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Abstract
In this paper, we introduce the concepts of well-posedness, and of well-posedness in
the generalized sense for parametric generalized vector quasivariational inequality
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1 Introduction and preliminaries
Avector variational inequality in a finite-dimensional Euclidean spacewas introduced first
by Giannessi []. Later, this problem has been extended and studied by many authors in
abstract spaces; see [–]. Moreover, vector variational inequality problems have many
important applications in vector optimization problems [–], vector equilibria problems
[, ], and variational relation problems [, ].
The concept of well-posedness for unconstrained scalar optimization problemswas first

introduced and studied by Tykhonov [], which has become known as Tykhonov well-
posedness. In , Levitin and Polyak [] introduced the concept of well-posedness for
constrained scalar optimization problems.With the development of the theory about opti-
mization problems, the concept of well-posedness has been generalized to several related
problems, as vector optimization problems, see [–], variational inequality problems,
see [, –], equilibria problems, see [–] and the references therein. Recently, Fang
andHuang [] studied the well-posedness for a vector variational inequality of theMinty
type and the Stampacchia type. Very recently, Lalitha and Bhatia [] also studied a quasi-
variational inequality problem of the Minty type, and the well-posedness for this problem
was obtained.
Motivated and inspired by the workmentioned, in this paper, we also study the paramet-

ric generalized vector quasivariational inequality problems. However, we only study the
well-posedness for generalized vector quasivariational inequality problems of the Minty
type. The well-posedness for generalized vector quasivariational inequality problems of
the Stampacchia type is the same as the Minty type. Let X, Y , �, � be metric spaces and

©2014 Hung; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.journalofinequalitiesandapplications.com/content/2014/1/178
mailto:ngvhungdhdt@yahoo.com
http://creativecommons.org/licenses/by/2.0


Hung Journal of Inequalities and Applications 2014, 2014:178 Page 2 of 16
http://www.journalofinequalitiesandapplications.com/content/2014/1/178

C ⊂ Y be a closed, convex, and pointed cone with intC �= ∅. The cone C induces a partial
ordering in Y defined by

y < x ⇔ y – x ∈ – intC, ∀x, y ∈ Y ,

y≮ x ⇔ y – x /∈ – intC, ∀x, y ∈ Y ,

where intC denotes the interior of C.
Let L(X,Y ) be the space of all linear continuous operators from X into Y , and A ⊂ X

be a nonempty subset. Let K : A× � → A, K : A× � → A, and T : A× � → L(X,Y ) be
set-valued mappings. Let Q : L(X,Y ) → L(X,Y ), η : A×A× � → A be continuous single-
valued mappings. We denote by 〈z,x〉 the value of a linear operator z ∈ L(X;Y ) at x ∈ X,
and we always assume that 〈·, ·〉 is continuous.
Now we adopt the following notations (see [, , ]). For subsets M and N under

consideration we adopt the notations

(u, v) wM ×N means ∀u ∈M,∃v ∈ N ,

(u, v) mM ×N means ∃v ∈N ,∀u ∈M,

(u, v) sM ×N means ∀u ∈M,∀v ∈N ,

(u, v) w̄ M ×N means ∃u ∈M,∀v ∈N and similarly for m̄, s̄.

where w, m, and s are used for weak, middle, and strong, respectively, kinds of considered
problems. Let α ∈ {w,m, s}, ᾱ ∈ {w̄, m̄, s̄}, and, for γ ∈ �, λ ∈ �. We consider the following
parametric generalized vector quasivariational inequality problems of the Minty type (in
short: (MQVIPγ λ)).

(MQVIPγ λ) Find x̄ ∈ K(x̄,γ ) such that (y, z)αK(x̄,γ )× T(y,γ ) satisfies

〈
Q(z),η(y, x̄,λ)

〉
≮ .

Denote by (MQVIP) the family {(MQVIPγ λ) : (γ ,λ) ∈ �×�}. For each γ ∈ �, λ ∈ �, and
let E(γ ) := {x ∈ A : x ∈ K(x,γ )}. We denote by �α(γ ,λ) the solution sets of (MQVIPγ λ).
Throughout the article, we assume that�α(γ ,λ) �= ∅ for each (γ ,λ) in the neighborhoods

(γ,λ) ∈ � × �.
Next, we recall some basic definitions and some of their properties.

Definition . ([, ]) Let X and Z be two topological vector spaces and letG : X → Z

be a multifunction.
(i) G is said to be lower semicontinuous (lsc) at x if G(x)∩U �= ∅ for each open set

U ⊆ Z implies the existence of a neighborhood V of x such that G(x)∩U �= ∅,
∀x ∈ V .

(ii) G is said to be upper semicontinuous (usc) at x if for each open set U ⊇G(x),
there is a neighborhood V of x such that U ⊇ G(x), ∀x ∈ V .

