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Abstract
The Hardy matrix Hn(x,α), the Hardy function perHn(x,α) and the generalized
Vandermonde determinant detHn(x,α) are defined in this paper. By means of algebra
and analysis theories together with proper hypotheses, we establish the following
Minkowski-type inequality involving Hardy function:

[
perHn(x + y,α)

] 1
|α| ≥ [perHn(x,α)

] 1
|α| +

[
perHn(y,α)

] 1
|α| .

As applications, our inequality is used to estimate the lower bounds of the increment
of a symmetric function.
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1 Introduction
We use the following notations throughout the paper (see []):

x� (x, . . . ,xn), α � (α, . . . ,αn), |α|� α + · · · + αn,

ε � (, , . . . ,n – ), ‖x‖p �
( n∑

i=

xpi

)/p

, p > .

Let A = [ai,j]n×n be an n×nmatrix over a commutative ring. Then the permanent of the
matrix A, written as perA , is defined by

perA�
∑
σ∈Sn

a,σ ()a,σ () · · ·an,σ (n),

where Sn is a symmetric group of n-order (see []). The matrix

Hn(x,α)�
[
xαi
j
]
n×n =

⎡
⎢⎢⎢⎢⎣
xα
 xα

 · · · xα
n

xα
 xα

 · · · xα
n

...
...

. . .
...

xαn
 xαn

 · · · xαn
n

⎤
⎥⎥⎥⎥⎦
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is called a Hardy matrix, the matrix functions perHn(x,α) and detHn(x,α) are called the
Hardy function (see [, ]) and the generalized Vandermonde determinant (see [, ]),
respectively.
Due to the facts that the symmetric polynomial and certain symmetric functions can be

expressed by the Hardy function (see [] and Remark ), and that the interpolating quasi-
polynomial can be expressed by the generalizedVandermonde determinant (see [, ]), the
Hardy function and the generalized Vandermonde determinant are of great significance
in mathematics.
Obviously, the Hardy function perHn(x,α) is a symmetric function. For the Hardy func-

tion, we have the following well-known Hardy inequality (see[, ]): Let α,β ∈ (–∞,∞)n.
Then the inequality

perHn(x,α) ≤ perHn(x,β) ()

holds for any x ∈ (,∞)n if and only if α ≺ β .
For the Hardy function perHn(x,α), Wen and Wang in [] (see Corollary  in []) ob-

tained the following result: Let x,y ∈ (,∞)n, α ∈ (–∞,∞)n. If

x ≤ x ≤ · · · ≤ xn and y ≤ y ≤ · · · ≤ yn,

then

perHn(xy,α)
n!

≥ perHn(x,α)
n!

× perHn(y,α)
n!

, ()

where

xy� (xy, . . . ,xnyn).

For the generalized Vandermonde determinant detHn(x,α), Wen and Cheng in [] (see
Lemma  in []) obtained the following result: Let x,α ∈ (,∞)n, n≥ . If

x < x < · · · < xn, αj+ – αj ≥ , j = , , . . . ,n – ,

then we have

detHn(x,α)≤
(n–∏

j=

j!

)–

detHn(α,ε)detHn(x,ε)
(
xdnn– + xdnn



) |α|–|ε|
dn

, ()

where

dn �max{,αn – αn– – }, |α| > |ε| = n(n – )


.

FamousMinkowski’s inequality can be described as follows (see [, ]): If  < p < , then
for any x,y ∈ (,∞)n, we have the inequality

‖x + y‖p ≥ ‖x‖p + ‖y‖p. ()
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Inequality () is reversed if p > . Equality in () holds if and only if x, y are linearly depen-
dent.
Minkowski’s inequality has a wide range of applications, especially in the algebraic ge-

ometry and space science (see [–]). In this paper, we establish the followingMinkowski-
type inequality () involving Hardy function.

Theorem  (Minkowski-type inequality) Let α ∈ [, ]n. If  < |α| ≤ , then for any x,y ∈
(,∞)n, we have the following inequality:

[
perHn(x + y,α)

] 
|α| ≥ [perHn(x,α)

] 
|α| +

[
perHn(y,α)

] 
|α| . ()

Equality in () holds if x, y are linearly dependent.

