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1 Introduction
Let R+ be the set of positive real numbers. Then a two-variable continuous function M :
R


+ →R+ is said to be a mean on R+ if the double inequality

min(a,b)≤M(a,b) ≤max(a,b)

holds for all a,b ∈R+.
The classical arithmetic-geometric mean AGM(a,b) of two positive real numbers a and

b is defined as the common limit of sequences {an} and {bn}, which are given by

AGM(a,b) = lim
n→∞an = lim

n→∞bn,

where a = a, b = b, and for n ∈N,

an+ =
an + bn


, bn+ =

√
anbn. (.)

The well-known Gauss identity shows that

AGM
(
,

√
 – r

)
=

π

K(r)

for r ∈ (, ), where K(r) =
∫ π/
 ( – r sin t)–/ dt [] is the complete elliptic integral of the

first kind.
Let a,b >  with a �= b. Then the well-known Stolarsky mean [] Sp,q(a,b) can be ex-

pressed as
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Sp,q(a,b) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

( qp
ap–bp
aq–bq )

/(p–q) if pq(p – q) �= ,
( bp–ap
p(lnb–lna) )

/p if p �= ,q = ,
( bq–aq
q(lnb–lna) )

/q if p = ,q �= ,
exp( bp lnb–ap lnabp–ap – 

p ) if p = q �= ,√
ab if p = q = .

(.)

Many bivariate means are the special case of the Stolarsky mean, for example, S,(a,b) =
(a+b)/ = A(a,b) is the arithmetic mean, S,(a,b) =

√
ab =G(a,b) is the geometric mean,

S/,/(a,b) = (a +
√
ab + b)/ = He(a,b) is the Heronian mean, S,(a,b) = (b – a)/(lnb –

lna) = L(a,b) is the logarithmic mean, S,(a,b) = /e(bb/aa)/(b–a) = I(a,b) is the iden-
tric (exponential) mean, Sp,p(a,b) = A/p(ap,bp) = Ap(a,b) the p-order arithmetic (power,
Hölder) mean, Sp/,p/(a,b) = He/p(ap,bp) = Hep(a,b) is the p-order Heronian mean,
Sp,(a,b) = L/p(ap,bp) = Lp(a,b) is the p-order logarithmic mean, Sp,p(a,b) = I/p(ap,bp) =
Ip(a,b) is the p-order identric (exponential) mean and Sp+,p(a,b) = [p(ap+ – bp+)]/[(p +
)(ap – bp)] = Jp(a,b) is the one-parameter mean.
Another important family of means is the Gini means [] defined by

Gp,q(a,b) =

{
( ap+bpaq+bq )

/(p–q) if p �= q,
exp( ap lna+bp lnbap+bp ) if p = q,

(.)

it also contains many special means, for instance, G,(a,b) = A(a,b) is the arithmetic
mean, G,(a,b) = aa/(a+b)bb/(a+b) = I(a,b)/I(a,b) = Z(a,b) is the power-exponential
mean, Gp,(a,b) = A/p(ap,bp) = Ap(a,b) is the p-order arithmetic (power, Hölder) mean,
Gp,p(a,b) = Z/p(ap,bp) = Zp(a,b) is the p-order power-exponential mean andGp+,p(a,b) =
(ap+ + bp+)/(ap + bp) =Lp(a,b) is the Lehmer mean.
Recently, the inequalities for the bivariate means have been the subject of intensive re-

search. In particular, the bounds for the arithmetic-geometric mean AGM have attracted
the attention of many mathematicians. It is well known that the double inequality

L(a,b) < AGM(a,b) < L/
(
a/,b/

)
(.)

holds for all a,b >  with a �= b. The first inequality of (.) was first proposed by Carlson
and Vuorinen [], it was proved in the literature [–] by different methods. Vamana-
murthy and Vuorinen [] (also see [, ]) proved that AGM(a,b) < (π/)L(a,b) for all
a,b >  with a �= b. The second inequality of (.) is due to Borwein and Borwein [], and
Yang [] presented a simple proof by use of the ‘Comparison Lemma’ [, Lemma .].
In [] Vamanmurthy and Vuorinen presented the upper bounds for the arithmetic-

geometric mean AGM in terms of the arithmetic mean A, geometric mean G and log-
arithmic mean L as follows:

AGM(a,b) < L(a,b) =
(
A(a,b)L(a,b)

)/,
AGM(a,b) < I(a,b) < A(a,b),

AGM(a,b) < A/(a,b)

for all a,b >  with a �= b.
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In , Sándor [] proved that the double inequality


