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Abstract
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1 Introduction
The Euler gamma function �(x) is defined [] for x >  by

�(x) =
∫ ∞


e–ttx– dt. ()

In , by using a geometrical method, Alsina and Tomás [] proved the following
double inequality:


n!

≤ �( + x)n

�( + nx)
≤ , x ∈ [, ],n ∈N. ()

In , Nguyen and Ngo [] obtained the following generalization of the double in-
equality ():

∏n
i= �( + αi)

�(β +
∑n

i= αi)
≤

∏n
i= �( + αix)

�(β + (
∑n

i= αi)x)
≤ 

�(β)
, ()

where x ∈ [, ], β ≥ , αi > , n ∈N.
For k > , the function �k is defined [] by

�k(x) = lim
n→∞

n!kn(nk)
x
k –

(x)n,k
, x ∈C\kZ–, ()

where (x)n,k = x(x + k)(x + k) · · · (x + (n – )k).
The above definition is a generalization of the gamma function. For x ∈CwithRe(x) > ,

the function �k(x) is given by the integral []

�k(x) =
∫ ∞


e–

tk
k tx– dt. ()
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It satisfies the following properties [–]:
(i) �k(k) = ;
(ii) �(x) = �(x).
For k > , the k-Riemann zeta function is defined [] by the integral

ζk(x) =


�k(x)

∫ ∞



tx–k

et – 
dt, x > k. ()

Note that when k tends to  we obtain the known Riemann zeta function ζ (x).
In this note, by usingmethods on the theory ofmajorization, we extended the double in-

equality () to the function �k(x) and the k-Riemann zeta function, namely, we established
the following theorems.

Theorem ∏n
i= �k( + αi)

�k(β +
∑n

i= αi)
≤

∏n
i= �k( + αix)

�k(β + (
∑n

i= αi)x)
≤ 

�k(β)
, ()

where x ∈ [, ], β ≥ , αi > , i = , . . . ,n, n ∈N.

Theorem ∏n
i= ζk(k +  + αi)�k(k +  + αi)

ζk(β + k +
∑n

i= αi)�k(β + k +
∑n

i= αi)

≤
∏n

i= ζk(k +  + αix)�k(k +  + αix)
ζk(β + k + (

∑n
i= αi)x)�k(β + k + (

∑n
i= αi)x)

≤ (π/)n

ζk(β + k)�k(β + k)
, ()

where x ∈ [, ], β ≥ , αi > , i = , . . . ,n, n ∈N.

Substituting k =  and αi =  (i = , . . . ,n) into () and taking into account that �() = 
and ζ () = π/, we obtain the following.

Corollary 

(ζ ())n

ζ ( + β + n)�( + β + n)
≤ (ζ ( + x)�( + x))n

ζ ( + β + nx)�( + β + nx)
≤ (ζ ())n

ζ ( + β)�( + β)
, ()

where x ∈ [, ], β ≥ , n ∈N.

Remark  ζ () is Apéry’s constant [].

2 Definitions and lemmas
We need the following definitions and auxiliary lemmas.

Definition  [, ] Let x = (x, . . . ,xn) and y = (y, . . . , yn) ∈R
n.

(i) We say y majorizes x (x is said to be majorized by y), denoted by x ≺ y, if∑k
i= x[i] ≤

∑k
i= y[i] for k = , , . . . ,n –  and

∑n
i= xi =

∑n
i= yi, where x[] ≥ · · · ≥ x[n]

and y[] ≥ · · · ≥ y[n] are rearrangements of x and y in a descending order.
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(ii) Let � ⊆R
n, a function ϕ :� →R is said to be a Schur-convex function on � if

x ≺ y on � implies ϕ(x) ≤ ϕ(y). A function ϕ is said to be a Schur-concave function
on � if and only if –ϕ is Schur-convex function on �.

Definition  [, ] Let x = (x, . . . ,xn) and y = (y, . . . , yn) ∈R
n, α ∈ [, ].

(i) A set � ⊆R
n is said to be a convex set if x,y ∈ � implies

αx + ( – α)y = (αx + ( – α)y, . . . ,αxn + ( – α)yn) ∈ �.
(ii) Let � ⊆R

n be a convex set. A function ϕ: � →R is said to be a convex function on
� if

ϕ
(
αx + ( – α)y

) ≤ αϕ(x) + ( – α)ϕ(y)

for all x,y ∈ �. A function ϕ is said to be a concave function on � if and only if –ϕ

is a convex function on �.
(iii) Let � ⊆Rn. A function ϕ :� →R is said to be a log-convex function on � if the

function logϕ is convex.