In Section , we demonstrate the applications of Theorem . Our objective is to estimate
the lower bounds of the increment of a symmetric function.

2 The proof of Theorem 1
In order to prove Theorem , we need the following lemmas.

Lemma  If α ∈ [,∞) , |α| – (α – α) ≥ , |α| > , then for any x,y ∈ (,∞), we have
the following Minkowski-type inequality:

[
perH(x + y,α)

] 
|α| ≥ [perH(x,α)

] 
|α| +

[
perH(y,α)

] 
|α| . ()

Equality in () holds if x, y are linearly dependent.

Proof First of all, we consider the case

α ∈ (,∞), |α| – (α – α) > .

Write yi/xi = ui, i = , . Then inequality () can be rewritten as

[
xα
 xα

 ( + u)α ( + u)α + xα
 xα

 ( + u)α ( + u)α
] 

α+α

≥ (xα
 xα

 uα
 uα

 + xα
 xα

 uα
 uα


) 

α+α +
(
xα
 xα

 + xα
 xα


) 

α+α . ()

Without loss of generality, we can assume that

xα
 xα

 + xα
 xα

 = , (x,x) ∈ (,∞). ()

Indeed, if

xα
 xα

 + xα
 xα

 = Cα+α , C > ,

then

x∗α
 x∗α

 + x∗α
 x∗α

 = ,
(
x∗
 ,x

∗

) ∈ (,∞),
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where

x∗
i = C–xi, i = , .

Set

xα
 xα

 uα
 uα

 + xα
 xα

 uα
 uα

 = cα+α , c > , ()

and

F(u,u)� xα
 xα

 ( + u)α ( + u)α + xα
 xα

 ( + u)α ( + u)α ,

D�
{
(u,u) ∈ (,∞)|xα

 xα
 uα

 uα
 + xα

 xα
 uα

 uα
 = cα+α

}
.

We arbitrarily fixed x, x, which satisfies condition (), then inequality () can be rewritten
as

F(u,u) ≥ (c + )α+α , ∀(u,u) ∈D. ()

We consider the following Lagrange function:

L = F(u,u) + λ
(
xα
 xα

 uα
 uα

 + xα
 xα

 uα
 uα

 – cα+α
)
.

Set

∂L
∂u

= αxα
 xα

 ( + u)α–( + u)α + αxα
 xα

 ( + u)α–( + u)α

+ λ
(
αxα

 xα
 uα–

 uα
 + αxα

 xα
 uα–

 uα

)
= , ()

and

∂L
∂u

= αxα
 xα

 ( + u)α ( + u)α– + αxα
 xα

 ( + u)α ( + u)α–

+ λ
(
αxα

 xα
 uα

 uα–
 + αxα

 xα
 uα

 uα–

)
= . ()

From () and (), we get

αxα
 xα

 ( + u)α–( + u)α + αxα
 xα

 ( + u)α–( + u)α

αxα
 xα

 ( + u)α ( + u)α– + αxα
 xα

 ( + u)α ( + u)α–

=
αxα

 xα
 uα–

 uα
 + αxα

 xα
 uα–

 uα


αxα
 xα

 uα
 uα–

 + αxα
 xα

 uα
 uα–


. ()

Write

μ�
(
x
x

)α–α

> , g(t)� t
α +μαtα–α

α +μαtα–α
, t > . ()
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Since

αxα
 xα

 uα–
 uα

 + αxα
 xα

 uα–
 uα



αxα
 xα

 uα
 uα–

 + αxα
 xα

 uα
 uα–


=
u
u

α + α( xx )
α–α ( uu )

α–α

α + α( xx )
α–α ( uu )

α–α ,

equation () can be rewritten as

g
(
 + u
 + u

)
= g
(
u
u

)
. ()

By

log
[
g(t)
]
= log(t) + log

(
α +μαtα–α

)
– log

(
α +μαtα–α

)
,

we get

g ′(t)
g(t)

=

t
+
(α – α)μαtα–α–

α +μαtα–α
–
(α – α)μαtα–α–

α +μαtα–α

=
αα[ + (μtα–α )] + [α

 + α
 + (α – α)(α

 – α
 )]μtα–α

t(α +μαtα–α )(α +μαtα–α )

