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Abstract
In this paper, hybrid methods are investigated for treating common solutions of
nonlinear problems. A strong convergence theorem is established in the framework
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1 Introduction and preliminaries
Common solutions to variational inclusion, equilibrium and fixed point problems have
been recently extensively investigated based on iterative methods; see [–] and the ref-
erences therein. The motivation for this subject is mainly to its possible applications to
mathematical modeling of concrete complex problems, which use more than one con-
straint. The aim of this paper is to investigate a common solution of variational inclusion,
equilibrium and fixed point problems. The organization of this paper is as follows. In Sec-
tion , we provide some necessary preliminaries. In Section , a hybrid method is intro-
duced and analyzed. Strong convergence theorems are established in the framework of
Hilbert spaces. In Section , applications of the main results are discussed.
In what follows, we always assume that H is a real Hilbert space with the inner product

〈·, ·〉 and the norm ‖ · ‖. Let C be a nonempty, closed, and convex subset of H and let PC

be the metric projection from H onto C. Let S : C → C be a mapping. F(S) stands for the
fixed point set of S; that is, F(S) := {x ∈ C : x = Sx}.
Recall that S is said to be contractive iff there exists a constant α ∈ [, ) such that

‖Sx – Sy‖ ≤ α‖x – y‖, ∀x, y ∈ C.

If α = , then S is said to be nonexpansive. Let A : C → H be a mapping. If C is nonempty
closed and convex, then the fixed point set of S is nonempty.
Recall that A is said to bemonotone iff

〈Ax –Ay,x – y〉 ≥ , ∀x, y ∈ C.

Recall that A is said to be strongly monotone iff there exists a constant α >  such that

〈Ax –Ay,x – y〉 ≥ α‖x – y‖, ∀x, y ∈ C.
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For such a case, A is also said to be α-strongly monotone. Recall that A is said to be inverse-
strongly monotone iff there exists a constant α >  such that

〈Ax –Ay,x – y〉 ≥ α‖Ax –Ay‖, ∀x, y ∈ C.

For such a case, A is also said to be α-inverse-strongly monotone.
Recall that a set-valued mapping M : H ⇒ H is said to be monotone iff, for all x, y ∈ H ,

f ∈ Mx, and g ∈ My imply 〈x – y, f – g〉 > . M is maximal iff the graph Graph(M) of R is
not properly contained in the graph of any other monotonemapping. It is well known that
a monotone mappingM is maximal if and only if, for any (x, f ) ∈H ×H , 〈x– y, f – g〉 ≥ ,
for all (y, g) ∈ Graph(M) implies f ∈ Rx. For a maximal monotone operator M on H , and
r > , we may define the single-valued resolvent Jr : H → D(M), where D(M) denote the
domain of M. It is well known that Jr is firmly nonexpansive, and M–() = F(Jr), where
F(Jr) := {x ∈D(M) : x = Jrx}, andM–() := {x ∈ H :  ∈ Mx}.
LetA : C →H be a inverse-stronglymonotonemapping, and let F be a bifunction ofC×

C into R, where R denotes the set of real numbers. We consider the following generalized
equilibrium problem.

Find x ∈ C such that F(x, y) + 〈Ax, y – x〉 ≥ , ∀y ∈ C. (.)

In this paper, the set of such an x ∈ C is denoted by EP(F ,A).
To study the equilibrium problems (.), we may assume that F satisfies the following

conditions:
(A) F(x,x) =  for all x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y,x) ≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C,

lim sup
t↓

F
(
tz + ( – t)x, y

) ≤ F(x, y);

(A) for each x ∈ C, y �→ F(x, y) is convex and weakly lower semicontinuous.
In order to prove our main results, we also need the following lemmas.

Lemma . [] Assume that {αn} is a sequence of nonnegative real numbers such that

αn+ ≤ ( – γn)αn + δn,

where {γn} is a sequence in (, ) and {δn} is a sequence such that
()

∑∞
n= γn =∞;

() lim supn→∞ δn/γn ≤  or
∑∞

n= |δn| < ∞.
Then limn→∞ αn = .

