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Abstract
LetA be the class of normalized analytic functions in the unit disk U and define the
class P (β) = {f ∈A : ∃ϕ ∈ R such that Re[eiϕ (f ′(z) – β)] > 0, z ∈ U}. In this paper we
find conditions on the number β and the non-negative weight function λ(t) such
that the integral transform Vλ(f )(z) =

∫ 1
0 λ(t) f (tz)t dt is convex of order γ (0≤ γ ≤ 1/2)

when f ∈P (β). Some interesting further consequences are also considered.
MSC: Primary 30C45; secondary 33C50
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1 Introduction and definitions
Let A denote the class of functions of the form

f (z) = z +
∞∑
n=

anzn (.)

which are analytic in the open unit disk U = {z ∈ C : |z| < }. Also let S , S∗(γ ) and K(γ )
denote the subclasses ofA consisting of functions which are univalent, starlike of order γ

and convex of order γ in U , respectively. In particular, the classes S∗() = S∗ andK() =K
are the familiar ones of starlike and convex functions in U , respectively.
We note that

f (z) ∈K(γ ) ⇐⇒ zf ′(z) ∈ S∗(γ ) (.)

for  ≤ γ < .
Let a, b, and c be complex numbers with c 
= ,–,–, . . . . Then the Gaussian hypergeo-

metric function F is defined by

F(a,b; c; z) =
∞∑
n=

(a)n(b)n
(c)n

zn

n!
, (.)
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where (λ)n is the Pochhammer symbol defined, in terms of the Gamma function, by

(λ)n =
�(λ + n)

�(λ)
=

{
 (n = ),
λ(λ + ) · · · (λ + n – ) (n ∈ N).

For functions fj(z) (j = , ) of the forms

fj(z) :=
∞∑
n=

aj,n+zn+ (aj, := ; j = , ),

let (f ∗ f)(z) denote the Hadamard product or convolution of f(z) and f(z), defined by

(f ∗ f)(z) :=
∞∑
n=

a,n+a,n+zn+ (aj, := ; j = , ).

By using (.), Hohlov [] introduced the convolution operator Ha,b,c by

Ha,b,c(f )(z) := zF(a,b; c; z) ∗ f (z) (.)

for f ∈A. The three-parameter family of operators given by (.) contains as special cases
several of the known linear integral or differential operators studied by a number of au-
thors. This operator has been studied extensively by Ponnusamy [], Kim and Rønning []
and many others [, ]. In particular, if a =  in (.), then H,b,c is the operator L(b, c) due
to Carlson and Shaffer [] which was defined by

L(b, c)f (z) = zF(,b; c; z) ∗ f (z).

Clearly, L(b, c) maps A onto itself, and L(c,b) is the inverse of L(b, c), provided that b 
=
,–,–, . . . . Furthermore, L(b,b) is the unit operator and

L(b, c) =L(b, e)L(e, c) =L(e, c)L(b, e) (c, e 
= ,–,–, . . .). (.)

Also, we note that

K(γ ) =L(, )S∗(γ ) (≤ γ < )

and

S∗(γ ) =L(, )K(γ ) ( ≤ γ < ). (.)

Various definitions of fractional calculus operators are given by many authors. We use
here the following definition due to Saigo [] (see also [, ]).

Definition  For λ > , μ,ν ∈R, the fractional integral operator Iλ,μ,ν
,z is defined by

Iλ,μ,ν
,z f (z) =

z–λ–μ

�(λ)

∫ z


(z – ζ )λ–F

(
λ +μ, –ν;λ;  –

ζ

z

)
f (ζ )dζ ,
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where f (z) is taken to be an analytic function in a simply connected region of the z-plane
containing the origin with the order

f (z) =O
(|z|ε) (z → )

for ε >max{,μ–ν}–, and themultiplicity of (z–ζ )λ– is removed by requiring log(z–ζ )
to be real when z – ζ > . With the aid of the above definition, Owa et al. [] defined a
modification of the fractional integral operator J λ,μ,ν

,z by

J λ,μ,ν
,z f (z) =

�( –μ)�( + λ + ν)
�( –μ + ν)

zμIλ,μ,ν
,z f (z)

for f (z) ∈ A and min{λ + ν, –μ + ν, –μ} > –. Then it is observed that J λ,μ,ν
,z also maps A

onto itself and

J λ,μ,ν
,z f (z) =L(,  –μ)L( –μ + ν,  + λ + ν)f (z). (.)

The function

sα(z) =
z

( – z)(–α) ( ≤ α < )

is the well-known extremal function for the class S∗(α). A function f (z) ∈ A is said to be
in the classR(α,γ ) if

(f ∗ sα)(z) ∈ S∗(γ ) (≤ α < ;  ≤ γ < ).