≥ ααμtα–α + [α
 + α

 + (α – α)(α
 – α

 )]μtα–α

t(α +μαtα–α )(α +μαtα–α )

=
(α + α)[α + α – (α – α)]

t(α +μαtα–α )(α +μαtα–α )
μtα–α

> ,

hence

g ′(t) > , ∀t > . ()

By () and (), we get

 + u
 + u

=
u
u

. ()

By (), (), () and (), we get

u = u = c. ()

According to the theory of mathematical analysis, we just need to prove that inequality
() holds for a stationary point (c, c) of F(u,u) and boundary points of D.
If (u,u) = (c, c) ∈ D is a stationary point of F(u,u), then equality in () holds. Herewe

assume that (u,u) is a boundary point of D. Then we have (u,u) = (,∞) or (u,u) =
(∞, ). Since

F(u,u) = ∞ > (c + )α+α ,

inequality () also holds. So we have proved inequalities () and ().
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Next, note the continuity of both sides of () for the variable α, hence inequality () also
holds if

α ∈ [,∞)  , |α| – (α – α) = , |α| > .

From the above analysis we know that equality in () holds if u = u, i.e., x, y are linearly
dependent. This completes the proof of Lemma . �

Lemma  If α ∈ (, ) and  < |α| < , then for any x,y,z,w ∈ (,∞)n, n ≥ , we have the
inequality

[ n∑
i=

(xi + yi)α (zi +wi)α
] |α|

≥
( n∑

i=

xα
i zα

i

) |α|
+

( n∑
i=

yα
i wα

i

) |α|
. ()

Equation in () holds if and only if

x
y

=
x
y

= · · · = xn
yn

=
z
w

=
z
w

= · · · = zn
wn

. ()

Proof Write

yi
xi

= ui,
wi

zi
= vi, i = , .

Then inequality () can be rewritten as

[ n∑
i=

xα
i zα

i ( + ui)α ( + vi)α
] |α|

≥
( n∑

i=

xα
i zα

i uα
i vα

i

) |α|
+

( n∑
i=

xα
i zα

i

) |α|
. ()

Without loss of generality, we can assume that

n∑
i=

xα
i zα

i = , x,z ∈ (,∞)n, ()

and

n∑
i=

xα
i zα

i uα
i vα

i = cα+α , c > . ()

Write

G(u, v)�
n∑
i=

xα
i zα

i ( + ui)α ( + vi)α , u, v ∈ (,∞)n,

and

D∗ �
{
(u, v) ∈ (,∞)n

∣∣∣∣
n∑
i=

xα
i zα

i uα
i vα

i = cα+α

}
.
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Then inequality () can be rewritten as

G(u, v) ≥ (c + )α+α , ∀(u, v) ∈D∗. ()

We define the following Lagrange function:

L =G(u, v) + λ

( n∑
i=

xα
i zα

i uα
i vα

i – cα+α

)
.

Set

∂L
∂uk

= αxα
k zα

k ( + uk)α–( + vk)α + λαxα
k zα

k uα–
k vα

k = , k = , , . . . ,n, ()

and

∂L
∂vk

= αxα
k zα

k ( + uk)α ( + vk)α– + λαxα
k zα

k uα
k vα–

k = , k = , , . . . ,n. ()

Then equations () and () can be rewritten as

αxα
k zα

k ( + uk)α–( + vk)α = –λαxα
k zα

k uα–
k vα

k , k = , , . . . ,n, ()

and

αxα
k zα

k ( + uk)α ( + vk)α– = –λαxα
k zα

k uα
k vα–

k , k = , , . . . ,n, ()

respectively. From () divided by (), we get

 + vk
 + uk

=
vk
uk

⇔ uk = vk , k = , , . . . ,n. ()

From () and (), we get

(
 + u–

k

)α+α– = –λ, k = , , . . . ,n. ()

By () and α + α –  = |α| –  < , we get

u = u = · · · = un. ()

From (), (), () and (), we get

u = u = · · · = un = v = v = · · · = vn = c. ()

That is to say, the function G(u, v) has a unique stationary point (c, . . . , c, c, . . . , c) in D∗.
Next, we use the mathematical induction to prove that inequality () holds as follows.
According to the theory of mathematical analysis, we only need to prove that inequality