(iii) G is said to be closed at x if for each net {(xn, yn)} ∈ graphG := {(x, y)|y ∈G(x)},
(xn, yn) → (x, y), it follows that (x, y) ∈ graphG.
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Lemma . ([, ]) Let X and Z be two topological vector spaces and G : X → Z be a
multifunction.

(i) If Z is compact and G is closed at x, then G is usc at x.
(ii) If G is usc at x and G(x) is closed, then G is closed at x.

The structure of this article is as follows. In the remaining part of this section, we re-
call definitions for later use. In Section , we introduce concepts of well-posedness, and
well-posedness in the generalized sense for parametric generalized vector quasivariational
inequality problems of the Minty type. Moreover, the necessary and sufficient conditions
for the various kinds of well-posedness of these problems are obtained.

2 Main results
Definition . Let {(γn,λn)} ⊆ � ×� converges to (γ,λ). A sequence {xn} ⊆ A is said to
be an approximating sequence for (MQVIP) corresponding to {(γn,λn)}, if

(i) xn ∈ K(xn,λn), ∀n;
(ii) there exists a sequence {εn} ∈ intC that converges to  such that

(y, z)αK(xn,γn)× T(y,γn) satisfies
〈
Q(z),η(y,xn,λn)

〉
+ εn ≮ .

Definition . The problem (MQVIP) is said to be well-posed at (γ,λ) if
(i) the problem (MQVIP) has a unique solution x, i.e., �α(γ,λ) = {x};
(ii) for any sequence {(γn,λn)} ⊆ � × � converges to (γ,λ), every approximating

sequence {xn} for (MQVIP) corresponding to {(γn,λn)} converges to x.

Definition . The problem (MQVIP) is said to be well-posed in the generalized sense
at (γ,λ) if

(i) the solution set �α(γ,λ) of (MQVIP) is nonempty;
(ii) for any sequence {(γn,λn)} ⊆ � × � that converges to (γ,λ), every approximating

sequence {xn} for (MQVIP) corresponding to {(γn,λn)} has a subsequence which
converges to some point of �α(γ,λ).

For γ ∈ �, λ ∈ �, and ε ∈ intC, we denote the approximate solution set of (MQVIP) by

(γ ,λ, ε):


(γ ,λ, ε) :=
{
x ∈ K(x,γ )|(y, z)αK(x,γ )× T(y,γ ) :

〈
Q(z),η(y,x,λ)

〉
+ ε ≮ 

}
.

Remark .
(i) In the special case, where A = B, X = Y , � =�, K(x,γ ) = K(x,γ ) = A,

η(y,x,λ) = y – x, and Q is an identity map, let T : A× � → L(X,Y ) be a
single-valued mapping, then the problem (MQVIPγ λ) reduces to the problem
(MVVIλ) studied in [].

(ii) In the special case as in Remark .(i), then Definitions ., ., and . reduce to
Definitions ., ., and ., respectively, of Fang and Huang in [].

(iii) Well-posedness for vector problems has been defined in different ways. In this
paper, we denote ε ∈ intC instead of εe, with ε being positive numbers and
e ∈ intC, i.e., only a fixed direction e is allowed (see [, ]).

http://www.journalofinequalitiesandapplications.com/content/2014/1/178
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Remark . ([]) Let X and Z be two metric spaces and G : X → Z be a multifunction.
If G(x) is compact, then G is usc at x if and only if for any sequence {xn} that converges
to x and for any sequence {yn} ⊆ G(xn), there is a subsequence {ynk } of {yn} converging
to some y ∈ G(x). If, in addition, G(x) = {y} is a singleton, then the above limit point y
must be y and the whole {yn} converges to y.

The following theorem gives sufficient conditions for the well-posedness and the well-
posedness in the generalized sense for (MQVIP).

Theorem . Assume for problem (MQVIP) that
(i) E is usc at γ and E(γ) is a compact set;
(ii) in K(A,�)× {γ}, K is lsc;
(iii) in K(K(A,�),�)× {γ}, T is usc and compact-valued if α = w (or α =m), and lsc if

α = s.
Then (MQVIP) is well-posed in the generalized sense at (γ,λ).Moreover, if �α(γ,λ) is
a singleton, then this problem is well-posed at (γ,λ).

Proof Since α = {w,m, s}, we have in fact three cases. However, the proof techniques are
similar. We consider only the case α = s. We first prove that 
s is upper semicontinuous
at (γ,λ, ). Indeed, we suppose to the contrary the existence of an open subset V of

s(γ,λ, ) such that for all {(γn,λn, εn)} ⊆ � × � × C it converges to {(γ,λ, )}, that
is, xn ∈ 
s(γn,λn, εn), xn /∈ V , for all n. Since E is usc and is compact-valued at γ, we
can assume that xn tends to x for some x ∈ E(γ). If x /∈ 
s(γ,λ, ) = �(γ,λ), ∃y ∈
K(x,γ), ∃z ∈ T(y,γ) such that

〈
Q(z),η(y,x,λ)

〉
< .