Lemma . [] Let F : C × C → R be a bifunction satisfying (A)-(A). Then, for any
r >  and x ∈H , there exists z ∈ C such that

F(z, y) +

r
〈y – z, z – x〉 ≥ , ∀y ∈ C.
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Define a mapping Tr :H → C as follows:

Trx =
{
z ∈ C : F(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
, x ∈ H ,

then the following conclusions hold:
() Tr is single-valued;
() Tr is firmly nonexpansive, i.e., for any x, y ∈H ,

‖Trx – Try‖ ≤ 〈Trx – Try,x – y〉;

() F(Tr) = EP(F);
() EP(F) is closed and convex.

Let {Si : C → C} be a family of infinitely nonexpansive mappings and {γi} be a nonneg-
ative real sequence with  ≤ γi < , ∀i ≥ . For n ≥  define a mapping Wn : C → C as
follows:

Un,n+ = I,

Un,n = γnSnUn,n+ + ( – γn)I,

Un,n– = γn–Sn–Un,n + ( – γn–)I,

...

Un,k = γkSkUn,k+ + ( – γk)I,

Un,k– = γk–Sk–Un,k + ( – γk–)I,

...

Un, = γSUn, + ( – γ)I,

Wn =Un, = γSUn, + ( – γ)I.

(.)

Such a mappingWn is nonexpansive from C to C and it is called aW -mapping generated
by Sn,Sn–, . . . ,S and γn,γn–, . . . ,γ.

Lemma . [] Let {Si : C → C} be a family of infinitely nonexpansive mappings with a
nonempty common fixed point set and let {γi} be a real sequence such that  < γi ≤ l < ,
where l is some real number, ∀i≥ . Then
() Wn is nonexpansive and F(Wn) =

⋂∞
i= F(Si), for each n≥ ;

() for each x ∈ C and for each positive integer k, the limit limn→∞ Un,k exists;
() the mappingW : C → C defined by

Wx := lim
n→∞Wnx = lim

n→∞Un,x, x ∈ C, (.)

is a nonexpansive mapping satisfying F(W ) =
⋂∞

i= F(Si) and it is called the
W -mapping generated by S,S, . . . and γ,γ, . . . .
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Lemma . [] Let {Si : C → C} be a family of infinitely nonexpansive mappings with a
nonempty common fixed point set and let {γi} be a real sequence such that  < γi ≤ l < ,
∀i≥ . If K is any bounded subset of C, then

lim
n→∞ sup

x∈K
‖Wx –Wnx‖ = .

Throughout this paper, we always assume that  < γi ≤ l < , ∀i≥ .

Lemma . [] Let B : C → H be a mapping and let M :H ⇒H be a maximal monotone
operator. Then F(Jr(I – sB)) = (B +M)–().

Lemma . [] Let {xn} and {yn} be bounded sequences in H and let {βn} be a sequence
in (, ) with  < lim infn→∞ βn ≤ lim supn→∞ βn < . Suppose that xn+ = ( – βn)yn + βnxn
for all n ≥  and

lim sup
n→∞

(‖yn+ – yn‖ – ‖xn+ – xn‖
) ≤ .

Then limn→∞ ‖yn – xn‖ = .

Lemma . [] Let A : C →H a Lipschitz monotone mapping and let NCx be the normal
cone to C at x ∈ C; that is, NCx = {y ∈H : 〈x – u, y〉,∀u ∈ C}. Define

Dx =

⎧⎨
⎩
Ax +NCx, x ∈ C,

∅ x /∈ C.

Then D is maximal monotone and  ∈Dx if and only if x ∈ VI(C,A).

2 Main results
Theorem . Let C be a nonempty closed convex subset of a Hilbert space H and F a
bifunction from C × C to R which satisfies (A)-(A). Let A : C → H be a δ-inverse-
strongly monotone mapping, A : C → H be a δ-inverse-strongly monotone mapping, A :
C → H be a δ-inverse-strongly monotone mapping, M : H ⇒ H a maximal monotone
operator such thatDom(M) ⊂ C andM :H ⇒H amaximalmonotone operator such that
Dom(M) ⊂ C. Let {Si : C → C} be a family of infinitely nonexpansive mappings. Assume
that � :=