Lemma  [, p.] Let x,y ∈ R
n, x ≥ x ≥ · · · ≥ xn, and

∑n
i= xi =

∑n
i= yi. If for some k,

≤ k < n, xi ≤ yi, i = , . . . ,k, xi ≥ yi for i = k + , . . . ,n, then x ≺ y.

Lemma  Let f , g be a continuous nonnegative functions defined on an interval [a,b]⊂R.
Then

I(x) =
∫ b

a
g(t)

(
f (t)

)x dt
is log-convex on [, +∞).

Proof Let α,β ≥ ,  < s <  by the Hölder integral inequality [, p.], we have

I
(
sα + ( – s)β

)
=

∫ b

a
g(t)

(
f (t)

)sα+(–s)β dt = ∫ b

a

(
g(t)

(
f (t)

)α)s(g(t)(f (t))β)–s dt
≤

(∫ b

a
g(t)

(
f (t)

)α dt
)s(∫ b

a
g(t)

(
f (t)

)β dt
)–s

=
(
I(α)

)s(I(β))–s,
i.e.

log I
(
sα + ( – s)β

) ≤ s log I(α) + ( – s) log I(β),

this means that I(x) is log-convex on [,+∞). �

Remark  When b = +∞, the results of Lemma  presented previously hold true.

Lemma  [, p.] Let g be a continuous nonnegative function defined on an interval
I ⊆R. Then

ϕ(x) =
n∏
i=

g(xi), x ∈ In,

is Schur-convex on In if and only if log g is convex on I .
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Lemma  Let

u = (u, . . . ,un,un+) =

(
β +

( n∑
i=

αi

)
x – ,α, . . . ,αn

)
()

and

v = (v, . . . , vn, vn+) =

(
β +

n∑
i=

αi – ,αx, . . . ,αnx

)
, ()

where x ∈ [, ], β ≥ , αi > , i = , . . . ,n, n ∈N. Then u≺ v.

Proof It is clear that
∑n+

i= ui =
∑n+

i= vi.
Without loss of generality, we may assume that α ≥ α ≥ · · · ≥ αn. So v ≥ · · · ≥ vn+.

The following discussion is divided into two cases:
Case . β + (

∑n
i= αi)x –  ≥ α. Notice that x ∈ [, ], and αi > , i = , . . . ,n, and we have

u = β +

( n∑
i=

αi

)
x –  ≤ β +

n∑
i=

αi –  = v

and

ui = αi– ≥ αi–x = vi, i = , . . . ,n + .

Hence from Lemma , it follows that u ≺ v.
Case . β + (

∑n
i= αi)x –  < α. Let u[] ≥ · · · ≥ u[n+] denote the components of u in a

decreasing order. There exist k ∈ {, , . . . ,n} such that

α ≥ · · · ≥ αk– ≥ β +

( n∑
i=

αi

)
x –  ≥ αk+ ≥ · · · ≥ αn.

Notice that β – ≥ , x ∈ [, ], and αi > , and if  ≤m ≤ k – , then

m∑
i=

u[i] =
m∑
i=

αi ≤ β +
n∑
i=

αi –  ≤
m∑
i=

vi.

If n≥m > k – , then

m∑
i=

u[i] = β +

( n∑
i=

αi

)
x –  +

k–∑
i=

αi +
m∑

i=k+

αi

(
Ifm = k, let

m∑
i=k+

αi = 

)

= β +

((m–∑
i=

αi

)
x + αmx +

( n∑
i=m+

αi

)
x

)
–  +

k–∑
i=

αi +
m∑

i=k+

αi

= β +

(m–∑
i=

αi

)
x –  +

( k–∑
i=

αi + αmx +
m∑

i=k+

αi +

( n∑
i=m+

αi

)
x

)
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≤ β +

(m–∑
i=

αi

)
x –  +

n∑
i=

αi

=
m∑
i=

vi.

Hence from Definition (i), it follows that u≺ v. �

Lemma  Let

w = (w, . . . ,wn,wn+) = (β – ,αx, . . . ,αnx) ()

and

z = (z, . . . , zn, zn+) =

(
β +

( n∑
i=

αi

)
x – , , . . . , ︸ ︷︷ ︸

n

)
, ()

where x ∈ [, ], β ≥ , αi > , i = , . . . ,n, n ∈N. Then w ≺ z.