By the lower semicontinuity of K, T at (x,γ) and (y,γ), ∀y ∈ K(x,γ), ∀z ∈
T(y,γ) there exists yn ∈ K(xn,γn), zn ∈ T(yn,γn) such that yn → y, zn → z. Since
xn ∈ 
(γn,λn, εn), we have

〈
Q(zn),η(yn,xn,λn)

〉
+ εn ≮ . (.)

Let id : C → C be an identitymap, by the continuity of η,Q, and 〈·, ·〉, it follows that 〈·, ·〉+id
is continuous (where id is continuous). So (.) implies

〈
Q(z),η(y,x,λ)

〉
≮ ,

which is impossible. Hence, x belongs to
s(γ,λ, ) ⊆ V , which is again a contradiction,
since xn /∈ V , for all n. Therefore, 
s is usc at (γ,λ, ).
Now we prove that 
s(γ,λ, ) is compact, by checking its closedness. Indeed, let xn ∈


s(γ,λ, ), xn → x. This proof is similar to above and so we have x ∈ 
s(γ,λ, ) and
hence 
s(γ,λ, ) is compact. By Remark ., we complete the proof. �

The following example shows that the upper semicontinuity and compactness of E are
essential.
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Example . Let A = B = X = Y =R, � = � = [, ], C =R+, γ = , Q be an identity map,
K,K : A× � → A, T : A× � → L(X,Y ), and η : A×A× � → A be defined by

K(x,γ ) =
(
–γ –



,γ

]
,

η(y,x,γ ) =
{
γ  + γ +  + ε

}
,

T(y,γ ) =
{


γ+

}
,

K(x,γ ) =
[
, γ +].

Then we have E() = (– 
 , ] and E(γ ) = (–γ – 

 ,γ ], ∀γ ∈ (, ].We show that assumptions
(ii) and (iii) of Theorem . are fulfilled. But the family {(MQVIPγ λ) : (γ ,λ) ∈ � × �} is
not well-posed in the generalized sense at (, ). The reason is that E is not usc at  and
E() is not compact. In fact


α(γ ,λ, ε) =

⎧⎨
⎩(– 

 , ], if γ = ,

(–γ – 
 ,γ ], if γ ∈ (, ].

The following example shows that the lower semicontinuity of K is essential.

Example . LetA = B = [–, ],X = Y =R,� =� = [, ],C =R+, γ = ,Q be an identity
map, K,K : A× � → A, T : A× � → L(X,Y ), and η : A×A× � → A be defined by

K(x,γ ) = [, ],

η(y,x,γ ) = {x + y – ε},
T(y,γ ) = {},

K(x,γ ) =

⎧⎨
⎩{–, , }, if γ = ,

{, }, otherwise.

We have E(γ ) = [, ], ∀γ ∈ [, ]. Hence E is usc at  and E() is compact and the
conditions (ii) and (iii) of Theorem . are easily seen to be fulfilled. But the family
{(MQVIPγ λ) : (γ ,λ) ∈ � × �} is not well-posed in the generalized sense at (, ). The rea-
son is that K is not lower semicontinuous at (x, ). In fact


α(γ ,λ, ε) =

⎧⎨
⎩{}, if γ = ,

[, ], ifγ ∈ (, ].

Theorem . Assume for problem (MQVIP) the assumptions (ii) and (iii) as in Theo-
rem . and replace (i) by (i′):

(i′) A is compact, K is closed in A× {γ}.
Then (MQVIP) is well-posed in the generalized sense at (γ,λ). Moreover, if �α(γ,λ)

is a singleton, then this problem is well-posed at (γ,λ).

http://www.journalofinequalitiesandapplications.com/content/2014/1/178
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Proof We omit the proof since the technique is similar to that for Theorem . with suit-
able modifications. �

The following example shows that the compactness of A cannot be dropped.

Example . Let A = B = X = Y = (–∞, +∞), � =� = [,+∞), C = [,+∞), γ = ,H be
the identity map, K,K : A× � → A, T : A× � → B, and η : A×A× � → A be defined
by

K(x,γ ) =

⎧⎨
⎩{}, if γ = ,

{+γ }, if γ �= ,

K(x,γ ) = [, ],

η(y,x,λ) =
{


γ+γ  – εcos(γ )+γ+

}
,

T(y,γ ) =
{


cos(γ )+γ+

}
.

We see that K is closed at (x, ), the assumptions (ii) and (iii) of Theorem . are satisfied.
But the family {(MQVIPγ λ) : (γ ,λ) ∈ � × �} is not well-posed in the generalized sense at
(, ). The reason is thatA is not compact. In fact,
α(, , ) = {} and
α(γ ,λ, ε) = {+γ },
∀γ ∈ (, +∞).