() holds for a stationary point (c, . . . , c, c, . . . , c) of G(u, v) and boundary points of D∗. To
complete our proof, we need to divide it into two steps (A) and (B).

http://www.journalofinequalitiesandapplications.com/content/2014/1/186
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(A) Let n = . If (c, c) is a stationary point ofG(u, v) inD∗, then equality in () holds.Here
we assume that (u, v) is a boundary point of D∗. From () we know that (u, v) = (,∞)
or (u, v) = (∞, ). Hence

G(u, v) = xα
 zα

 ( + u)α ( + v)α =∞ > cα+α .

That is to say, inequality () also holds. According to the theory ofmathematical analysis,
inequality () is proved.
Let n = . If (c, c, c, c) is a stationary point of G(u, v) in D∗, then equality in () holds.

Here we assume that (u, v) is a boundary point of D∗, then there is a  among u, u, v,
v. Without loss of generality, we can assume that u = . From () we have

xα
 zα

 uα
 vα

 = cα+α , c > . ()

By (), we get

G(u, v) = xα
 zα

 ( + u)α ( + v)α + xα
 zα

 ( + u)α ( + v)α

= xα
 zα

 ( + u)α ( + v)α + xα
 zα

 ( + v)α

> xα
 zα

 ( + u)α ( + v)α

> xα
 zα

 uα
 vα



= cα+α .

That is to say, inequality () still holds for the case when (u, v) is a boundary point of D∗.
According to the theory of mathematical analysis, we know that inequality () is proved.
(B) Suppose that inequality () holds if we use n –  (n≥ ) instead of n, we prove that

inequality () holds as follows.
For a stationary point (c, . . . , c, c, . . . , c) of G(u, v) in D∗, equation in () holds. Here

we assume that (u, v) is a boundary point of D∗, then there is a  among u,u, . . . ,un,
v, v, . . . , vn. Without loss of generality, we can assume that un = . From (), we get

n–∑
i=

xα
i zα

i uα
i vα

i = cα+α , c > . ()

Set

x∗
i = xi

(
 – xα

n zα
n
)– 

α+α , z∗
i = zi

(
 – xα

n zα
n
)– 

α+α , i = , , . . . ,n – ,

then equation () can be rewritten as

n–∑
i=

x∗α
i z∗α

i = , x∗, z∗ ∈ (,∞)n–, ()

and equation () can be rewritten as

n–∑
i=

x∗α
i z∗α

i uα
i vα

i = cα+α∗ , c∗ = c
(
 – xα

n zα
n
)– 

α+α > , ()
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as well as the function G(u, v) can be rewritten as

G(u, v) =
(
 – xα

n zα
n
) n–∑

i=

x∗α
i z∗α

i ( + ui)α ( + vi)α + xα
n zα

n ( + vn)α . ()

By the induction hypothesis we have

n–∑
i=

x∗α
i z∗α

i ( + ui)α ( + vi)α ≥ (c∗ + )α+α . ()

By () and (), we get

G(u, v) =
(
 – xα

n zα
n
) n–∑

i=

x∗α
i z∗α

i ( + ui)α ( + vi)α + xα
n zα

n ( + vn)α

≥ ( – xα
n zα

n
) n–∑

i=

x∗α
i z∗α

i ( + ui)α ( + vi)α + xα
n zα

n

≥ ( – xα
n zα

n
)
(c∗ + )α+α + xα

n zα
n

=
(
 – xα

n zα
n
)[
c
(
 – xα

n zα
n
)– 

α+α + 
]α+α + xα

n zα
n

=
[
c +
(
 – xα

n zα
n
) 

α+α
]α+α + xα

n zα
n ,

i.e.,

G(u, v) ≥ ϕ(δ), ()

where

δ �
(
 – xα

n zα
n
) 

α+α ∈ (, ), xα
n zα

n =  – δα+α ,

and

ϕ(δ)� (c + δ)α+α +  – δα+α , δ ∈ (, ). ()

Since

α + α > , α + α –  = |α| –  < , c > ,

we have

dϕ(δ)
dδ

� (α + α)
[
(c + δ)α+α– – δα+α–

]
< , δ ∈ (, ). ()

