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Abstract
In this paper, we extend the p-metric space to anM-metric space, and we shall show
that the definition we give is a real generalization of the p-metric by presenting some
examples. In the sequel we prove some of the main theorems by generalized
contractions for getting fixed points and common fixed points for mappings.
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1 Introduction and preliminaries
In , in [] Matthews introduced the notion of a partial metric space and proved the
contraction principle of Banach in this new framework. Next, many fixed-point theorems
in partial metric spaces have been given by several mathematicians. Recently Haghi et al.
published [] a paper which stated that we should ‘be careful on partial metric fixed point
results’ along with giving some results. They showed that fixed-point generalizations to
partial metric spaces can be obtained from the corresponding results in metric spaces.
In this paper, we extend the p-metric space to an M-metric space, and we shall show

that our definition is a real generalization of the p-metric by presenting some examples.
In the sequel we prove some of the main theorems by generalized contractions for getting
fixed points and common fixed points for mappings.

Definition . ([], [, Definition .]) A partial metric on a nonempty set X is a function
p : X ×X → R

+ such that for all x, y, z ∈ X:
(p) p(x,x) = p(y, y) = p(x, y) ⇐⇒ x = y,
(p) p(x,x)≤ p(x, y),
(p) p(x, y) = p(y,x),
(p) p(x, y) ≤ p(x, z) + p(z, y) – p(z, z).

A partial metric space is a pair (X,p) such that X is a nonempty set and p is a partial metric
on X.

Notation The following notation is useful in the sequel.
. mxy :=min{m(x,x),m(y, y)},
. Mxy :=max{m(x,x),m(y, y)}.

Now we want to extend Definition . as follows.
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Definition . LetX be a nonempty set. A functionm : X×X →R
+ is called anm-metric

if the following conditions are satisfied:
(m) m(x,x) =m(y, y) =m(x, y) ⇐⇒ x = y,
(m) mxy ≤m(x, y),
(m) m(x, y) =m(y,x),
(m) (m(x, y) –mxy) ≤ (m(x, z) –mxz) + (m(z, y) –mzy).

Then the pair (X,m) is called anM-metric space.

According to the above definition the condition (p) in the definition of [] changes to
(m), and (p) is expressed for p(x,x) where p(y, y) =  may become p(y, y) �= . Thus we
improve that condition by replacing it bymin{p(x,x),p(y, y)} ≤ p(x, y), and also we improve
the condition (p) extending it to the form of (m). In the sequel we present an example
that holds for them-metric but not for the p-metric.

Remark . For every x, y ∈ X
. ≤Mxy +mxy =m(x,x) +m(y, y),
. ≤Mxy –mxy = |m(x,x) –m(y, y)|,
. Mxy –mxy ≤ (Mxz –mxz) + (Mzy –mzy).

The next examples show thatms andmw are ordinary metrics.

Example . Let X := [,∞). Then m(x, y) = x+y
 on X is anm-metric.

Example . Let m be anm-metric. Put
. mw(x, y) =m(x, y) – mxy +Mxy,
. ms(x, y) =m(x, y) –mxy when x �= y and ms(x, y) =  if x = y.

Thenmw and ms are ordinary metrics.

Proof Ifmw(x, y) = , then

m(x, y) = mxy –Mxy. ()

But from equation () and mxy ≤ m(x, y) we get mxy =Mxy =m(x,x) =m(y, y), so by equa-
tion () we obtainm(x, y) =m(x,x) =m(y, y) and therefore x = y. For the triangle inequality
it is enough that we consider Remark . and (m). �

Remark . For every x, y ∈ X
. m(x, y) –Mxy ≤mw(x, y) ≤m(x, y) +Mxy,
. (m(x, y) –Mxy) ≤ms(x, y)≤m(x, y).

In other words

∣∣mw(x, y) –m(x, y)
∣∣ ≤Mxy,

∣∣ms(x, y) –m(x, y)
∣∣ ≤Mxy.