The following example shows that the closedness of K is essential.

Example . Let A = B = X = Y = [–, ], � =� = [, ], C =R+, γ = , H be an identity
map, K,K : A× � → A, T : A× � → B, and η : A×A× � → A be defined by

K(x,γ ) = (–γ , ],

K(x,γ ) = [, ],

η(y,x,γ ) =
{
x – yx – ε

}
,

T(y,γ ) = {}.

We show thatA is compact and the conditions (ii), (iii) of Theorem . are easily seen to be
fulfilled. But the family {(MQVIPγ λ) : (γ ,λ) ∈ � × �} is not well-posed in the generalized
sense at (, ). The reason is that K is not closed at (x, ). In fact,


α(γ ,λ, ε) =

⎧⎨
⎩{}, if γ = ,

{, }, if γ �= .

The following example shows that all assumptions of Theorem . are satisfied.

Example. LetX = Y =R,A = B = [, ],� =� = [, ],C =R+, γ = ,H be an identity
map, and let K,K : A× � → A, T : A× � → L(X,Y ), and η : A×A× � → A be defined

http://www.journalofinequalitiesandapplications.com/content/2014/1/178
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by

K(x,γ ) = K(x,γ ) = [, ],

η(y,x,γ ) = γ  + γ +  – ε,

T(y,γ ) = {}.

Then E(γ ) = [, ], ∀γ ∈ [, ]. We see that all assumptions of Theorem . are satisfied.
So, the family {(MQVIPγ λ) : (γ ,λ) ∈ �×�} is well-posed in the generalized sense at (, ).
In fact, 
(γ ,λ, ε) = [, ], ∀γ ∈ [, ].

For (γ ,λ) ∈ � × �, ε ∈ intC, and positive ξ , we define the following sets of approximate
solutions of the family {(MQVIPγ λ) : (γ ,λ) ∈ � × �}:

γλ
α (ξ , ε)

=
⋃

γ∈B(γ,ξ ),λ∈B(λ,ξ )

α(γ ,λ, ε)

=
⋃

γ∈B(γ,ξ ),λ∈B(λ,ξ )

{
x ∈ K(x,γ )|(y, z)αK(x,γ )× T(y,γ ) :

〈
Q(z),η(y,x,λ)

〉
+ ε ≮ 

}
,

where B(γ, ξ ) and B(λ, ξ ) are the closed balls centered at γ and λ with radius ξ .
Observe that, for every (γ ,λ) ∈ � × �,
(i) 

γλ
α (, ) = 
α(γ,λ, ) = �α(γ,λ);

(ii) �α(γ,λ) ⊆ 
α(γ,λ, ε) ⊆ 
γλ
α (ξ , ε).

Theorem . Assume X is complete and the following conditions hold:
(i) K is closed in A× {γ}, and in K(A,�)× {γ}, K is lsc;
(ii) in K(K(A,�),�)× {γ}, T is usc and compact-valued if α = w (or α =m), and lsc if

α = s.
Then (MQVIP) is well-posed at (γ,λ) if and only if

γλ
α (ξ , ε) �= ∅, ∀ξ > , ε ∈ intC and diamγλ

α (ξ , ε) →  as (ξ , ε) → (, ).

Proof Similar arguments can be applied to the three cases. We present only the proof for
the casewhere α = s. If (MQVIP) iswell-posed at (γ,λ), then (MQVIP) has a unique solu-
tion x ∈ �s(γ,λ) and hence 

γλ
s (ξ , ε) �= ∅, ∀ξ > , ε ∈ intC as �s(γ,λ) ⊆ 

γλ
s (ξ , ε).

If diam
γλ
s (ξ , ε)�  as (ξ , ε) → (, ), then there exist q >  and ξn > , εn ∈ intC, such

that εn → , ξn → , and

diamγλ
s (ξn, εn) > q > , ∀n ∈N.

Then there exist xn,xn ∈ 
γλ
s (ξn, εn) such that d(xn,xn) >

q
 > . Hence there exist γ 

n ,γ 
n ∈

B(γ, ξn), and λ
n,λ

n ∈ B(λ, ξn) such that ∀y ∈ K(xn,γ 
n ), ∀z ∈ T(y,γ 

n ) satisfy〈
Q(z),η

(
y,xn,λ


n
)〉
+ εn ≮ ,

and ∀y ∈ K(xn,γ 
n ), ∀z ∈ T(y,γ 

n ) satisfy〈
Q(z),η

(
y,xn,λ


n
)〉
+ εn ≮ ,

http://www.journalofinequalitiesandapplications.com/content/2014/1/178
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i.e., {xn} and {xn} are approximating sequences for (MQVIP) corresponding to {(γ 
n ,λ

n)}
and {(γ 

n ,λ
n)}, respectively. Hence, the sequences {xn} and {xn} converges to the unique

solution x of (MQVIPγλ ), contradicting the fact that d(xn,xn) >
q
 > , ∀n ∈ N.