/(π )
L(a,b) + –/(π )

A(a,b)

< AGM(a,b) <


/π
L(a,b) +

–/π
A(a,b)

, (.)

holds for all a,b >  with a �= b, and it was improved by Alzer and Qiu [, Theorem ] as


β

L(a,b) +
–β
A(a,b)

< AGM(a,b) <


α
L(a,b) +

–α
A(a,b)

, (.)

with the best possible parameters β = / and α = /π .
Other inequalities involving AGM can be found in the literature [–].
The aim of this paper is to establish the new inequality chains for the ratio of certain

bivariate means, and we present the sharp bounds for the arithmetic-geometric mean
AGM.

2 Lemmas
In order to establish our main results we need several lemmas, which we present in this
section.

Lemma  ([, Corollary .]) Let a,b >  with a �= b. Then both Sp,m–p(a,b) and
Gp,m–p(a,b) are strictly increasing (decreasing) with respect to p ∈ (–∞,m) (p ∈ (m,∞))
for fixed m > .

Lemma  ([, Theorem ], [, Theorem .]) Let a,b, c,d >  with b/a > d/c ≥ . Then
the ratio of Stolarsky means R(p, m – p;a,b; c,d) = Sp,m–p(a,b)/Sp,m–p(c,d) is strictly in-
creasing (decreasing) with respect to p ∈ (–∞,m) (p ∈ (m,∞)) for fixed m > .

Lemma  ([, Theorem .]) Let a,b, c,d >  with b/a > d/c ≥ . Then the ratio of Sto-
larsky means R(p,q;a,b; c,d) = Sp,q(a,b)/Sp,q(c,d) is strictly log-concave (log-convex) with
respect to p ∈ ((|q| – q)/,∞) (p ∈ (–∞, –(|q| + q)/)) for fixed q ∈R.

From Lemma , we have Corollary .

Corollary  Let λ > , α ∈ (, ) and a,b, c,d >  with b/a > d/c≥ . Then the function

p 	→ Rα(p, ;a,b; c,d)R–α

(
λ – αp
 – α

, ;a,b; c,d
)
=: r(p)

is strictly increasing in (,λ) and strictly decreasing in (λ,λ/α).

Proof Let p = (λ – αp)/( – α). Then

r′(p)
r(p)

= α
(
lnR(p, ;a,b; c,d)

)′ + ( – α)
(
lnR(p, ;a,b; c,d)

)′

× –α

 – α

= α
((
lnR(p, ;a,b; c,d)

)′ –
(
lnR(p, ;a,b; c,d)

)′)
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= α(p – p)
(
lnR(ξ , ;a,b; c,d)

)′′

=
α

 – α
(p – λ)

(
lnR(ξ , ;a,b; c,d)

)′′,

where ξ is between p and p.
It follows from Lemma  that R(p, ;a,b; c,d) is strictly log-concave with respect to p ∈

(,∞) and strictly log-convexwith respect to p ∈ (–∞, ). Therefore, r′(p) >  for p ∈ (,λ)
and r′(p) <  for p ∈ (λ,λ/α). �

Lemma  ([, Corollary .]) Let a,b, c,d >  with b/a > d/c ≥ . Then the function

Q(p) =
√
Sp,q(a,b)Sk–p,q(a,b)√
Sp,q(c,d)Sk–p,q(c,d)

is strictly decreasing (increasing) in (k,∞) and strictly increasing (decreasing) in (–∞,k)
for fixed q ≥ (≤), k ≥ (≤) with q + k �= .

Let (k,q) = (/, ), (/, ), respectively. Then Lemma  leads to the following.

Corollary  Let a,b, c,d >  with b/a > d/c ≥ . Then
(i) the function

p 	→
√
Sp,(a,b)S–p,(a,b)√
Sp,(c,d)S–p,(c,d)

is strictly decreasing in (/,∞) and strictly increasing in (–∞, /);
(ii) the function

p 	→
√
Sp,(a,b)S–p,(a,b)√
Sp,(c,d)S–p,(c,d)

is strictly decreasing in (/,∞) and increasing in (–∞, /).

Lemma  Let a,b >  with b > a. Then b/a > A(a,b)/G(a,b) > .

Proof Simple computations lead to

b
a
–
A(a,b)
G(a,b)

=
b
a
–

√
b
a +

√
a
b



=



(√
b
a
– 

)(
 + 

√
b
a
+

√
a
b

)
> . �

Lemma  ([]) Let x ∈ (, ). Then

AGM(,x) ∼ π/
ln(/x)

, x→ +, (.)