⋂∞
i= F(Si)∩ EP(F ,A)∩ (A +M)–()∩ (A +M)–() �= ∅. Let x ∈ C and {xn}

be a sequence generated by
⎧⎨
⎩
zn = Jsn (un – snAun),

xn+ = αnu + βnxn + γnWnJrn (zn – rnAzn), ∀n≥ ,

where u is a fixed element in C, un is such that

F(un, y) + 〈Axn, y – un〉 + 
λn

〈y – un,un – xn〉 ≥ , ∀y ∈ C,

{Wn : C → C} is the sequence generated in (.), {αn}, {βn}, and {γn} are sequences in (, )
such that αn + βn + γn =  for each n ≥  and {rn}, {sn}, and {λn} are positive number se-
quences. Assume that the above control sequences satisfy the following restrictions:
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(a)  < a≤ λn ≤ b < δ,  < a′ ≤ rn ≤ b′ < δ,  < ā ≤ sn ≤ b̄ < δ;
(b) limn→∞ αn =  and

∑∞
n= αn =∞;

(c)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(d) limn→∞ |λn – λn+| = limn→∞ |sn – sn+| = limn→∞ |rn – rn+| = .

Then the sequence {xn} converges strongly to x̄ ∈ �, where x̄ = P�u.

Proof First, we show that the mapping I – rnA, I – snA, and I – λnA are nonexpansive.
Indeed, we find from the restriction (a) that

∥∥(I – rnA)x – (I – rnA)y
∥∥

= ‖x – y‖ – rn〈x – y,Ax –Ay〉 + rn‖Ax –Ay‖

≤ ‖x – y‖ – rnδ‖Ax –Ay‖ + rn‖Ax –Ay‖

= ‖x – y‖ + rn(rn – δ)‖Ax –Ay‖

≤ ‖x – y‖, ∀x, y ∈ C,

which implies that the mapping I – rnA is nonexpansive. In the same way, we find I – snA

and I – λnA are also nonexpansive. Put yn = Jrn (zn – rnAzn). Fixing x∗ ∈ �, we find

∥∥yn – x∗∥∥ =
∥∥Jrn (zn – rnAzn) – Jrn

(
x∗ – rnAx∗)∥∥

≤ ∥∥zn – x∗∥∥
=

∥∥Jsn (un – snAun) – Jsn
(
x∗ – snAx∗)∥∥

≤ ∥∥Tλn (I – λnA)xn – Tλn (I – λnA)x∗∥∥
≤ ∥∥xn – x∗∥∥.

It follows that
∥∥xn+ – x∗∥∥ =

∥∥αnu + βnxn + γnWnyn – x∗∥∥
≤ αn

∥∥u – x∗∥∥ + βn
∥∥xn – x∗∥∥ + γn

∥∥Wnyn – x∗∥∥
≤ αn

∥∥u – x∗∥∥ + ( – αn)
∥∥xn – x∗∥∥.

This implies that {xn} is bounded, and so are {yn}, {zn}, and {un}.Without loss of generality,
we can assume that there exists a bounded set K ⊂ C such that xn, yn, zn,un ∈ K . Notice
that

F(un+, y) +


λn+

〈
y – un+,un+ – (I – rn+A)xn+

〉 ≥ , ∀y ∈ C, (.)

and

F(un, y) +

λn

〈
y – un,un – (I – rnA)xn

〉 ≥ , ∀y ∈ C. (.)

Let y = un in (.) and y = un+ in (.). By adding these two inequalities, we obtain

〈
un+ – un,

un – (I – λnA)xn
λn

–
un+ – (I – λn+A)xn+

λn+

〉
≥ .
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It follows that

‖un+ – un‖ ≤
〈
un+ – un, (I – λn+A)xn+ – (I – λnA)xn

+
(
 –

λn

λn+

)(
un+ – (I – λn+A)xn+

)〉

≤ ‖un+ – un‖
(∥∥(I – λn+A)xn+ – (I – λnA)xn

∥∥

+
∣∣∣∣ – λn

λn+

∣∣∣∣∥∥un+ – (I – λn+A)xn+)
∥∥)

.