Note that

R(α,γ ) =L(,  – α)S∗(γ ) (.)

andR(α,α)≡R(α) is the subclass ofA consisting of prestarlike functions of order α which
was introduced by Suffridge []. In [], it is shown that R(α) ⊂ S if and only if α ≤ /.
For β <  we denote the class

P(β) =
{
f ∈A : ∃ϕ ∈R such that Re

[
eiϕ

(
f ′(z) – β

)]
> , z ∈ U

}
.

Throughout this paper we let λ : [, ]→R be a non-negative function with

∫ 


λ(t)dt = . (.)

For certain specific subclasses of f ∈A, many authors considered the geometric properties
of the integral transform of the form

Vλ(f )(z) =
∫ 


λ(t)

f (tz)
t

dt. (.)

More recently, starlikeness of this general operator Vλ(f ) was discussed by Fournier and
Ruscheweyh [] by assuming that f ∈P(β). The method of proof is the duality principle

http://www.journalofinequalitiesandapplications.com/content/2014/1/177


Kim and Choi Journal of Inequalities and Applications 2014, 2014:177 Page 4 of 10
http://www.journalofinequalitiesandapplications.com/content/2014/1/177

developed mainly by Ruscheweyh []. This result was later extended by Ponnusamy and
Rønning [] by means of finding conditions such that Vλ(f ) carries P(β) into starlike
functions of order γ , ≤ γ ≤ /.
In this paper, we find conditions on β and the function λ(t) such that Vλ(f ) carries P(β)

intoK(γ ). As a consequence of this investigation, a number of new results are established.

2 Preliminaries
We begin by recalling the following results.

Lemma  ([]; see also []) If f ∈A and c – a +  > b > , then

Ha,b,c(f )(z) =
�(c)

�(a)�(b)

∫ 



( – t)c–a–b

�(c – a – b + )
tb–F(c–a, –a; c–a–b+; – t)f (tz)dt.

Remark  In view of Lemma , we see that the convolution operator (.) is an integral
operator of the form (.) with

λ(t) =
�(c)tb–( – t)c–a–b

�(a)�(b)�(c – a – b + ) 
F(c – a,  – a; c – a – b + ;  – t).

For � : [, ]→R being integrable and positive on (, ), we define

L�(hγ ) = inf
z∈U

∫ 


�(t)

[
Re

hγ (zt)
zt

–
 – γ ( + t)

( – γ )( + t)

]
dt

and

M�(hγ ) = inf
z∈U

∫ 


�(t)

[
Reh′

γ (zt) –
 – t – γ ( + t)
( – γ )( + t)

]
dt,

where  ≤ γ <  and

hγ (z) =
z( + ε+γ–

–γ z)
( – z)

, |ε| = . (.)

In [], Ponnusamy and Rønning proved the following lemmas.

Lemma  Let �(t) be integrable on [, ] and positive on (, ). If �(t)/( + t)( – t)+γ is
decreasing on (, ), then for  ≤ γ ≤ / we have L�(hγ ) ≥ .

Lemma  Let  ≤ γ <  and let λ(t) be given by (.). Define β <  by

β

 – β
= –

∫ 


λ(t)

[
 + γ – ( – γ )t
( – γ )( + t)

–
γ
 – γ

log( + t)
t

]
dt.

Assume that limt→+ t�(t) = , where

�(t) =
∫ 

t
λ(s)ds/s.

Then Vλ(P(β))⊂ S∗(γ ) if and only if L�(hγ ) ≥ .
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We now find conditions on β and the non-negative weight function λ(t) such that
Vλ(P(β))⊂K(γ ).

Lemma  (i) Let �(t) be monotone decreasing on [, ] satisfying �() =  and
limt→+ t�(t) = . For  ≤ γ ≤ / if t�′(t)/( + t)( – t)+γ is increasing on (, ), then
M�(hγ ) ≥ .
(ii) Let  ≤ γ ≤ / and let λ(t) and �(t) be as in Lemma . Define β <  by

β – 


 – β
= –

∫ 


λ(t)

 – γ ( + t)
( – γ )( + t)

dt.

Then Vλ(P(β))⊂K(γ ) if and only if M�(hγ ) ≥ .

Proof (i) Let M�(hγ ) = infz∈U Iγ . Then, by using the conditions �() =  and
limt→+ t�(t) = , an integration by parts yields

Iγ =
∫ 


�(t)

[
Reh′

γ (zt) –
 – t – γ ( + t)
( – γ )( + t)

]
dt

=
∫ 


�(t)

d
dt

[
Re

hγ (zt)
z

–
t( – γ ( + t))
( – γ )( + t)

]
dt

= –
∫ 


t�′(t)

[
Re

hγ (zt)
zt

–
 – γ ( + t)

( – γ )( + t)

]
dt.