In the following example we present an example of anm-metric which is not a p-metric.
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Example . Let X = {, , }; define

m(, ) = , m(, ) = , m(, ) = ,

m(, ) =m(, ) = , m(, ) =m(, ) = , m(, ) =m(, ) = .

Som is anm-metric, but it is not p-metric.

Example . Let (X,d) be a metric space. Let φ : [,∞) → [φ(),∞) be a one to one and
nondecreasing or strictly increasing mapping, with φ() defined such that

φ(x + y) ≤ φ(x) + φ(y) – φ(), ∀x, y≥ .

Thenm(x, y) = φ(d(x, y)) is anm-metric.

Proof (m), (m), and (m) are clear. For (m) we have

φ
(
d(x, y)

) ≤ φ
(
d(x, z) + d(z, y)

)
≤ φ

(
d(x, z)

)
+ φ

(
d(z, y)

)
– φ(),

(
φ
(
d(x, y)

)
– φ()

) ≤ (
φ
(
d(x, z)

)
– φ()

)
+

(
φ
(
d(z, y)

)
– φ()

)
,

(
m(x, y) –mxy

) ≤ (
m(x, z) –mxz

)
+

(
m(z, y) –mzy

)
. �

Example . Let (X,d) be a metric space. Then m(x, y) = ad(x, y) + b where a,b >  is an
m-metric, because we can put φ(t) = at + b.

Remark . According to Example ., by the Banach contraction

∃k ∈ [, ), m(Tx,Ty) ≤ km(x, y), for all x, y ∈ X,

we have

m(Tx,Ty) = ad(Tx,Ty) + b ≤ kad(x, y) + kb ⇒ d(Tx,Ty) ≤ kd(x, y) +
b(k – )

a
,

which does not imply the ordinary Banach contraction

∃k ∈ [, ), d(Tx,Ty) ≤ kd(x, y), for all x, y ∈ X,

for all self-maps T on X. Thus, this states that even if the m-metric m and the ordinary
metric d have the same topology, the Banach contraction of them-metric does not imply
the Banach contraction of the ordinary metric d.

Lemma . Every p-metric is an m-metric.

Proof Let m be a p-metric. It is enough that we consider the following cases:
. m(x,x) =m(y, y) =m(z, z),
. m(x,x) <m(y, y) <m(z, z),
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. m(x,x) =m(y, y) <m(z, z),
. m(x,x) =m(y, y) >m(z, z),
. m(x,x) <m(y, y) =m(z, z),
. m(x,x) >m(y, y) =m(z, z).

For example, to prove (), we have

m(x, y)≤m(x, z) +m(z, y) –m(z, z),

m(x, y)≤m(x, z) +m(z, y) –m(y, y),

m(x, y) –m(x,x)≤m(x, z) –m(x,x) +m(z, y) –m(y, y),

m(x, y) –mx,y ≤m(x, z) –mx,z +m(z, y) –mz,y. �

2 Topology forM-metric space
It is clear that eachm-metric p on X generates a T topology τm on X. The set

{
Bm(x, ε) : x ∈ X, ε > 

}
,

where

Bm(x, ε) =
{
y ∈ X :m(x, y) <mx,y + ε

}
,

for all x ∈ X and ε > , forms a base of τm.

Definition . Let (X,m) be am-metric space. Then:
. A sequence {xn} in aM-metric space (X,m) converges to a point x ∈ X if and only if

lim
n→∞

(
m(xn,x) –mxn ,x

)
= . ()

. A sequence {xn} in aM-metric space (X,m) is called anm-Cauchy sequence if

lim
n,m→∞

(
m(xn,xm) –mxn ,xm

)
, lim

n,m→∞(Mxn ,xm –mxn ,xm ) ()

exist (and are finite).
. AnM-metric space (X,m) is said to be complete if every m-Cauchy sequence {xn}

in X converges, with respect to τm, to a point x ∈ X such that

(
lim
n→∞

(
m(xn,x) –mxn ,x

)
=  & lim

n→∞(Mxn ,x –mxn ,x) = 
)
.