It follows that

‖un+ – un‖ ≤ ∥∥(I – λn+A)xn+ – (I – λnA)xn
∥∥

+
|λn+ – λn|

λn+

∥∥un+ – (I – λn+A)xn+
∥∥

=
∥∥(I – λn+A)xn+ – (I – λn+A)xn + (I – λn+A)xn – (I – λnA)xn

∥∥
+

|λn+ – λn|
λn+

∥∥un+ – (I – λn+A)xn+
∥∥

≤ ‖xn+ – xn‖ + |λn+ – λn|M, (.)

whereM is an appropriate constant such that

M = sup
n≥

{
‖Axn‖ + ‖un+ – (I – λn+A)xn+‖

a

}
.

Since Jsn is firmly nonexpansive, we find that

‖zn+ – zn‖
≤ ∥∥un+ – sn+Aun+ – (un – snAun)

∥∥
=

∥∥(I – sn+A)un+ – (I – sn+A)un + (sn – sn+)Aun
∥∥

≤ ‖un+ – un‖ + |sn – sn+|‖Aun‖. (.)

Combining (.) with (.) yields

‖zn+ – zn‖ ≤ ‖xn+ – xn‖ + |λn+ – λn|M + |sn – sn+|‖Aun‖. (.)

Since Jrn is also firmly nonexpansive, we find that

‖yn+ – yn‖ ≤ ‖zn+ – zn‖ + |rn – rn+|‖Azn‖. (.)

Substituting (.) into (.), we see that

‖yn+ – yn‖ ≤ ‖xn+ – xn‖ +
(|rn+ – rn| + |λn – λn+| + |sn – sn+|

)
M, (.)
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whereM is an appropriate constant such that

M =max
{
sup
n≥

{‖Azn‖
}
, sup
n≥

{‖Aun‖
}
,M

}
.

SinceWn is nonexpansive, we find that

‖Wn+yn+ –Wnyn‖
= ‖Wn+yn+ –Wyn+ +Wyn+ –Wyn +Wyn –Wnyn‖
≤ ‖Wn+yn+ –Wyn+‖ + ‖Wyn+ –Wyn‖ + ‖Wyn –Wnyn‖
≤ sup

x∈K

{‖Wn+x –Wx‖ + ‖Wx –Wnx‖
}
+ ‖yn+ – yn‖, (.)

where K is the bounded subset of C defined as above. Substituting (.) into (.), we find
that

‖Wn+yn+ –Wnyn‖ ≤ sup
x∈K

{‖Wn+x –Wx‖ + ‖Wx –Wnx‖
}
+ ‖xn+ – xn‖

+
(|rn+ – rn| + |λn – λn+| + |sn – sn+|

)
M. (.)

Letting

xn+ = ( – βn)vn + βnxn,

we see that

vn+ – vn =
αn+u + γn+Wn+yn+

 – βn+
–

αnu + γnWnyn
 – βn

=
αn+

 – βn+
u +

 – αn+ – βn+

 – βn+
Wn+yn+

–
(

αn

 – βn
u +

 – αn – βn

 – βn
Wnyn

)

=
αn+

 – βn+
(u –Wn+yn+) –

αn

 – βn
(u –Wnyn)

+Wn+yn+ –Wnyn.

Hence, we have

‖vn+ – vn‖ ≤ αn+

 – βn+
‖u –Wn+yn+‖ + αn

 – βn
‖u –Wnyn‖

+ ‖Wn+yn+ –Wnyn‖. (.)

Substituting (.) into (.), we find that

‖vn+ – vn‖ – ‖xn+ – xn‖ ≤ αn+

 – βn+
‖u –Wn+yn+‖ + αn

 – βn
‖u –Wnyn‖

+ sup
x∈K

{‖Wn+x –Wx‖ + ‖Wx –Wnx‖
}

+
(|rn+ – rn| + |λn – λn+| + |sn – sn+|

)
M.
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It follows from Lemma . that

lim sup
n→∞

(‖vn+ – vn‖ – ‖xn+ – xn‖
) ≤ .

In view of Lemma ., we find that limn→∞ ‖vn – xn‖ = . It follows that

lim
n→∞‖xn+ – xn‖ = . (.)