AGM(,  – x)

=  +


x +




x +



x +

,

x + o
(
x

)
. (.)
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Lemma  is a consequence of the ‘Comparison Lemma’ in [, Lemma .].

Lemma  Let� be a bivariatemean such that�(G(x, y),A(x, y)) < (>)�(x, y) for all x, y > 
with x �= y. Then

AGM(a,b) < (>)�(a,b)

for all a,b >  with a �= b.

3 Inequality chains for the ratio of means
In this section, we give some inequality chains for the ratio of certain bivariate means,
which will be used to prove our main results in next section.

Proposition  Let a,b, c,d >  with b/a > d/c≥ . Then we have

√
A(a,b)G(a,b)√
A(c,d)G(c,d)

<
G/,–/(a,b)
G/,–/(c,d)

<
S/,–/(a,b)
S/,–/(c,d)

. (.)

Proof The second inequality of (.) can be rewritten as

S/,–/(,b/a)
G/,–/(,b/a)

>
S/,–/(,d/c)
G/,–/(,d/c)

.

Therefore, it suffices to prove that the function

f(x) = ln
S/,–/(,x)
G/,–/(,x)

=


ln

x/ – 
( – x–/)

– ln
x/ + 
x–/ + 

is strictly increasing in (,∞). Replacing x by x and differentiating f give

xf ′

(
x

)
=



x

(x – )
–


(x – )

–

x

–
x

x + 
+


x + 

=
(x + )(x + x + )(x – )

x(x – x + )(x + x + x + x + x + x + )
> 

for x ∈ (,∞).
Similarly, to prove the first inequality of (.), it suffices to prove that the function

f(x) = ln
G/,–/(,x)√
A(,x)G(,x)

= ln
x/ + 

(x–/ + )
√

x+


√
x
= ln

√
x – √x + √

x+


is strictly increasing on (,∞). Replacing x by x and differentiating f yield

xf ′

(
x

)
=

(x + )(x – )

(x – x + )(x + )
> 

for x ∈ (,∞), which completes the proof. �
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Proposition  Let a,b >  with a �= b. Then we have

√
A(a,b)G(a,b)√
A(G,A)G(G,A)

<
G/,–/(a,b)
G/,–/(G,A)

<
S/,–/(a,b)
S/,–/(G,A)

< , (.)

where G =G(a,b) and A = A(a,b).

Proof By symmetry, without loss of generality, we assume that a < b. Then from Lemma 
and Proposition  we clearly see that the first and second inequalities of (.) hold. Next
we prove the last inequality of (.). Let t = ln

√
b/a > , then the last inequality of (.)

can be rewritten as

(
sinh t


 sinh t



)/

<
(


(cosh t)/ – 
 – (cosh t)–/

)/

=
(


(cosh t) – (cosh t)/

(cosh t)/ – 

)/

.

It suffices to prove that the function

g(t) = cosh t –
(
sinh t

 + (sinh t
 )(cosh t)



sinh t
 + sinh t



)

< 

for t > .
Simple computations lead to

sinht + (sinh t)(cosht) = 
(
sinh t cosh t

)(
 cosh t – 

)(
 cosh t –  cosh t – 

)
,

sinht + sinh t = 
(
sinh t cosh t

)(
 cosh t – 

)(
 cosh t – 

)
,

cosht =  cosh t –  cosh t + ,

g(t) = cosht –
(
sinht + (sinh t)(cosht)

sinht + sinh t

)

=
(
 cosh t –  cosh t + 

)
–

(
 cosh t –  cosh t – 

 cosh t – 

)

:= g
(
cosh t

)
,

where

g(x) =
(
x – x + 

)
–

(
x – x – 

x – 

)

, x = cosh t > .

g(x) can be rewritten as

g(x) = –(x – )
x + x – x + x – 

(x – )

= –(x – )
x(x – ) + x(x – ) + x(x – ) + (x – ) + x

(x – )
< 

for x > . Therefore, g(t) <  for t > .
Thus we complete the proof. �
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Proposition  Let a,b, c,d >  with b/a > d/c≥  and p ∈ (/, ). Then

A/(a,b)L/(a,b)
A/(c,d)L/(c,d)

<
√
Lp(a,b)L–p(a,b)√
Lp(c,d)L–p(c,d)

<
L/(a,b)
L/(c,d)

<
√
L(a,b)A/(a,b)√
L(c,d)A/(c,d)

<
√
L(a,b)I(a,b)√
L(c,d)I(c,d)

<
S/,/(a,b)
S/,/(c,d)

<
He/(a,b)
He/(c,d)

<
A/(a,b)
A/(c,d)

<
I/(a,b)
I/(c,d)

.