Conversely, let {γn} → γ and {λn} → λ, and {xn} be approximating sequences for
(MQVIP) corresponding to {γn} and {λn}. Then there is {εn} →  such that ∀y ∈ K(xn,γn),
∀z ∈ T(y,γn) satisfying

〈
Q(z),η(y,xn,λn)

〉
+ εn ≮ , ∀n ∈N.

This yields xn ∈ 
γλ
s (ξn, εn) with {ξn} =max{d(γn,γ),d(λn,λ)} → , as n → +∞. Since

diam
γλ
s (ξn, εn) →  as (ξn, εn) → (, ), it follows that {xn} is Cauchy and converges to

a point x. By the closedness of K at (x,γ), x ∈ K(x,γ).
Next, we verify that x ∈ �s(γ,λ). Using the same argument as for Theorem ., we

deduce that x ∈ �s(γ,λ).
Now we prove that (MQVIPγλ ) has a unique solution. If �s(γ,λ) has two distinct

solutions x and x, it is not hard to see that x,x ∈ 
γλ
s (ξ , ε), ∀ξ > , ε ∈ intC. It follows

that

 < d(x,x) ≤ γλ
s (ξ , ε) → ,

which is impossible. Hence, (MQVIP) is well-posed at (γ,λ). �

The following example shows that the uniqueness of well-posed is essential.

Example . Let X = Y = R, A = B = [–, ], � = � = [, ], C = R+, γ = , H be an
identity map, and let K,K : A× � → A, T : A× � → L(X,Y ), and η : A×A× � → A be
defined by

K(x,γ ) = K(x,γ ) = [, ],

η(y,x,γ ) = γ +  – ε,

T(y,γ ) = {}.

We show that the conditions (i) and (ii) of Theorem . are easily seen to be fulfilled
and the family {(MQVIPγ λ) : (γ ,λ) ∈ � × �} is well-posed at (, ). But diam

γλ
α (ξ , ε) =

[, ]�  as (ξ , ε)→ (, ).

The following example shows that all assumptions of Theorem . are satisfied.

Example . LetA = B = X = Y =R, � =� = [, ],C =R+, γ = ,H be an identity map,
and let K,K : A× � → A, T : A× � → L(X,Y ), and η : A×A× � → A be defined by

K(x,γ ) = [,+∞),

η(y,x,γ ) = y – x + γ ,

T(y,γ ) = {},
K(x,γ ) = [, ].

http://www.journalofinequalitiesandapplications.com/content/2014/1/178
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We show that the conditions (i) and (ii) of Theorem . are easily seen to be fulfilled and
�α(, ) = {} and


α(γ ,λ, ε) =

⎧⎨
⎩[, ε], if γ = ,

[,γ + ε], if γ ∈ (, ]

and 
γλ
α (ξ , ε) = [, ε] and the family {(MQVIPγ λ) : (γ ,λ) ∈ � ×�} is well-posed at (, ),

and diam
γλ
α (ξ , ε) →  as (ξ , ε) → (, ).

Next, we consider the following notions of measures of noncompactness.

Definition . ([, ]) Let X is complete. The Kuratowski measure of the set A⊆ X is
defined by

ζ (A) = inf

{
ϑ > 

∣∣∣A⊆
n⋃
i=

Li,diamLi < ϑ , i = , , . . . ,n, for some n ∈N

}
.

Definition . ([, ]) A, B be nonempty subsets of X. The Hausdorff metric H(·, ·)
between A and B is defined by

H(A,B) =max
{
H∗(A,B),H∗(B,A)

}
,

where H∗(A,B) = supa∈A d(a,B) with d(a,B) = infb∈B ‖a – b‖.

By the definitions of ζ and H , we have

ζ (A) ≤ ζ (B) + H(A,B),

for every all bounded sets A and B.

Remark . ([, ]) The function ζ is a regular measure of noncompactness defined
by ζ : X → [, +∞] that satisfies the following conditions:

(i) ζ (D) = +∞ if and only if the set D is unbounded;
(ii) ζ (D) = ζ (cl(D));
(iii) from ζ (D) =  it follows that D is a totally bounded set;
(iv) from P ⊆Q it follows that ζ (P) ≤ ζ (Q);
(v) if X is a complete space, and if {Bn} is a sequence of closed subsets of X such that

Bn+ ⊆ Bn for each n ∈N and limn→+∞ ζ (Bn) = , thenM =
⋂

n∈N Bn is a nonempty
compact set and limn→+∞ H(Bn,M) = , where H is a Hausdorff metric.

