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Abstract
This manuscript has two aims: first we extend the definitions of compatibility and
weakly reciprocally continuity, for a trivariate mapping F and a self-mapping g akin to
a compatible mapping as introduced by Choudhary and Kundu (Nonlinear Anal.
73:2524-2531, 2010) for a bivariate mapping F and a self-mapping g. Further, using
these definitions we establish tripled coincidence and fixed point results by applying
the new concept of an α-series for sequence of mappings, introduced by Sihag et al.
(Quaest. Math. 37:1-6, 2014), in the setting of partially ordered metric spaces.
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1 Introduction and preliminaries
The notion of metric space is fundamental in mathematical analysis and the Banach con-
traction principle is the root of fruitful tree of fixed point theory []. In fact, many studies
have been done on contractive mappings, e.g., Rhoades [] presented a comparison of var-
ious definitions (more than  types varied from  basic types) of contractive mappings
on completemetric spaces in . See also [–]. Up to now, such a study is still going on;
proceeding in the same tradition, very recently Sihag et al. [] introduced the new concept
of an α-series to give a common fixed point theorem for a sequence of self-mappings. On
the other hand, the concept of a coupled fixed point was introduced in  by Chang and
Ma []. This concept has been of interest to many researchers in metrical fixed point the-
ory (see for example [, –]). Recently, Bhaskar and Lakshmikantham [] established
coupled fixed point theorems for a mixed monotone operator in partially ordered metric
spaces. Afterward, Lakshmikantham and Ćirić [] extended the results of [] by furnish-
ing coupled coincidence and coupled fixed point theorems for two commuting mappings.
Starting from the background of coupled fixed points, recently Berinde and Borcut []

introduced the notion of tripled fixed points in partially orderedmetric spaces, which refer
to the operator as F : X×X×X → X, motivated by the fact that through the coupled fixed
point technique we cannot solve a system with the following form:

⎧⎪⎪⎨
⎪⎪⎩
x + yz – x +  = ,

y + xz – y +  = ,

z + yx – z +  = .
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In a subsequent series, Berinde and Borcut [], introduced the concept of tripled coinci-
dence point and obtained the tripled coincidence point theorems; for more on the tripled
fixed point (see [–]). Further, Borcut and Berinde [, ] established the tripled fixed
point theorems by introducing the concept of commutingmappings and also discussed the
existence and uniqueness of solution of periodic boundary value problem.
Thus, the purpose of this paper is to prove tripled coincidence and fixed point results in

partially ordered metric spaces for a self-mapping g and a sequence {Ti}n∈N of trivariate
self-mapping that have some useful properties.
The tripled fixed point theorems we deduce are motivated by the possibilities of solving

simultaneous nonlinear equations of the above type.
Now, we collect basic definitions and results regarding coupled and tripled point theory.

Definition . (see []) An element (x, y) ∈ X × X is called a coupled fixed point of the
mapping F : X ×X → X if F(x, y) = x and F(y,x) = y.

Definition . (see []) An element (x, y) ∈ X × X is called a coupled coincidence point
of the mappings F : X × X → X and g : X → X if F(x, y) = g(x) and F(y,x) = g(y). In this
case, (g(x), g(y)) is called a coupled point of coincidence.

Let (X,�) be a partially ordered set and d be a metric on X such that (X,d) is a com-
plete metric space. Consider the product X × X × X with the following partial order: for
(x, y, z), (u, v,w) ∈ X ×X ×X,

(u, v,w) � (x, y, z) ⇔ x � u, y � v, z � w.

Definition . (see []) Let (X,�) be a partially ordered set and F : X ×X ×X → X. We
say that F has the mixed monotone property if F(x, y, z) is monotone non-decreasing in x
and z and is monotone non-increasing in y, that is, for any x, y, z ∈ X

x,x ∈ X, x � x ⇒ F(x, y, z) � F(x, y, z),

y, y ∈ X, y � y ⇒ F(x, y, z) � F(x, y, z) and

z, z ∈ X, z � z ⇒ F(x, y, z) � F(x, y, z).

Definition . (see []) We call an element (x, y, z) ∈ X × X × X a tripled fixed point of
mapping F : X ×X ×X → X if

F(x, y, z) = x, F(y,x, y) = y and F(z, y,x) = z.

Definition . (see []) Let (X,d) be a complete metric space. It is called metric on X ×
X ×X, the mapping d : X ×X ×X → X with

d
[
(x, y, z), (u, v,w)

]
= d(x,u) + d(y, v) + d(z,w).

Akin to the concept of g-mixedmonotone property [] for a bivariate mapping, F : X×
X → X and a self-mapping, g : X → X, Borcut and Berinde [] introduced the concept
of g-mixed monotone property for a trivariate mapping F : X × X × X → X and a self-
mapping, g : X → X in the following way.
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Definition . (see []) Let (X,�) be a partially ordered set and F : X ×X ×X → X and
g : X → X.We say that F has the g-mixedmonotone property if F(x, y, z) is monotone non-
decreasing in x and z, and if it is monotone non-increasing in y, that is, for any x, y, z ∈ X,

x,x ∈ X, g(x) � g(x) ⇒ F(x, y, z) � F(x, y, z),

y, y ∈ X, g(y) � g(y) ⇒ F(x, y, z) � F(x, y, z) and

z, z ∈ X, g(z) � g(z) ⇒ F(x, y, z) � F(x, y, z).