Proof (i) From part one of Corollary  we see that

√
S,(a,b)S,(a,b)√
S,(c,d)S,(c,d)

<
√
Sp,(a,b)S–p,(a,b)√
Sp,(c,d)S–p,(c,d)

<
√
S/,(a,b)S/,(a,b)√
S/,(c,d)S/,(c,d)

for p ∈ (/, ).
Therefore, the first and second inequalities of Proposition  follow from the above in-

equalities and
√
S,(a,b)S,(a,b) = A/(a,b)L/(a,b) togetherwith S/,(a,b) = L/(a,b).

(ii) For the third inequality of Proposition . From

A/(a,b) = S/,/(a,b) =
S/,(a,b)
S/,(a,b)

we clearly see that it suffices to prove

S/,(a,b)
√
S/,(a,b)

S/,(c,d)
√
S/,(c,d)

<
S/,(a,b)

√
S,(a,b)

S/,(c,d)
√
S,(c,d)

.

Let (α,λ) = (/, /). Then Corollary  leads to the conclusion that the function

p 	→ R/(p, ;a,b; c,d)R/
(
 – p


,;a,b; c,d

)
=: r(p)

is increasing in (, /). Therefore, r(/) < r(), that is,

S/,(a,b)
√
S/,(a,b)

S/,(c,d)
√
S/,(c,d)

<
S/,(a,b)

√
S,(a,b)

S/,(c,d)
√
S,(c,d)

.

(iii) The fourth inequality of Proposition  can be written as A/(a,b)/A/(c,d) <
I(a,b)/I(c,d), that is, R(/, /;a,b; c,d) < R(, ;a,b; c,d). Let m = , then from Lemma 
we know that R(p,  – p;a,b; c,d) is strictly decreasing with respect to p ∈ (,∞).
(iv) For the sixth, seventh, and eighth inequalities, let m = /, then Lemma  leads to

the conclusion that R(p, /–p;a,b; c,d) is strictly decreasing with respect to p ∈ (/,∞).
Consequently,

R
(


,


–


;a,b; c,d

)
< R

(


,


–


;a,b; c,d

)

< R
(
,


– ;a,b; c,d

)
< R

(


,


–


;a,b; c,d

)
,

which gives the desired results.
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(v) Finally, we prove the fifth inequality. It can be written as

√
L(,b/a)I(,b/a)
S/,/(,b/a)

<
√
L(,d/c)I(,d/c)
S/,/(,d/c)

.

Thus we need only to prove that the function

h(x) = ln

√
L(,x)I(,x)
S/,/(,x)

is strictly decreasing in (,∞). Let t = ln
√
x ∈ (,∞). Then

h(x) =


ln

sinh t
t

+



(
t cosh t
sinh t

– 
)
– ln

sinh t


 sinh t

:= h(t).

Differentiating h(t) yields

h′
(t) = –

h(t)
t sinh 

 t sinh

 t sinh

 t
,

where

h(t) = t sinh
t

sinh

t


+  sinh
t

sinh

t

sinh t – t cosh

t

sinh

t

sinh t

+ t cosh
t

sinh

t

sinh t – t sinh

t

sinh

t

cosh t sinh t.

We clearly see that it is enough to prove h(t) >  for t > .
Making use of ‘product to sum’ and power series formulas we get

h(t) = –t sinh
t

+


cosh

t

–


cosh

t


+ t cosh
t


– t sinh
t


+


cosh

t


+


cosh t +



t sinh t – t cosh t –



cosht –



t sinht

=
∞∑
n=

s(n)
n+(n)!

tn,

where

s(n) = n –
(


n + 

)
n +

(
n – n – 

)
n– –

(
n – n – 

)
n – n + .

It is easy to verify that s() = s() = s() = , s() = ,. Next we show that s(n) >  for
n≥ . To this end, we rewrite s(n) as

s(n) = ns(n) +


(
n – n – 

)
ns(n) + s(n),

where

s(n) =
(



)n

–
(


n + 

)
,

http://www.journalofinequalitiesandapplications.com/content/2014/1/192
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s(n) = n – × n =
(



)n

– ,

s(n) =
(
n – n – 

)
n– – n + .