For any x∗ ∈ �, we see that

∥∥xn+ – x∗∥∥ ≤ αn
∥∥u – x∗∥∥ + βn

∥∥xn – x∗∥∥ + γn
∥∥yn – x∗∥∥. (.)

Since

∥∥yn – x∗∥∥ ≤ ∥∥(I – rnA)zn – (I – rnA)x∗∥∥

=
∥∥zn – x∗∥∥ – rn

〈
zn – x∗,Azn –Ax∗〉 + rn

∥∥Azn –Ax∗∥∥

≤ ∥∥zn – x∗∥∥ – rnδ
∥∥Azn –Ax∗∥∥ + rn

∥∥Azn –Ax∗∥∥

=
∥∥xn – x∗∥∥ + rn(rn – δ)

∥∥Azn –Ax∗∥∥,

we find that

γnrn(δ – rn)
∥∥Azn –Ax∗∥∥

≤ αn
∥∥u – x∗∥∥ +

(∥∥xn – x∗∥∥ +
∥∥xn+ – x∗∥∥)‖xn – xn+‖.

Using the restrictions (a) and (b), we obtain

lim
n→∞

∥∥Azn –Ax∗∥∥ = . (.)

It follows from (.) that

∥∥xn+ – x∗∥∥ ≤ αn
∥∥u – x∗∥∥ + βn

∥∥xn – x∗∥∥ + γn
∥∥zn – x∗∥∥.

Since

∥∥zn – x∗∥∥ =
∥∥Jrn (un – snAun) – x∗∥∥

≤ ∥∥(I – snA)un – (I – snA)x∗∥∥

=
∥∥un – x∗∥∥ – sn

〈
un – x∗,Aun –Ax∗〉 + sn

∥∥Aun –Ax∗∥∥

≤ ∥∥un – x∗∥∥ – snδ
∥∥Aun –Ax∗∥∥ + sn

∥∥Aun –Ax∗∥∥

=
∥∥un – x∗∥∥ + sn(sn – δ)

∥∥Aun –Ax∗∥∥,

we have

∥∥xn+ – x∗∥∥ ≤ αn
∥∥f (xn) – x∗∥∥ +

∥∥xn – x∗∥∥ + γnsn(sn – δ)
∥∥Aun –Ax∗∥∥,
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which implies that

γnsn(δ – sn)
∥∥Aun –Ax∗∥∥

≤ αn
∥∥f (xn) – x∗∥∥ +

(∥∥xn – x∗∥∥ +
∥∥xn+ – x∗∥∥)‖xn – xn+‖.

Using the restrictions (a) and (b), we obtain

lim
n→∞

∥∥Aun –Ax∗∥∥ = . (.)

Note that

∥∥xn+ – x∗∥∥ ≤ αn
∥∥u – x∗∥∥ + βn

∥∥xn – x∗∥∥ + γn
∥∥xn – x∗ – rn

(
Axn –Ax∗)∥∥

≤ αn
∥∥u – x∗∥∥ + βn

∥∥xn – x∗∥∥ + γn
(∥∥xn – x∗∥∥

+ λ
n
∥∥Axn –Ax∗∥∥ – λn

〈
Axn –Ax∗,xn – x∗〉)

≤ αn
∥∥u – x∗∥∥ + βn

∥∥xn – x∗∥∥ + γn
∥∥xn – x∗∥∥

– λnγn(δ – λn)
∥∥Axn –Ax∗∥∥.

This implies that

λnγn(δ – λn)
∥∥Axn –Ax∗∥∥

≤ αn
∥∥u – x∗∥∥ +

(∥∥xn – x∗∥∥ +
∥∥xn+ – x∗∥∥)‖xn – xn+‖.

Using the restrictions (a) and (b), we see that

lim
n→∞

∥∥Axn –Ax∗∥∥ = . (.)

Since Tλn is firmly nonexpansive, we find that

∥∥un – x∗∥∥ ≤ 〈
(I – λnA)xn – (I – λnA)x∗,un – x∗〉

≤ 

(∥∥xn – x∗∥∥ +

∥∥un – x∗∥∥ – ‖xn – un‖ – λ
n
∥∥Axn –Ax∗∥∥

+ λn
〈
Axn –Ax∗,xn – un

〉)
.