Lemma . Assume we have problem (MQVIP). Let �, � be finite dimensional and the
following conditions hold:

(i) K is closed in A× {γ}, and in K(A,�)× {γ}, K is lsc;
(ii) in K(K(A,�),�)× {γ}, T is usc and compact-valued if α = w (or α =m), and lsc if

α = s.
Then 

γλ
α (ξ , ε) is closed, for all ξ > , ε ∈ intC.

Proof Similar arguments can be applied in the three cases. We present only the proof for
the case where α = s. We let xn ∈ 

γλ
s (ξ , ε) such that xn → x. Hence, for all n ∈ N, there
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exist γn ∈ B(γ, ξ ) and λn ∈ B(λ, ξ ) and ∀y ∈ K(xn,γn), ∀z ∈ T(y,γn) such that

〈
Q(z),η(y,xn,λn)

〉
+ ε ≮ , ∀n ∈N.

Since B(γ, ξ ) and B(λ, ξ ) are compact, we can assume that {γn} → γ ∈ B(γ, ξ ) and
{λn} → λ ∈ B(λ, ξ ). By the closedness of K at (x,γ ), we find that x ∈ K(x,γ ). We show
that ∀y ∈ K(x,γ ), ∀z ∈ T(y,γ ) such that

〈
Q(z),η(y,x,λ)

〉
+ ε ≮ ,

i.e., x ∈ 
γλ
s (ξ , ε). Indeed, if x /∈ 

γλ
s (ξ , ε), then ∃y ∈ K(x,γ ), ∃z ∈ T(y,γ ) such that

〈
Q(z),η(y,x,λ)

〉
+ ε < .

By the lower semicontinuity of K and T , there exist yn ∈ K(xn,γn), zn ∈ T(yn,γn) such
that {yn} → y, {zn} → z, for all n. As xn ∈ 

γλ
s (ξ , ε) we have

〈
Q(zn),η(yn,xn,λn)

〉
+ ε ≮ .

By the continuity of Q, η, 〈·, ·〉 and id, it follows that 〈·, ·〉 + id is continuous. So we have

〈
Q(z),η(y,x,λ)

〉
+ ε ≮ ,

and we see a contradiction. Hence x ∈ 
γλ
s (ξ , ε). Thus, γλ

s (ξ , ε) is closed. �

Next, we provide sufficient conditions for the two sets to coincide.

Lemma . Assume for problem (MQVIP) the following conditions to hold:
(i) K(x, ·) is closed at γ, and K(x, ·) is lsc at γ;
(ii) in K(K(A,�),�)× {γ}, T is usc and compact-valued if α = w (or α =m), and lsc if

α = s.
Then �α(γ,λ) =

⋂
ε∈intC,ξ> 

γλ
α (ξ , ε), for every (γ,λ) ∈ � × �.

Proof We present only the proof for the case where α = s. We first prove that⋂
ε∈intC 

γλ
s (ξ , ε) = 
s(γ,λ, ε). It is easy to see that

⋂
ε∈intC 

γλ
s (ξ , ε) ⊇ 
s(γ,λ, ε).

Thus, we only need to show that
⋂

ε∈intC 
γλ
s (ξ , ε) ⊆ 
s(γ,λ, ε). Indeed, let x ∈⋂

ε∈intC 
γλ
s (ξ , ε), there are γn ∈ B(γ, ξ ) and λn ∈ B(λ, ξ ) such that ∀y ∈ K(x,γn),

∀z ∈ T(y,γn) satisfying

〈
Q(z),η(y,x,λn)

〉
+ ε ≮ .

Since x ∈ K(x,γn), γn → γ and K is closed, we have x ∈ K(x,γ). Now we verify that
x ∈ 
(γ,λ, ε). Indeed, for each y ∈ K(x,γ), by the semicontinuity of K(x, ·) at γ and
the semicontinuity of T at (y,γ), there exist yn ∈ K(x,γn) and zn ∈ T(yn,γn) such that
{yn} → y, {zn} → z. As x ∈ 
s(γn,λn, ε), we have

〈
Q(zn),η(yn,x,λn)

〉
+ ε ≮ .
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By the continuity of Q, η, 〈·, ·〉, 〈·, ·〉 + id, and (yn, zn,γn,λn) → (y, z,γ,λ). We have

〈
Q(z),η(y,x,λ)

〉
+ ε ≮ ,

i.e.,

⋂
ε∈intC

γλ
s (ξ , ε) ⊆ 
s(γ,λ, ε).

Hence

⋂
ε∈intC

γλ
s (ξ , ε) = 
s(γ,λ, ε).

It is clear that

�s(γ,λ) =
⋂
ξ>


s(γ,λ, ε) =
⋂

ξ>,ε∈intC
γλ

s (ξ , ε).
�

The following theorem shows the well-posedness in the generalized sense at (γ,λ) for
(MQVIP) by using the Kuratowski measure ζ .