Proof It is clear that
∑n+

i= wi =
∑n+

i= zi.
The following discussion is divided into two cases:
Case . β –  ≥ αx. Notice that x ∈ [, ] and αi > , i = , . . . ,n, we have

w = β –  ≤ β +

( n∑
i=

αi

)
x –  = z

and

wi = αi–x ≥  = zi, i = , . . . ,n + .

Hence from the Lemma , it follows that w ≺ z.
Case . β –  < αx. Let w[] ≥ · · · ≥ w[n+] denote the components of w in a decreasing

order. There exist k ∈ k = , . . . ,n such that

αx ≥ · · · ≥ αk–x ≥ β –  ≥ αk+x≥ · · · ≥ αnx.

Now notice that β –  ≥ , x ∈ [, ] and αi > , we have

w[] = αx≤ β +

( n∑
i=

αi

)
x –  = z,

w[i] = αix ≥  = zi, i = , . . . ,k – ,

w[k] = β –  ≥  = zk

and

w[i] = αi–x≥  = zi, i = k + , . . . ,n + .

Hence from the Lemma , it follows that w ≺ z. �
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The Schur-convexity described the ordering ofmajorization, the order-preserving func-
tions were first comprehensively studied by Issai Schur in . It has important applica-
tions in analytic inequalities, combinatorial optimization, special functions, probabilistic,
statistical, and so on. See [, –].

3 Proof of main result

Proof of Theorem  Taking g(t) = e–
tk
k , f (t) = t, a = , b = +∞, then

I(x) =
∫ b

a
g(t)

(
f (t)

)x dt = ∫ +∞


e–

tk
k tx dt = �k(x + ). ()

By Lemma , I(x) is log-convex on [,+∞), and then from Lemma , ϕ(x) =
∏n+

i= I(xi) is
Schur-convex on [,+∞) n+. Combining Lemma  and Lemma , respectively, we have

ϕ(u) ≤ ϕ(v)

and

ϕ(w) ≤ ϕ(z),

i.e.

�k

(
β +

( n∑
i=

αi

)
x

) n∏
i=

�k( + αi) ≤ �k

(
β +

n∑
i=

αi

) n∏
i=

�k( + αix) ()

and

�k(β)
n∏
i=

�k( + αix) ≤ �k

(
β +

( n∑
i=

αi

)
x

)
. ()

Thus, we have proved the double inequality ().
The proof of Theorem  is completed. �

Proof of Theorem  Let

ξk(x) =
∫ ∞



tx–k

et – 
dt, x > k,

i.e.

ξk(x) = ζk(x)�k(x).

Taking g(t) = t
et– , f (t) = t, a = , b = +∞, then

J(x) =
∫ b

a
g(t)

(
f (t)

)x dt = ∫ +∞



tx+

et – 
dt = ξk(x + k + ). ()
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By Lemma , J(x) is log-convex on [,+∞), and then from Lemma , ψ(x) =
∏n+

i= J(xi)
is Schur-convex on [,+∞) n+. Combining Lemma  and Lemma , respectively, we have

ψ(u) ≤ ψ(v)

and

ψ(w)≤ ψ(z),

i.e.

ξk

(
β + k +

( n∑
i=

αi

)
x

) n∏
i=

ξk(k +  + αi)

≤ ξk

(
β + k +

n∑
i=

αi

) n∏
i=

ξk(k +  + αix)

and

ξk(β + k)
n∏
i=

ξk(k +  + αix)

≤ ξk

(
β + k +

( n∑
i=

αi

)
x

)(
π



)n

,

notice that ξk(k + ) = π

 .
Further, we have

ζk

(
β + k +

( n∑
i=

αi

)
x

)
�k

(
β + k +

( n∑
i=

αi

)
x

) n∏
i=

ζk(k +  + αi)�k(k +  + αi)

≤ ζk

(
β + k +

n∑
i=

αi

)
�k

(
β + k +

n∑
i=

αi

) n∏
i=

ζk(k +  + αix)�k(k +  + αix) ()

and

ζk(β + k)�k(β + k)
n∏
i=

ζk(k +  + αix)�k(k +  + αix)

≤ ζk

(
β + k +

( n∑
i=

αi

)
x

)
�k

(
β + k +

( n∑
i=

αi

)
x

)(
π



)n

. ()

Rearranging () and () gives the double inequality ().
The proof of Theorem  is completed. �
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