From δ ∈ (, ) and (), we get

ϕ(δ)� (c + δ)α+α +  – δα+α > ϕ() = (c + )α+α . ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/186
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Combining with inequalities () and (), we get

G(u, v) ≥ ϕ(δ) > (c + )α+α . ()

By inequality () we know that inequality () holds.
According to the theory of mathematical analysis, we know that inequality () is

proved, hence inequality () is also proved by the above analysis. Inequality () is an
equation if and only if equations () hold. This completes the proof of Lemma . �

Next we turn to the proof of Theorem .

Proof First of all, we prove that inequality () holds if α ∈ (, )n and  < |α| <  by induc-
tion for n. To complete our proof, we need to divide it into two steps (A) and (B).
(A)When n = , then inequality () is an equation. Let n = . According to the hypothesis

of Theorem , we know that

|α – α| < |α + α| < , α + α – (α – α) > α + α – (α + α) > .

By Lemma , inequality () holds.
(B) Suppose that inequality () holds if we use n –  (n ≥ ) instead of n, we prove that

inequality () holds as follows.
For convenience, we use the following notations:

x(j) = (x, . . . ,xj–,xj+, . . . ,xn), α(n) = (α,α, . . . ,αn–).

According to the Laplace theorem (see []), we obtain that

perHn(x,α) =
n∑
j=

xαn
j perHn–

(
x(j),α(n)

)
. ()

Write

zj �
(
perHn–

(
x(j),α(n)

)) 
|α(n)| and wj �

(
perHn–

(
y(j),α(n)

)) 
|α(n)| .

By

 <
∣∣α(n)∣∣ < αn +

∣∣α(n)∣∣ = |α| < ,

(), the induction hypothesis and Lemma , we get

[
perHn(x + y,α)

] 
|α|

=

{ n∑
j=

(xj + yj)αn
[
perHn–

(
x(j) + y(j),α(n)

)] |α(n)|
|α(n)|

} 
|α|

≥
[ n∑

j=

(xj + yj)αn (zj +wj)|α(n)|
] 

|α|

http://www.journalofinequalitiesandapplications.com/content/2014/1/186
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≥
[ n∑

i=

xαn
i perHn–

(
x(j),α(n)

)] 
|α|

+

[ n∑
i=

yαn
i perHn–

(
y(j),α(n)

)] 
|α|

=
[
Hn(x,α)

] 
|α| +

[
perHn(y,α)

] 
|α| .

That is to say, inequality () holds.
According to the theory of mathematical induction, inequality () is proved.
Next, note the continuity of both sides of () for the variable α. We know that inequality

() also holds for the case

α ∈ [, ]n,  < |α| ≤ .

From the above analysis we know that equality in () holds if x, y are linearly dependent.
This completes the proof of Theorem . �

3 Applications in the theory of symmetric function
We use the following notations in this section (see [, , , ]):

N� {, , , . . .}, B+
k �

{
α ∈N

n||α| = k,k ∈N
}
,

Pk,n[x] =
{∑

α∈B+
k

λ(α)
n!

perHn(x,α)
∣∣∣∣λ :B+

k → (–∞,∞)
}∖

{},

P+
k,n[x] =

{∑
α∈B+

k

λ(α)
n!

perHn(x,α)
∣∣∣∣λ :B+

k → [,∞)
}∖

{},

k√x�
(

k√x, . . . , k√xn
)
, a – x = (a – x, . . . ,a – xn),

Gn(x)� n√x · · ·xn, In � (, . . . , ) ∈ (–∞,∞)n,

On � (, . . . , ) ∈ (–∞,∞)n, f ′
 (In)�

∂f (x)
∂x

|x=In .

If f (x) ∈ Pk,n[x], then we call f (x) a k-degree homogeneous and symmetric polynomial
(see []). Obviously, we have that

P+
k,n[x] ⊂ Pk,n[x].

Theorem  implies the following result.

Theorem  Let f (x) ∈ P+
k,n[x], k ≥ . Then, for any x,y ∈ (,∞)n, we have the following

Minkowski-type inequality:

f
(

k√x + y
)≥ f

( k√x
)
+ f
(

k√y
)
. ()

Equality in () holds if x, y are linearly dependent.