Due to (n – n – ) = n(n – ) + (n – ) >  for n ≥ , it suffices to prove si(n) > 
for n≥ , i = , , . Indeed,

s′(x) = 
(



)x

ln


–



≥ 
(



)

ln


–


= . . . . > ,

therefore, s(n) ≥ s() = ,,/,, > ; s(n) > s() = / > ; s(n) >
(n – n – ) – n +  = (n – ) + (n – ) +  > .
This completes the proof. �

Proposition  Let a,b >  with a �= b. Then for p ∈ (/, ) we have

 <
A/(a,b)L/(a,b)
A/(G,A)L/(G,A)

<
√
Lp(a,b)L–p(a,b)√
Lp(G,A)L–p(G,A)

<
L/(a,b)
L/(G,A)

<
√
L(a,b)A/(a,b)√
L(G,A)A/(G,A)

<
√
L(a,b)I(a,b)√
L(G,A)I(G,A)

<
S/,/(a,b)
S/,/(G,A)

<
He/(a,b)
He/(G,A)

<
A/(a,b)
A/(G,A)

<
I/(a,b)
I/(G,A)

, (.)

where G =G(a,b) and A = A(a,b).

Proof Without loss of generality, we assume that a < b. Then the second inequality to the
last inequality in (.) follows easily from Proposition  and Lemma .
Next we prove the first inequality of (.). Let t = ln

√
b/a > . Then it equivalent to the

inequality

u(t) =


ln cosh t +



ln

sinh t
t

–


ln

cosh t + 


–


ln

cosh t – 
ln cosh t

> .

Differentiating u(t) gives

u′(t) =
t sinh t – (t +  sinh t cosh t + t cosh t) ln(cosh t)

t(sinht) ln(cosh t)

=
t +  sinh t cosh t + t cosh t

t(sinht) ln(cosh t)
× u(t),

where

u(t) =
t sinh t

t +  sinh t cosh t + t cosh t
– ln(cosh t).

Differentiating u(t) leads to

u′
(t) =

t sinh t
(t + t cosh t +  cosh t sinh t) cosh t

× u(t),

http://www.journalofinequalitiesandapplications.com/content/2014/1/192
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where

u(t) =


t cosh t –  sinh t + t cosht +



sinht +



t cosht –  sinht.

Making use of the power series we get

u(t) =



∞∑
n=

tn–

(n – )!
– 

∞∑
n=

tn–

(n – )!
+

∞∑
n=

n–tn–

(n – )!

+



∞∑
n=

n–tn–

(n – )!
+



∞∑
n=

n–tn–

(n – )!
– 

∞∑
n=

n–tn–

(n – )!

=
∞∑
n=

v(n)
(n – )!

tn–,

where

v(n) =
(
n –




)
n– + (n + )n– +

(
n –




)
.

Clearly, v() = v() = , v() =  and v(n) >  for n≥ . Therefore, u(t) > , u(t) is strictly
increasing in (,∞), u(t) > u(+) = , u′(t) > , and u(t) > u(+) =  for t > .
Thus the proof is finished. �

4 Sharp bounds for AGM
In this section, we present several sharp bounds for the arithmetic-geometric mean AGM.
Theorem  can be derived from Propositions - and Lemma .

Theorem  Let a,b >  with a �= b. Then the inequalities

√
A(a,b)G(a,b) < G/,–/(a,b) < S/,–/(a,b) < AGM(a,b)

< A/(a,b)L/(a,b) <
√
Lp(a,b)L–p(a,b)

< L/(a,b) <
√
L(a,b)A/(a,b) <

√
L(a,b)I(a,b)

< S/,/(a,b) <He/(a,b) < A/(a,b) < I/(a,b)

hold for p ∈ (/, ).

Remark  Weclearly see that the upper boundA/L/ forAGM is better than L/.More-
over, we have

AGM(a,b) < A/(G,A)L/(G,A) = A/
/(a,b)L

/(G,A).

Theorem  The inequality

AGM(a,b) < Ap(a,b)L–p(a,b) (.)

holds for all a,b >  with a �= b if and only if p≥ /.
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Proof Let x >  and x → +. Then (.) and the power series


Ap(,  – x)L–p(,  – x)

=  +


x +

 – p


x + o
(
x

)

lead to

lim
x→+


AGM(,–x) –


Ap(,–x)L–p(,–x)

x
=




(
p –




)
.