Since t�′(t)/( + t)( – t)+γ is increasing on (, ), by Lemma , infz∈U Iγ ≥ , which evi-
dently completes the proof of (i).
(ii) We state this proof only in outline here because the proof is similar to that of [,

Theorem .]. Let F(z) = Vλ(f )(z). Then, by convolution theory [, p.] and (.), we
have

F(z) ∈K(γ ) ⇐⇒ 
z
(
zF ′(z) ∗ hγ (z)

) 
= , (.)

where hγ (z) is given by (.). Since f ∈P(β), by the duality principle [, p.], it is enough
to verify this with f given by

f ′(z) = ( – β)
 – xz
 – yz

+ β
(|x| = |y| = 

)
.

In the same way as in [, Theorem .], we conclude that (.) holds if and only if

Re
∫ 


λ(t)

[
hγ (zt)
zt

–
 – γ ( + t)

( – γ )( + t)

]
dt > . (.)

Integrating by parts, we find that the inequality (.) is equivalent to

Re
∫ 


�(t)

[
h′

γ (zt) –
 – t – γ ( + t)
( – γ )( + t)

]
dt ≥ ,

which again is equivalent to M�(hγ ) ≥ . �
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Remark  In particular, taking γ =  in Lemma , we obtain the result due to Ali and
Singh [, Theorem ].

3 Main results
We define

ϕ( – t) =  +
∞∑
n=

bn( – t)n (bn ≥ ) (.)

and

λ(t) = Ctb–( – t)c–a–bϕ( – t), (.)

where C is a constant satisfying the condition (.). For f ∈ A Balasubramanian et al. []
defined the operator Pa,b,c by

Pa,b,c(f )(z) =
∫ 


λ(t)

f (tz)
t

dt,

where λ(t) is given by (.). Special choices of ϕ( – t) and C led to various interesting
geometric properties concerning certain linear operators. For example, if we take ϕ(– t) =
F(c – a,  – a; c – a – b + ;  – t) and

C =
�(c)

�(a)�(b)�(c – a – b + )
,

by virtue of Remark ,

Pa,b,c(f )(z) =Ha,b,c(f )(z). (.)

First, by applying Lemma , we prove the following.

Theorem  Let  ≤ γ ≤ /, a > ,  < b ≤ , and c ≥ a + b + γ + , and let λ(t) be given
by (.). Define β = β(a,b, c,γ ) by

β – 


 – β
= –

∫ 


λ(t)

 – γ ( + t)
( – γ )( + t)

dt.

If f (z) ∈P(β), then Pa,b,c(f )(z) ∈K(γ ). The value of β is sharp.

Proof Let C >  and

�(t) =
∫ 

t

λ(s)
s

ds,

where λ(t) is given by (.). Then it is easily seen that�(t) is monotone decreasing on [, ]
and limt→+ t�(t) = . In order to apply Lemma , we want to prove that the function

u(t) =
λ(t)

( + t)( – t)+γ
(.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/177
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is decreasing on (, ), where λ(t) is given by (.). Making use of the logarithmic differ-
entiation of both sides in (.), we have

u′(t)
u(t)

=
λ′(t)
λ(t)

+
(γ + ( + γ )t)

 – t
. (.)

Since

λ′(t) = Ctb–( – t)c–a–b–
[
ϕ( – t)

{
(b – )( – t) – t(c – a – b)

}
– t( – t)ϕ′( – t)

]
,

from (.) and (.) we find that u′(t)≤  on (, ) is equivalent to

(c – a –  – γ )t + (c – a – b – γ )t +  – b ≥ –t
(
 – t

)ϕ′( – t)
ϕ( – t)

( < t < ). (.)

In view of (.), ϕ( – t) >  and ϕ′( – t) ≥  on (, ), so that the right hand side of the
inequality (.) is non-positive for all t ∈ (, ). If we assume that  ≤ γ ≤ /, a > ,  <
b ≤ , and c ≥ a + b + γ + , then (c – a –  – γ )t + (c – a – b – γ )t +  – b ≥  for
t ∈ (, ). Thus, the inequality (.) holds for all t ∈ (, ). Hence, from Lemma  we obtain
Pa,b,c(f )(z) ∈K(γ ). �

The same techniques as in the proof of [, Theorem ] show that the value β is sharp.
By using (.) and Theorem , we have the following.

Corollary  Let  ≤ γ ≤ /,  < a ≤ ,  < b ≤ , and c ≥ a + b + γ + . Define β =
β(a,b, c,γ ) by

β – 


 – β
= –

�(c)
�(a)�(b)

∫ 



( – t)c–a–btb–

�(c – a – b + )
 – γ ( + t)

( – γ )( + t)

× F(c – a,  – a; c – a – b + ;  – t)dt.