Proof If n = , then inequality () is an equation. We suppose that n≥  below.
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Note that

α

k
∈ [, ]n,  <

∣∣∣∣αk
∣∣∣∣ =  ≤ , ∀α ∈ B+

k .

According to Theorem , we get

f
(

k√x + y
)
=
∑

α∈B+
k

λ(α)
n!

perHn
(

k√x + y,α
)

=
∑

α∈B+
k

λ(α)
n!

[
perHn

(
x + y,

α

k

)] 
| αk |

≥
∑

α∈B+
k

λ(α)
n!

{[
perHn

(
x,

α

k

)] 
| αk |

+
[
perHn

(
y,

α

k

)] 
| αk |
}

=
∑

α∈B+
k

λ(α)
n!

[
perHn

(
x,

α

k

)
+ perHn

(
y,

α

k

)]

=
∑

α∈B+
k

λ(α)
n!

perHn
( k√x,α

)
+
∑

α∈B+
k

λ(α)
n!

perHn
(

k√y,α
)

= f
( k√x

)
+ f
(

k√y
)
,

that is to say, inequality () is proved. Equality in () holds if x, y are linearly dependent
by Theorem .
The proof of Theorem  is completed. �

Theorem  also contains the following result.

Theorem  Let f : [,a) n → [,∞) be a symmetric function, and f (x) can be expressed as
a convergent Taylor series:

f (x) =
∞∑
k=

∑
α∈B+

k

λ(α)
n!

perHn(x,α), ∀x ∈ [,a) n , ()

where

a > , λ(α)� 
α!α! · · ·αn!

∂kf (x)
∂xα

 ∂xα
 · · · ∂xαn

n

∣∣∣
x=On

≥ , ∀k ∈ N,∀α ∈ Bk .

Then, for any x,y,x + y ∈ (,a)n, we have the following inequality:

[
f (x + y)
f (In)

] f (In)
nf ′ (In) ≥Gn(x) +Gn(y). ()

Equality in () holds if there is a real θ ∈ (, ) such that

x = θIn and y = ( – θ )In,

or f (x) = xx · · ·xn and x, y are linearly dependent.
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Proof Obviously, we have that

∞∑
k=

∑
α∈B+

k

λ(α) = f (In). ()

Here we show that

∞∑
k=

∑
α∈B+

k

|α|λ(α) = nf ′
 (In). ()

Note the following identities:

f ′
 (x) =

∂f (x)
∂x

=
∂

∂x

∞∑
k=

∑
α∈B+

k

λ(α)
perHn(x,α)

n!

=
∞∑
k=

∑
α∈B+

k

λ(α)
n!

∂

∂x

∑
σ∈Sn

xασ ()
 xασ ()

 · · ·xασ (n)
n

=
∞∑
k=

∑
α∈B+

k

λ(α)
n!

∑
σ∈Sn

ασ ()x
ασ ()–
 xασ ()

 · · ·xασ (n)
n .

Hence

f ′
 (In) =

∞∑
k=

∑
α∈B+

k

λ(α)
n!

∑
σ∈Sn

ασ ()

=
∞∑
k=

∑
α∈B+

k

λ(α)
n!

(n – )!
n∑

σ ()=

ασ ()

=
∞∑
k=

∑
α∈B+

k

|α|λ(α)
n

=

n

∞∑
k=

∑
α∈B+

k

|α|λ(α).

That is to say, equation () holds.
Set α = (n–,n–, . . . ,n–) in Theorem , we get

Gn(x + y) ≥Gn(x) +Gn(y), ∀x,y ∈ (,∞)n,∀n≥ . ()

According to the A-G inequality (see []) or Hardy’s inequality (), we have

perHn(x,α)
n!