Lemma . Let (X,m) be a m-metric space. Then:
. {xn} is an m-Cauchy sequence in (X,m) if and only if it is a Cauchy sequence in the

metric space (X,mw).
. AnM-metric space (X,m) is complete if and only if the metric space (X,mw) is

complete. Furthermore,

lim
n→∞mw(xn,x) =  ⇐⇒

(
lim
n→∞

(
m(xn,x)–mxn ,x

)
= , lim

n→∞(Mxn ,x –mxn ,x) = 
)
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/18


Asadi et al. Journal of Inequalities and Applications 2014, 2014:18 Page 5 of 9
http://www.journalofinequalitiesandapplications.com/content/2014/1/18

Likewise the above definition holds also forms.

Lemma. Assume that xn → x and yn → y as n→ ∞ in anM-metric space (X,m).Then

lim
n→∞

(
m(xn, yn) –mxn ,yn

)
=m(x, y) –mxy.

Proof We have

∣∣(m(xn, yn) –mxn ,yn
)
–

(
m(x, y) –mx,y

)∣∣ ≤ (
m(xn,x) –mxn ,x

)
+

(
m(y, yn) –my,yn

)
. �

From Lemma . we deduce the following lemma.

Lemma . Assume that xn → x as n→ ∞ in an M-metric space (X,m). Then

lim
n→∞

(
m(xn, y) –mxn ,y

)
=m(x, y) –mx,y,

for all y ∈ X.

Lemma . Assume that xn → x and xn → y as n → ∞ in an M-metric space (X,m).
Then m(x, y) =mxy. Furthermore, if m(x,x) =m(y, y), then x = y.

Proof By Lemma . we have

 = lim
n→∞

(
m(xn,xn) –mxn ,xn

)
=m(x, y) –mxy. �

Lemma . Let {xn} be a sequence in an m-metric space (X,m), such that

∃r ∈ [, ), m(xn+,xn) ≤ rm(xn,xn–), ∀n ∈N. ()

Then
(A) limn→∞ m(xn,xn–) = ,
(B) limn→∞ m(xn,xn) = ,
(C) limm,n→∞ mxmxn = ,
(D) {xn} is anm-Cauchy sequence.

Proof From equation () we have

m(xn,xn–) ≤ rm(xn–,xn–) ≤ rm(xn–,xn–) ≤ · · · ≤ rnm(x,x),

thus,

lim
n→∞m(xn,xn–) = ,

which implies that (A) holds.
From (m) and (A) we have

lim
n→∞min

{
m(xn,xn),m(xn–,xn–)

}
= lim

n→∞mxnxn– ≤ lim
n→∞m(xn,xn–) = .

That is, (B) holds.
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Clearly, (C) holds, since limn→∞ m(xn,xn) = . �

Theorem . The topology τm is not Hausdorff.

Proof Let x, y, z ∈ X be such that

a :=m(x,x) <m(z, z) =
a + b


< b :=m(y, y)

with

b

<
k

<m(x, y) <Mx,y = b, r := m(x, y) – a – b > 

and

max
{
m(x, z),m(z, y)

} ≤ (
m(x, y) – k

)ε

r
;

without loss of generality we assume that for each ε >  we have ε < r. We want to show
that the intersection of the following neighborhoods is not empty:

Ux =
{
z ∈ X :m(x, z) –mxz < ε

}
, Vy =

{
z ∈ X :m(y, z) –myz < ε

}
.