This in turn implies that

γn‖xn – un‖ ≤ αn
∥∥f (xn) – x∗∥∥ +

(∥∥xn – x∗∥∥ +
∥∥xn+ – x∗∥∥)‖xn – xn+‖

+ λn
∥∥Axn –Ax∗∥∥‖xn – un‖.

Using the restrictions (a) and (b), we see that

lim
n→∞‖xn – un‖ = . (.)
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Since Jsn is also firmly nonexpansive mapping, we see that

∥∥zn – x∗∥∥ ≤ 〈
(I – snA)un – (I – snA)x∗, zn – x∗〉

≤ 

(∥∥un – x∗∥∥ +

∥∥zn – x∗∥∥ –
∥∥un – zn – sn

(
Aun –Ax∗)∥∥)

≤ 

(∥∥un – x∗∥∥ +

∥∥zn – x∗∥∥ – ‖un – zn‖

+ sn‖un – zn‖
∥∥Aun –Ax∗∥∥ – sn

∥∥Aun –Ax∗∥∥),
which implies that

∥∥zn – x∗∥∥ ≤ ∥∥xn – x∗∥∥ – ‖un – zn‖ + sn‖un – zn‖
∥∥Aun –Ax∗∥∥.

It follows that

γn‖un – zn‖ ≤ αn
∥∥f (xn) – x∗∥∥ +

(∥∥xn – x∗∥∥ +
∥∥xn+ – x∗∥∥)‖xn – xn+‖

+ sn‖un – zn‖
∥∥Aun –Ax∗∥∥.

Using the restrictions (a) and (b), we obtain

lim
n→∞‖un – zn‖ =  (.)

and

lim
n→∞‖yn – zn‖ = . (.)

Note that

( – βn)‖Wnyn – xn‖ ≤ ‖xn – xn+‖ + αn‖u –Wnyn‖.

Using the restrictions (b) and (c), we obtain

lim
n→∞‖Wnyn – xn‖ = . (.)

On the other hand, one has

‖Wnyn – yn‖ ≤ ‖yn – zn‖ + ‖zn – un‖ + ‖un – xn‖ + ‖xn –Wnyn‖.

Using (.), (.), (.), and (.), we find that

lim
n→∞‖Wnyn – yn‖ = . (.)

Next, we prove that

lim sup
n→∞

〈u – x̄,xn – x̄〉 ≤ .
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To see this, we choose a subsequence {xni} of {xn} such that

lim sup
n→∞

〈u – x̄,xn – x̄〉 = lim
i→∞〈u – x̄,xni – x̄〉. (.)

Since {xni} is bounded, there exists a subsequence {xnij } of {xni} which converges weakly
to w. Without loss of generality, we may assume that xni ⇀ q. Therefore, we see that
yni ⇀ q. We also have zni ⇀ q.
Next, we show that q ∈ ⋂∞

i= F(Si). Suppose the contrary, q /∈ CFPS, i.e., Wq �= q. Since
yni ⇀ q, we see from Opial’s condition that

lim inf
i→∞ ‖yni – q‖ < lim inf

i→∞ ‖yni –Wq‖

≤ lim inf
i→∞

{‖yni –Wyni‖ + ‖Wyni –Wq‖}

≤ lim inf
i→∞

{‖yni –Wyni‖ + ‖yni – q‖}. (.)

On the other hand, we have

‖Wyn – yn‖ ≤ ‖Wyn –Wnyn‖ + ‖Wnyn – yn‖
≤ sup

x∈K
‖Wx –Wnx‖ + ‖Wnyn – yn‖.

In view of Lemma ., we obtain that limn→∞ ‖Wyn – yn‖ = . This implies from (.)
that lim infi→∞ ‖yni – q‖ < lim infi→∞ ‖yni – q‖. This is a contradiction. Thus, we have q ∈⋂∞

i= F(Si).
Now, we are in a position to prove that q ∈ (A +M)–(). Notice that zn–yn

rn – Azn ∈
Myn. Let μ ∈Mν . SinceM is monotone, we find that

〈
zn – yn
rn

–Azn –μ, yn – ν

〉
≥ .