Therefore, p ≥ / is the necessary condition for the inequality AGM(a,b) < Ap(a,b)×
L–p(a,b) to hold for all a,b >  with a �= b. The sufficiency follows easily from the function
p 	→ Ap(a,b)L–p(a,b) is strictly increasing and Theorem . �

Let a,b >  with a �= b, r ∈R and α ∈ (, ). Then we defineMr(A(a,b),L(a,b);  ) by

Mr

(
A,L;




)
=

(


Ar +



Lr

)/r

if r �=  andM

(
A,L;




)
= A/L/. (.)

Remark  From Theorem  and (.) we clearly see that the double inequality

M–
(
A(a,b),L(a,b); /

)
< AGM(a,b) <M

(
A(a,b),L(a,b); /

)
holds for all a,b >  with a �= b.
Moreover, making use of (.) and (.) we get

lim
x→+

AGM(,x) – (  (
x+
 )r + 

 (
x–
lnx )

r)/r

/ ln(/x)
=

{
π
 –∞, r ≥ ,
π
 – (  )

/r , r < ,

lim
x→+


AGM(,–x) – (  (

–x
 )r + 

 (
–x

ln(–x) )
r)/r

x
=
r + /
,

.

Therefore, p ≤ –(ln – ln)/(lnπ – ln) = –. . . . and q ≥ –/ are the necessary
conditions such that the double inequality

Mp

(
A(a,b),L(a,b);




)
< AGM(a,b) <Mq

(
A(a,b),L(a,b);




)
(.)

holds for all a,b >  with a �= b.

Conjecture  The double inequality

Mp

(
A(a,b),L(a,b);




)
< AGM(a,b) <Mq

(
A(a,b),L(a,b);




)

holds for all a,b >  with a �= b if and only if p≤ –(ln – ln)/(lnπ – ln) and q ≥ –/.

Theorem  Let p,q > /. Then the double inequality

Sp,/–p(a,b) < AGM(a,b) < Sq,/–q(a,b) (.)

holds for all a,b >  with a �= b if and only if p≥ / and / < q ≤ /.
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Proof The sufficiency follows from the function p 	→ Sp,/–p(a,b) is strictly decreasing in
(/,∞) by Lemma  and Theorem .
Next we prove the necessity. It follows from (.) and (.) together with the power series


Sp,/–p(,  – x)

=  +


x +




x +



x +
p – p + 

,
x + o

(
x

)
,

that

lim
x→+


AGM(,–x) –


Sp,/–p(,–x)

x
=


,

–
p – p + 

,
,

lim
x→+

AGM(,x) – Sq,/–q(,x)
/(ln(/x))

=

{
π
 –∞, / < q ≤ /,
π
 , q > /.

Therefore, p≥ / and / < q ≤ / are the necessary conditions the double inequality
(.) to hold for all a,b >  with a �= b. �

Theorem  Let p≥ /. Then the inequality

AGM(a,b) <
√
Sp,(a,b)S–p,(a,b) (.)

holds for all a,b >  with a �= b if and only if / ≤ p ≤ .

Proof The sufficiency follows from the function p 	→ √
Sp,(a,b)S–p,(a,b) is strictly de-

creasing in (/,∞) by Corollary (ii) and the inequality

AGM(a,b) <
√
L(a,b)I(a,b) =

√
S,(a,b)S,(a,b)

in Theorem , and the necessity can be derived from the inequality

lim
x→+

AGM(,x) –
√
Sp,(,  – x)S–p,(,  – x)
/(ln(/x))

=

{
π
 –∞, /≤ p ≤ ,
π
 , p > 

≤ . �

Making use of the similar methods, we can prove Theorems -, we omit the proofs
here.

Theorem  Let and p,q > /. Then the double inequality

Gp,/–p(a,b) < AGM(a,b) <Gq,/–q(a,b)

holds for all a,b >  with a �= b if and only if p≥ / and / < q ≤ /.

Theorem  The double inequality

Sp+,p(a,b) < AGM(a,b) < Sq+,q(a,b)

holds for all a,b >  with a �= b if and only if p≤  and q ≥ /.

http://www.journalofinequalitiesandapplications.com/content/2014/1/192


Yang et al. Journal of Inequalities and Applications 2014, 2014:192 Page 13 of 13
http://www.journalofinequalitiesandapplications.com/content/2014/1/192

Theorem  The double inequality

Hep(a,b) < AGM(a,b) <Heq(a,b)

holds for all a,b >  with a �= b if and only if p≤  and q ≥ /.
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