≥ [Gn(x)
]|α|, ∀x ∈ (,∞)n. ()
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Note the A-G inequality with weights:

∞∑
i=

λixi ≥ |λ|
( ∞∏

i=

xλi
i

) 
|λ|
, ∀x,λ ∈ (,∞)∞. ()

By ()-(), we get

f (x + y) ≥
∞∑
k=

∑
α∈B+

k

λ(α)
[
Gn(x + y)

]|α|

≥
∞∑
k=

∑
α∈B+

k

λ(α)
[
Gn(x) +Gn(y)

]|α|

≥ f (In)

{ ∞∏
k=

∏
α∈B+

k

[
Gn(x) +Gn(y)

]|α|λ(α)
} 

f (In)

= f (In)
[
Gn(x) +Gn(y)

] 
f (In)

∑∞
k=
∑

α∈B+
k

|α|λ(α)

= f (In)
[
Gn(x) +Gn(y)

] nf ′ (In)
f (In) .

That is to say, inequality () holds.
According to the above analysis, we know that a sufficient condition of inequality ()

to be an equality is as follows: there is a real θ ∈ (, ) such that

x = θIn and y = ( – θ )In,

or f (x) = xx · · ·xn and x, y are linearly dependent.
This completes the proof of Theorem . �

Theorem  implies the following result.

Corollary  Let a ∈ (,∞), x,y,x + y ∈ (,  + a)n. Then we have the following inequality:

[
Gn( + a – x – y)

]a[Gn(x) +Gn(y)
]≤ aa. ()

Equality in () holds if there exists a real θ ∈ (, ) such that

x = θIn and y = ( – θ )In.

Proof We construct an auxiliary function f : [,  + a) n → (,∞) as follows:

f (x) �
n∏
i=


 + a – xi

= ( + a)–n
n∏
i=

(
 –

xi
 + a

)–

= ( + a)–n
n∏
i=

∞∑
j=

(
xi

 + a

)j
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= ( + a)–n
∞∑
k=

∑
α∈B+

k

perHn( x
+a ,α)

n!

=
∞∑
k=

∑
α∈B+

k

( + a)–k–n
perHn(x,α)

n!
,

i.e.,

f (x) =
∞∑
k=

∑
α∈B+

k

λ(α)
n!

perHn(x,α), ∀x ∈ [,  + a) n , ()

where

λ(α) ≡ ( + a)–k–n > .

Then

f (In) = a–n, f
′
 (In) = a–n–.

According to Theorem , for any x,y,x + y ∈ (,  + a)n, inequality () holds, i.e.,

[
aGn

(


 + a – x – y

)]a
≥Gn(x) +Gn(y),

that is to say, inequality () holds. Equality in () holds if there exists a real θ ∈ (, )
such that

x = θIn and y = ( – θ )In

by Theorem . This ends the proof. �

Corollary  implies the following result.

Corollary  Let the functions ϕ : [b, c] → (, +a) andψ : [b, c] → (, +a) be continuous,
and let them satisfy the following conditions:

a > , b < c, ϕ(t) +ψ(t) ∈ (,  + a), ∀t ∈ [b, c].

Then we have the following inequality:

exp

[
a
∫ c
b log( + a – ϕ –ψ)

c – b

][
exp

(∫ c
b logϕ

c – b

)
+ exp

(∫ c
b logψ

c – b

)]
≤ aa. ()

Set x ∈ (,∞)|ε|, f (x) = xx · · ·x|ε| in Theorem . By

detHn(x,ε) =
∏

≤i<j≤n

(xj – xi)

(see []) and Theorem , we have the following Corollary .
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Corollary  Let x,y ∈ (–∞,∞)n, and let

x < x < · · · < xn, y < y < · · · < yn, n≥ .

Then we have the following Minkowski-type inequality:

|ε|√detHn(x + y,ε) ≥ |ε|√detHn(x,ε) + |ε|√detHn(y,ε). ()

Equality in () holds if x, y are linearly dependent.

Remark  If there exists a function M(x) >  such that for any x ∈ [,a) n, any non-
negative integer k and any α ∈ Bk we have

∣∣∣∣ ∂kf (x)
∂xα

 ∂xα
 · · · ∂xαn

n

∣∣∣∣≤M(x),

then () holds and the Taylor series () converges (see []) by the theory of mathemat-
ical analysis.

Remark  The significance of Theorem  and Theorem  is to estimate the lower bounds
of the increment of the symmetric functions

f
( k√x

)
and

[
f (x)
f (In)

] f (In)
nf ′ (In) ,

respectively.
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