This implies that 〈–Aq – μ,q – ν〉 ≥ . This implies that –Aq ∈ Mq, that is, q ∈ (A +
M)–().
Now, we prove that q ∈ (A +M)–(). Notice that un–zn

sn –Aun ∈Mzn. Let μ′ ∈Mν
′.

SinceM is monotone, we find that
〈
un – zn

sn
–Aun –μ′, zn – ν ′

〉
≥ .

This implies that 〈–Aq –μ′,q – ν ′〉 ≥ . This implies that –Aq ∈ Mq, that is, q ∈ (A +
M)–().
Next, we show that q ∈ EP(F ,A). Since un = Tλn (I – λnA)xn, for any y ∈ C, we have

F(un, y) + 〈Axn, y – un〉 + 
λn

〈y – un,un – xn〉 ≥ .

Replacing n by ni, we find from (A) that

〈Axni , y – uni〉 +
〈
y – uni ,

uni – xni
λni

〉
≥ F(y,uni ), ∀y ∈ C.
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Putting yt = ty + ( – t)q for any t ∈ (, ] and y ∈ C, we see that yt ∈ C. It follows that

〈yt – uni ,Ayt〉

≥ 〈yt – uni ,Ayt〉 – 〈Axni , yt – uni〉 –
〈
yt – uni ,

uni – xni
λni

〉
+ F(yt ,uni )

= 〈yt – uni ,Ayt –Auni〉 + 〈yt – uni ,Auni –Axni〉 –
〈
yt – uni ,

uni – xni
λni

〉

+ F(yt ,uni ).

In view of the monotonicity of A, and the restriction (a), we obtain from (A) that

〈yt – q,Ayt〉 ≥ F(yt ,q).

From (A) and (A), we see that

 = F(yt , yt)≤ tF(yt , y) + ( – t)F(yt ,q)

≤ tF(yt , y) + ( – t)〈yt – q,Ayt〉
= tF(yt , y) + ( – t)t〈y – q,Ayt〉.

It follows that

 ≤ F(yt , y) + ( – t)〈y –w,Ayt〉, ∀y ∈ C.

It follows from (A) that q ∈ EP(F ,A). Hence,

lim sup
n→∞

〈u – x̄,xn – x̄〉 ≤ .

Finally, we show that xn → x̄. Note that

‖xn+ – x̄‖

≤ αn〈u – x̄,xn+ – x̄〉 + βn‖xn – x̄‖‖xn+ – x̄‖ + γn‖yn – x̄‖‖xn+ – x̄‖

≤ αn〈u – x̄,xn+ – x̄〉 +  – αn


(‖xn – x̄‖ + ‖xn+ – x̄‖).

This implies that

‖xn+ – x̄‖ ≤ αn〈u – x̄,xn+ – x̄〉 + ( – αn)‖xn – x̄‖.

Using Lemma ., we find that limn→∞ ‖xn – x̄‖ = . This completes the proof. �

3 Applications
In this section, we consider some applications of the main results.
Recall that the classical variational inequality is to find an x ∈ C such that

〈Ax, y – x〉 ≥ , ∀y ∈ C.
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In this paper, we use VI(C,A) to denote the solution set of the inequality. It is well known
that x ∈ C is a solution of the inequality iff x is a fixed point of the mapping PC(I – rA),
where r >  is a constant, I stands for the identity mapping. If A is α-inverse-strongly
monotone and r ∈ (, α], then themapping I–rA is nonexpansive. It follows thatVI(C,A)
is closed and convex.
Let g : H → (–∞, +∞] be a proper convex lower semicontinuous function. Then the

subdifferential ∂g of g is defined as follows:

∂fg(x) =
{
y ∈H : g(z) ≥ g(x) + 〈z – x, y〉, z ∈H

}
, ∀x ∈H .

From Rockafellar [], we know that ∂g is maximal monotone. It is not hard to verify that
 ∈ ∂g(x) if and only if g(x) =miny∈H g(y).
Let IC be the indicator function of C, i.e.,

IC(x) =

⎧⎨
⎩
, x ∈ C,

+∞, x /∈ C.