Theorem . Let X be complete, �, � be finite dimensional and the following conditions
hold:

(i) K is closed in A× {γ}, and in K(A,�)× {γ}, K is lsc;
(ii) in K(K(A,�),�)× {γ}, T is usc and compact-valued if α = w (or α =m), and lsc if

α = s.
Then (MQVIP) is well-posed in the generalized sense at (γ,λ) if and only if

γλ
α (ξ , ε) �= ∅, ∀ξ > , ε ∈ intC and ζ

(
γλ

α (ξ , ε)
) →  as (ξ , ε) → (, ).

Proof Similar arguments can be applied in the three cases. We present only the proof for
the casewhere α = s.Nowwe suppose that (MQVIP) is well-posed in the generalized sense
at (γ,λ). Let �s be a solution set of (MQVIPγ λ) for all (γ ,λ) ∈ � × �. Then, from The-
orem ., we see that �s(γ,λ) is a nonempty compact. Clearly �s(γ,λ) ⊆ 

γλ
s (ξ , ε),

∀ξ > , ε ∈ intC. Now we show that

ζ
(
γλ

s (ξ , ε)
) →  as (ξ , ε) → (, ).

Indeed, since �s(γ,λ) ⊆ 
γλ
s (ξ , ε), ∀ξ > , ε ∈ intC. Using the concept of Hausdorff

metric, we have

H
(
γλ

s (ξ , ε),�s(γ,λ)
)

=max
{
H∗(γλ

s (ξ , ε),�s(γ,λ)
)
,H∗(�s(γ,λ),γλ

s (ξ , ε)
)}

=H∗(γλ
s (ξ , ε),�s(γ,λ)

)
.

Suppose that �s(γ,λ) ⊆ ⋃n
i= Li, diamLi < ϑ , i = , , . . . ,n, for some n ∈N.

http://www.journalofinequalitiesandapplications.com/content/2014/1/178
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We set �i = {t ∈ A|d(t,Li) ≤H(γλ
s (ξ , ε),�s(γ,λ))}.

We claim that 
γλ
s (ξ , ε) ⊆ ⋃n

i= �i. Indeed, let x ∈ 
γλ
s (ξ , ε). Then d(x,�s(γ,λ)) ≤

H(γλ
s (ξ , ε),�s(γ,λ)). Since �s(γ,λ) ⊆ ⋃n

i= Li, we see that

d

(
x,

n⋃
i=

Li

)
≤H

(
γλ

s (ξ , ε),�s(γ,λ)
)
.

Hence, there is k such that d(x,Lk) ≤H(γλ
s (ξ , ε),�s(γ,λ)), i.e., x ∈ �k . So

γλ
s (ξ , ε) ⊆

n⋃
i=

�i.

Note further that

diam�i = diamLi + H
(
γλ

s (ξ , ε),�s(γ,λ)
)

≤ ϑ + H
(
γλ

s (ξ , ε),�s(γ,λ)
)
.

Hence,

ζ
(
γλ

s (ξ , ε)
) ≤ H

(
γλ

s (ξ , ε),�s(γ,λ)
)
+ ζ

(
�s(γ,λ)

)
.

Since �s(γ,λ) is compact, ζ (�s(γ,λ)) = , so we have

ζ
(
γλ

s (ξ , ε)
) ≤ H∗(γλ

s (ξ , ε),�s(γ,λ)
)
.

Now we prove that

H∗(γλ
s (ξ , ε)

) →  as (ξ , ε)→ (, ).

Suppose to the contrary that

H∗(γλ
s (ξ , ε)

)
�  as (ξ , ε) → (, ).

There are θ > , (ξn, εn) → (, ), and xn ∈ 
γλ
s (ξn, εn) such that

d
(
xn,�s(γ,λ)

) ≥ θ > , ∀n ∈N.

{xn} is an approximating sequence of (MQVIP). By the well-posedness in the generalized
sense of (MQVIP) at (γ,λ), there is a subsequence {xk} of {xn} converging to some point
of �s(γ,λ), which is impossible as d(xn,�s(γ,λ))≥ θ > , ∀n ∈N. Hence

ζ
(
γλ

s (ξ , ε)
) →  as (ξ , ε) → (, ).

Conversely, ζ (γλ
s (ξ , ε)) →  as (ξ , ε) → (, ). By Lemma ., we see that 

γλ
s (ξ , ε)

is closed, for all ξ > , ε ∈ intC. By Lemma ., we have

�s(γ,λ) =
⋂

ε∈intC,ξ>
γλ

s (ξ , ε).
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Since ζ (γλ
s (ξ , ε))→  as (ξ , ε) → (, ), the regular measure properties of ζ imply that

�s(γ,λ) is compact and

H
(
γλ

s (ξ , ε),�s(γ,λ)
) →  as (ξ , ε) → (, ).