To prove z ∈Ux, we have

m(x, z) <
(
m(x, y) – k

)ε

r
,

m(x, z) –mxz <
(
m(x, y) – k

)ε

r
– a

<
(
m(x, y) – k – a

)ε

r

<
(
m(x, y) – a – b

)ε

r
= ε

and for z ∈ Vy

m(y, z) <
(
m(x, y) – k

)ε

r
,

m(x, z) –myz <
(
m(x, y) – k

)ε

r
–
a + b


<
(
m(x, y) – k

)ε

r
–
a + b


ε

r

<
(
m(x, y) – k –

a + b


)
ε

r

<
(
m(x, y) – a – b

)ε

r
= ε,

so we can find x, y ∈ X such that for all nonempty neighborhoods Ux of x and Vy of y we
have Ux ∩Vy �= ∅. �
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3 Fixed point results onM-metric space
Theorem . Let (X,m) be a complete M-metric space and let T : X → X be a mapping
satisfying the following condition:

∃k ∈ [, ) such that m(Tx,Ty)≤ km(x, y) for all x, y ∈ X. ()

Then T has a unique fixed point.

Proof Let x ∈ X and xn := Txn–, so we have

m(xn,xn–) =m(Txn–,Txn–) ≤ km(xn–,xn–) ()

and so (A), (B), (C), and (D) of Lemma . hold. By completeness of X we get xn → x for
some x ∈ X. Thus by equation () m(Txn,Tx) ≤ km(xn,x) → . Hence by (m) mTxn ,Tx ≤
m(Txn,Tx)→  so by equation () Txn → Tx.
Contraction () implies thatm(xn,Txn) →  andm(Tx,Tx) <m(x,x). Sincemxn ,Txn → ,

by Lemma ., we get m(x,Tx) =mx,Tx =m(Tx,Tx).
On the other hand, by Lemma . and xn = Txn– → x,

 = lim
n→∞

(
m(xn,Txn) –mxn ,Txn

)
= lim

n→∞
(
m(xn,xn–) –mxn ,Txn

)
=m(x,x) –mx,Tx,

thusm(x,x) =m(x,Tx). Sincem(x,Tx) =mx,Tx =m(Tx,Tx) now by (m) x = Tx. Uniqueness
by the contraction () is clear. �

Theorem . Let (X,m) be a complete M-metric space and let T : X → X be a mapping
satisfying the following condition:

∃k ∈
[
,




)
such that m(Tx,Ty) ≤ k

(
m(x,Tx) +m(y,Ty)

)
for all x, y ∈ X. ()

Then T has an unique fixed point.

Proof Let x ∈ X and xn := Txn–, so we have

m(xn,xn–) = m(Txn–,Txn–)

≤ k
(
m(xn–,xn) +m(xn–,xn–)

)
.

So

m(xn,xn–) ≤ rm(xn–,xn–),

where  ≤ r = k
–k < .

By Lemma . and completeness of X, xn → x for some x ∈ X. So

m(xn,x) –mxn ,x → , Mxn ,x –mxn ,x → ,

http://www.journalofinequalitiesandapplications.com/content/2014/1/18
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and since mxn ,x → , we have m(xn,x) →  and Mxn ,x → . Therefore by Remark .,
m(x,x) =  =mx,Tx;

m(xn+,Tx) =m(Txn,Tx) ≤ k
(
m(xn,xn+) +m(x,Tx)

)
,

hence bym(xn,xn+) → 

lim sup
n→∞

m(xn+,Tx) = lim sup
n→∞

m(Txn,Tx)≤ km(x,Tx).

On the other hand

m(x,Tx) –mx,Tx ≤m(x,xn) +m(xn,Tx)

implies that

m(x,Tx)≤ lim sup
n→∞

(
m(x,xn) +m(xn,Tx)

) ≤ km(x,Tx),

because mx,Tx =  and m(xn,x) → . So m(x,Tx) = . Now by contraction () we have
m(Tx,Tx) ≤ km(x,Tx) = , so m(Tx,Tx) =  = m(x,x) = m(x,Tx), thus x = Tx by (m).

�

The next theorem is still open.

Theorem . Let (X,m) be a complete M-metric space and let T : X → X be a mapping
satisfying the following condition:

∃k ∈
[
,




)
such that m(Tx,Ty) ≤ k

(
m(x,Ty) +m(Tx, y)

)
for all x, y ∈ X. ()

Then T has a unique fixed point.
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