Since IC is a proper lower semicontinuous convex function on H , we see that the subd-
ifferential ∂IC of IC is a maximal monotone operator. It is clearly that Jrx = PCx, ∀x ∈ H ,
(A + ∂IC)–() = VI(C,A) and (A + ∂IC)–() = VI(C,A).

Theorem . Let C be a nonempty closed convex subset of a Hilbert space H and F a bi-
function from C×C toR which satisfies (A)-(A). Let A : C →H be a δ-inverse-strongly
monotone mapping, A : C → H be a δ-inverse-strongly monotone mapping, A : C → H
be a δ-inverse-strongly monotone mapping, and {Si : C → C} be a family of infinitely non-
expansive mappings. Assume that � :=

⋂∞
i= F(Si)∩ EP(F ,A)∩VI(C,A)∩VI(C,A) �= ∅.

Let x ∈ C and {xn} be a sequence generated by

⎧⎨
⎩
zn = PC(un – snAun),

xn+ = αnf (xn) + βnxn + γnWnPC(zn – rnAzn), ∀n≥ ,

where un is such that

F(un, y) + 〈Axn, y – un〉 + 
λn

〈y – un,un – xn〉 ≥ , ∀y ∈ C,

{Wn : C → C} is the sequence generated in (.), {αn}, {βn}, and {γn} are sequences in (, )
such that αn + βn + γn =  for each n ≥  and {rn}, {sn}, and {λn} are positive number se-
quences. Assume that the above control sequences satisfy the following restrictions:
(a)  < a≤ λn ≤ b < δ,  < a′ ≤ rn ≤ b′ < δ,  < ā ≤ sn ≤ b̄ < δ;
(b) limn→∞ αn =  and

∑∞
n= αn =∞;

(c)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(d) limn→∞ |λn – λn+| = limn→∞ |sn – sn+| = limn→∞ |rn – rn+| = .

Then the sequence {xn} converges strongly to x̄ = P�u.
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Recall that amappingT : C → C is said to be a k-strict pseudo-contraction if there exists
a constant k ∈ [, ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + k
∥∥(I – T)x – (I – T)y

∥∥, ∀x, y ∈ C.

Putting A = I – T , where T : C → C is a k-strict pseudo-contraction, we find that A is
–k
 -inverse-strongly monotone.
Next, we consider fixed points of strict pseudo-contractions.

Theorem . Let C be a nonempty closed convex subset of a Hilbert space H and F a
bifunction from C×C toR which satisfies (A)-(A). Let T : C →H be a k-strict pseudo-
contraction, T : C → H be a k-strict pseudo-contraction, A : C → H be a δ-inverse-
strongly monotone mapping, and {Si : C → C} be a family of infinitely nonexpansive map-
pings. Assume that � :=

⋂∞
i= F(Si)∩ EP(F ,A)∩ F(T)∩ F(T) �= ∅. Let x ∈ C and {xn} be

a sequence generated by

⎧⎪⎪⎨
⎪⎪⎩
zn = ( – sn)un + snTun,

yn = ( – rn)un + rnTun,

xn+ = αnf (xn) + βnxn + γnWnyn, ∀n≥ ,

where un is such that

F(un, y) + 〈Axn, y – un〉 + 
λn

〈y – un,un – xn〉 ≥ , ∀y ∈ C,

{Wn : C → C} is the sequence generated in (.), {αn}, {βn}, and {γn} are sequences in (, )
such that αn + βn + γn =  for each n ≥  and {rn}, {sn}, and {λn} are positive number se-
quences. Assume that the above control sequences satisfy the following restrictions:
(a)  < a≤ λn ≤ b < δ,  < a′ ≤ rn ≤ b′ <  – k,  < ā ≤ sn ≤ b̄ <  – k;
(b) limn→∞ αn =  and

∑∞
n= αn =∞;

(c)  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
(d) limn→∞ |λn – λn+| = limn→∞ |sn – sn+| = limn→∞ |rn – rn+| = .

Then the sequence {xn} converges strongly to x̄ = P�u.

Proof Taking Ai = I – Ti, wee see that Ai : C → H is a δi-strict pseudo-contraction with
δi = –ki

 and F(Ti) = VI(C,Ai) for i = , . In view of Theorem ., we find the desired
conclusion immediately. �
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