Let {xn} be an approximating sequence for (MQVIP) corresponding to {(γn,λn)}, where
{γn} → γ and {λn} → λ. There is {εn} →  such that ∀y ∈ K(xn,γn), ∀z ∈ T(y,γn) satis-
fying

〈
Q(z),η(y,xn,λn)

〉
+ εn ≮ , ∀n ∈N.

This means that xn ∈ 
γλ
s (ξn, εn) with ξn :=max{d(γ,γn),d(λ,λn)}. We see that

d
(
xn,�s(γ,λ)

) ≤H
(
γλ

s (ξn, εn),�s(γ,λ)
) →  as n→ +∞.

Hence, there is x̄n ∈ �s(γ,λ) such that

d(xn, x̄n) →  as n→ +∞.

By the compactness of �s(γ,λ), there is a subsequence {x̄nk } of {x̄n} convergent to some
point x of �s(γ,λ). Therefore, the corresponding subsequence {xnk } of {xn} tends to x.
Hence, (MQVIP) is well-posed in the generalized sense at (γ,λ). �

Remark . In cases as in Remark .(i), Theorems ., ., and .-. in [] are par-
ticular cases of Theorems ., ., and ., respectively. However, the assumptions and
our proof methods are very different from Theorems ., ., and .-. in [].

The following example shows that the closedness of K in Theorem . cannot be
dropped.

Example . Let X = Y = R, A = B = [–, ], � = � = [, ], C = R+, γ = , H be an
identity map, and let K,K : A× � → A, T : A× � → L(X,Y ), and η : A×A× � → A be
defined by

K(x,γ ) = [–γ , ],

η(y,x,γ ) = x(x – y),

T(y,γ ) = {},
K(x,γ ) = [, ].

We show that K is lsc in K(A,�)×� and the condition (ii) of Theorem . is easily seen
to be fulfilled and

γλ
α (ξ , ε) ⊆ [–, ].Hence, ζ (γλ

α (ξ , ε)) →  as (ξ , ε)→ (, ). But the
family {(MQVIPγ λ) : (γ ,λ) ∈ � × �} is not well-posed in the generalized sense at (, ).
The reason is that K is not closed at (A, ). Indeed, we let γn = xn = 

n → , as n→ ∞ and
tn = 

n ∈ K(xn,γn) = (– 
n , ], ∀n ∈N. It is clear that {tn} is convergent to  /∈ K(, ) = (, ].

In fact, 
α(γ,λ, ε) = 
γλ
α (ξ , ε) = {}.

http://www.journalofinequalitiesandapplications.com/content/2014/1/178
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The following example shows that the lower semicontinuity of K in Theorem . is
essential.

Example . Let X = Y = R, A = B = [–, ], � = � = [, ], C = R+, ε ∈ intC, ξ > ,
γ = , H be an identity map, and let K,K : A × � → A, T : A × � → L(X,Y ), and η :
A×A× � → A be defined by

K(x,γ ) = [, ],

η(y,x,γ ) = x + y,

T(y,γ ) = {},

K(x,γ ) =

⎧⎨
⎩{–,, }, if γ = ,

{, }, otherwise.

We show that K is lsc in K(A,�) × � and the condition (ii) of Theorem . is easily
seen to be fulfilled and 

γλ
α (ξ , ε) ⊆ [–, ]. Hence, ζ (γλ

α (ξ , ε)) →  as (ξ , ε) → (, ).
But the family {(MQVIPγ λ) : (γ ,λ) ∈ � × �} is not well-posed in the generalized sense at
(, ). The reason is that K is not lower semicontinuous. In fact


α(γ ,λ, ε) = γλ
α (ξ , ε) =

⎧⎨
⎩[ – ε, ]∩ [, ], if γ = ,

[, ], if γ ∈ (, ].

The following example shows that all assumptions of Theorem . are fulfilled.

Example . Let X = Y =R, A = B = � =� = [, ], C =R+, ε ∈ intC, ξ > , γ = , H be
an identity map, and let K,K : A× � → A, T : A× � → L(X,Y ), and η : A×A× � → A
be defined by

K(x,γ ) = K(x,γ ) = [γ ,γ + ],

η(y,x,γ ) =
{
γ + – ε

}
,

T(y,γ ) =
{


γ +

}
.

We show that the assumptions (i) and (ii) of Theorem . are easily seen to be fulfilled
and


α(γ ,λ, ε) =

⎧⎨
⎩[γ ,γ + ], if γ ∈ (, ],

[, ], if γ = ,

and 
γλ
α (ξ , ε) ⊆ [, ]. Hence, ζ (γλ

α (ξ , ε)) →  as (ξ , ε) → (, ), and the family
{(MQVIPγ λ) : (γ ,λ) ∈ � × �} is well-posed in the generalized sense at (, ).
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