Tx,Ty) + Lmin
{
d(Ty,Tu),d(Tx,Tv),d(Tx,Tu),d(Ty,Tv)

}
;

(b) T is a continuous;
(c) T(A) ⊆ B.

Then there exists x ∈ A such that d(x,Tx) = d(A,B). Moreover, for any fixed x ∈ A, the
sequence {xn}, defined by d(xn+,Txn) = d(A,B), converges to x. Further, Tx = Tz for all x
and z belong to best proximity of T .

http://www.journalofinequalitiesandapplications.com/content/2014/1/193
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Corollary . Let (X,d) be a complete metric space and A and B be two nonempty, closed
subsets of X such that A is approximatively compact with respect to B.Assume that A and
B are nonempty and T : A→ B is a non-self-mapping such that:
(a) there exists a nonnegative real number α <  such that, for all u, v,x, y ∈ A, the

conditions d(u,Tx) = d(A,B) and d(v,Ty) = d(A,B) imply that
d(Tu,Tv)≤ αd(Tx,Ty);

(b) T is a continuous;
(c) T(A) ⊆ B.

Then there exists x ∈ A such that d(x,Tx) = d(A,B). Moreover, for any fixed x ∈ A, the
sequence {xn}, defined by d(xn+,Txn) = d(A,B), converges to x. Further, Tx = Tz for all x
and z belong to the best proximity of T .

In Theorem ., if T is a self-mapping, then we get the following fixed point theorem.

Corollary . Let T be a continuous self-mapping of a complete metric space (X,d). As-
sume that there exist nonnegative real numbers α, β , and L with α + β < , such that

d(TTx,TTy) ≤ αd(Tx,Ty) + β

[
 + d(Tx,TTx)
 + d(Tx,Ty)

d(Ty,TTy)
]

+ Lmin
{
d(Ty,TTx),d(Tx,TTy),d(Tx,TTx),d(Ty,TTy)

}
for x, y ∈ X. Then T has a unique fixed point.

Remark . It is easy to see that Corollary . is a special case of Corollary ..

The next theorem, we give conditions for the existence of best proximity point for a
non-self-mapping that is a proximal CN -contraction of the first and second kind. In this
theorem, we consider only a completeness hypothesis without assuming the continuity of
the non-self-mapping and the approximatively compactness of subspace.

Theorem . Let (X,d) be a complete metric space and A and B be two nonempty, closed
subsets of X. Assume that A and B are nonempty and T : A → B is a non-self-mapping
such that:
(a) T is a proximal CN -contraction of the first and second kind;
(b) T(A) ⊆ B.

Then there exists a unique x ∈ A such that d(x,Tx) = d(A,B). Moreover, for any fixed x ∈
A, the sequence {xn}, defined by d(xn+,Txn) = d(A,B), converges to x.

Proof Following the arguments in Theorem ., we can construct a sequence {xn} in A,
such that

d(xn+,Txn) = d(A,B)

for every nonnegative integer n. Also, using similar arguments as in the proof of Theo-
rem ., we deduce that the sequence {xn} is a Cauchy sequence, and hence converges
to some x ∈ A. Moreover, on the lines of Theorem ., we find that the sequence {Txn}
is a Cauchy sequence and hence converges to some y ∈ B. Therefore, we have d(x, y) =

http://www.journalofinequalitiesandapplications.com/content/2014/1/193
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limn→∞ d(xn+,Txn) = d(A,B), hence x must be in A. Since T(A) ⊆ B, then d(u,Tx) =
d(A,B) for some u ∈ A. Using the fact that T is proximal CN -contraction of first kind, we
have

d(u,xn+) ≤ αd(x,xn) + β

[
 + d(x,u)
 + d(x,xn)

d(xn,xn+)
]

+ Lmin
{
d(xn,u),d(x,xn+),d(x,u),d(xn,xn+)

}
.

Taking the limit n → ∞, we have x = u. Thus, it follows that d(x,Tx) = d(u,Tx) = d(A,B).
Now, to prove the uniqueness of the best proximity point, assume that z is another best

proximity point of T so that d(z,Tz) = d(A,B). Since T is a proximalCN -contraction of the
first kind, we have

d(x, z) ≤ αd(x, z) + β

[
 + d(x,x)
 + d(x, z)

d(z, z)
]

+ Lmin
{
d(z,x),d(x, z),d(x,x),d(z, z)

}
,

which implies that x = z. Hence T has a unique best proximity point. �

Finally, we give some illustrative examplewhich demonstrate the validity of the hypothe-
ses and degree of utility of our results.

Example . Let X = R endowed with the usual metric d(x, y) = |x – y|, for all x, y ∈ X.
Define two closed subsetsA, B of X byA = [, ] and B = (–∞, –]∪ [,∞). Then d(A,B) =
, A = {, } and B = {–, }. Also define T : A→ B by

Tx =

{
 if x is rational,
 if x is irrational.

It is easy to see that T(A) ⊆ B and T is a proximal CN -contraction of the first and sec-
ond kind. Now all the hypotheses of Theorem . are satisfied and d(,T()) = d(A,B).
Obviously, Theorem . is not applicable in this case since T is not continuous.
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