If f (z) ∈P(β), then Ha,b,c(f )(z) ∈K(γ ). The value of β is sharp.

Proof If we put

λ(t) =
�(c)tb–( – t)c–a–b

�(a)�(b)�(c – a – b + ) 
F(c – a,  – a; c – a – b + ;  – t),

then, by applying (.) and Theorem , we obtain the desired result. �

Setting a =  in Corollary , we obtain the following.

Corollary  Let  ≤ γ ≤ /,  < b≤ , and c≥ b + γ + . Also let

β(,b, c,γ ) =  –
 – γ

[ – F(,b; c; –) – γ ( – F(,b; c; –))]
.

If β(,b, c,γ ) < β <  and f (z) ∈P(β), then L(b, c)f (z) ∈K(γ ).

http://www.journalofinequalitiesandapplications.com/content/2014/1/177
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Next we find a univalence criterion for the operator J λ,μ,ν
,z .

Theorem  Let  ≤ γ ≤ /,  ≤ μ < , λ ≥ ( + γ ) – μ, and μ –  < ν ≤ μ – . Define
β = β(λ,μ,ν,γ ) by

β =  –
 – γ

[ – F(,  –μ + ν;  + λ + ν; –) – γ ( – F(,  –μ + ν;  + λ + ν; –))]
.

If f (z) ∈P(β), then J λ,μ,ν
,z f (z) ∈R(μ/,γ ).

Proof Making use of (.) and (.), we note that

J λ,μ,ν
,z f (z) = L(,  –μ)L( –μ + ν,  + λ + ν)f (z)

= L(,  –μ)L(, )L( –μ + ν,  + λ + ν)f (z). (.)

By using Corollary , we obtain

L( –μ + ν,  + λ + ν)f (z) ∈K(γ ).

Since  ≤ μ < , from (.), (.) and (.) we haveJ λ,μ,ν
,z f (z) ∈R(μ/,γ ), which completes

the proof of Theorem . �

Taking μ = γ in Theorem , we get the following.

Corollary  Let  ≤ γ ≤ /, λ ≥ , and (γ – ) < ν ≤ γ – . Define β = β(λ,ν,γ ) by

β = –
 – γ

[ – F(, ( – γ ) + ν;  + λ + ν; –) – γ ( – F(, ( – γ ) + ν;  + λ + ν; –))]
.

If f (z) ∈P(β), then J λ,γ ,ν
,z f (z) ∈R(γ ) ⊂ S .

Proof If we put μ = γ in Theorem , then

J λ,γ ,ν
,z f (z) ∈R(γ ,γ ) =R(γ ).

Since γ ≤ /,R(γ ) ⊂ S , so that the proof is completed. �

Remark  In [], Balasubramanian et al. found the conditions on the number β and the
function λ(t) such thatPa,b,c(f )(z) ∈ S∗(γ ) (≤ γ ≤ /). SinceJ λ,μ,ν

,z f (z) = P–ν,,λ–ν+(f )(z)
with ϕ( – t) = F(λ +μ, –ν;λ;  – t) and

C =
�( –μ)�( + λ + ν)

�(λ)�( –μ + ν)
,

the condition on β and λ(t) is easily found such that J λ,μ,ν
,z f (z) ∈ S∗(γ ).

Finally, by using Lemma  again, we investigate convexity of the operator J λ,μ,ν
,z .
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Theorem  Let  ≤ γ ≤ /,  < λ ≤  + γ ,  < μ < ,  < ν ≤ , and ν > μ – . Define
β = β(λ,μ,ν,γ ) by

β – 


 – β
= –

�( –μ)�( + λ + ν)
�(λ)�( –μ + ν)

∫ 



t( – t)λ–( – γ ( + t))
( – γ )( + t) F(λ +μ, –ν;λ;  – t)dt.

If f (z) ∈ P(β), then J λ,μ,ν
,z f (z) ∈K(γ ). The value of β is sharp.

Proof Let  ≤ γ ≤ /,  < λ ≤  + γ ,  < μ < , and ν > μ – , and let

λ(t) =
�( –μ)�( + λ + ν)

�(λ)�( –μ + ν)
t( – t)λ–F(λ +μ, –ν;λ;  – t). (.)

Then we can easily see that
∫ 
 λ(t)dt = , �(t) =

∫ 
t λ(s)ds/s is monotone decreasing on

[, ] and limt→+ t�(t) = . Also we find that the function u(t) = λ(t)/( + t)( – t)+γ is
decreasing on (, ), where λ(t) is given by (.). Hence, t�′(t)/( + t)( – t)+γ = –u(t) is
increasing on (, ). From Lemma , we obtain the desired result. �
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