Now, we introduce the concept of compatible mapping for a trivariate mapping F and a
self-mapping g akin to compatible mapping as introduced by Choudhary and Kundu []
for a bivariate mapping F and a self-mapping g .

Definition . Let mapping F and g where F : X × X ×X → X and g : X → X are said to
be compatible if

lim
n→+∞d

(
g
(
F(xn, yn, zn)

)
,F

(
g(xn), g(yn), g(zn)

))
= ,

lim
n→+∞d

(
g
(
F(yn,xn, yn)

)
,F

(
g(yn), g(xn), g(yn)

))
=  and

lim
n→+∞d

(
g
(
F(zn, yn,xn)

)
,F

(
g(zn), g(yn), g(xn)

))
= ,

whenever {xn}, {yn}, and {zn} are sequences in X, such that

lim
n→+∞F(xn, yn, zn) = lim

n→+∞ g(xn) = x,

lim
n→+∞F(yn,xn, yn) = lim

n→+∞ g(yn) = y

and

lim
n→+∞F(zn, yn,xn) = lim

n→+∞ g(zn) = z

for all x, y, z ∈ X.

Definition . The mappings F : X ×X ×X → X and g : X → X are called:
(i) Reciprocally continuous if

lim
n→+∞ g

(
F(xn, yn, zn)

)
= g(x) and lim

n→+∞F
(
g(xn), g(yn), g(zn)

)
= F(x, y, z),

lim
n→+∞ g

(
F(yn,xn, yn)

)
= g(y) and lim

n→+∞F
(
g(yn), g(xn), g(yn)

)
= F(y,x, y)

and

lim
n→+∞ g

(
F(zn, yn,xn)

)
= g(z) and lim

n→+∞F
(
g(zn), g(yn), g(xn)

)
= F(z, y,x),

whenever {xn}, {yn} and {zn} are sequences in X, such that

lim
n→+∞F(xn, yn, zn) = lim

n→+∞ g(xn) = x,

lim
n→+∞F(yn,xn, yn) = lim

n→+∞ g(yn) = y
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and

lim
n→+∞F(zn, yn,xn) = lim

n→+∞ g(zn) = z

for some x, y, z ∈ X.
(ii) Weakly reciprocally continuous if

lim
n→+∞ g

(
F(xn, yn, zn)

)
= g(x) or lim

n→+∞F
(
g(xn), g(yn), g(zn)

)
= F(x, y, z),

lim
n→+∞ g

(
F(yn,xn, yn)

)
= g(y) or lim

n→+∞F
(
g(yn), g(xn), g(yn)

)
= F(y,x, y)

and

lim
n→+∞ g

(
F(zn, yn,xn)

)
= g(z) or lim

n→+∞F
(
g(zn), g(yn), g(xn)

)
= F(z, y,x),

whenever {xn}, {yn} and {zn} are sequences in X, such that

lim
n→+∞F(xn, yn, zn) = lim

n→+∞ g(xn) = x,

lim
n→+∞F(yn,xn, yn) = lim

n→+∞ g(yn) = y

and

lim
n→+∞F(zn, yn,xn) = lim

n→+∞ g(zn) = z

for some x, y, z ∈ X.

Definition . Let (X,d,�) be a partially ordered metric space. We say that X is regular
if the following conditions hold:

(i) if a non-decreasing sequence {xn} is such that xn → x, then xn � x for all n≥ ,
(ii) if a non-increasing sequence {yn} is such that yn → y, then y� yn for all n≥ .

Definition . (see []) Let {an} be a sequence of non-negative real numbers.We say that
a series

∑+∞
n= an is an α-series, if there exist  < α <  and nα ∈ N such that

∑k
i= ai ≤ αk

for each k ≥ nα .

Remark . (see []) Each convergent series of non-negative real terms is an α-series.
However, there are also divergent series that are α-series. For example,

∑+∞
n=


n is an

α-series.

2 Main results
Let (X,�) be a partially ordered set, g be a self-mapping on X and {Ti}i∈N be a sequence
of mappings from X ×X ×X into X such that Ti(X ×X ×X) ⊆ g(X) and

Ti(x, y, z) � Ti+(u, v,w), Ti+(v,u, v)� Ti(y,x, y) and

Ti+(z, y,x) � Ti(w, v,u)
()

for x, y, z,u, v,w ∈ X with g(x)� g(u), g(v)� g(y) and g(z) � g(w).
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In the proof of our main theorem, we consider sequences that are constructed in the
following way.
Let x, y, z ∈ X be such that g(x) � T(x, y, z), g(y) � T(y,x, y) and g(z) �

T(z, y,x). Since T(X × X × X) ⊆ g(X), we can choose x, y, z ∈ X such that
g(x) = T(x, y, z), g(y) = T(y,x, y) and g(z) = T(z, y,x). Again we can choose
x, y, z ∈ X such that g(x) = T(x, y, z), g(y) = T(y,x, y) and g(z) = T(z, y,x).
Continuing like this, we can construct three sequences {xn}, {yn}, and {xn} such that

g(xn+) = Tn(xn, yn, zn), g(yn+) = Tn(yn,xn, yn) and g(zn+) = Tn(zn, yn,xn) ()

for all n ≥ .
Now, by using mathematical induction, we prove that

g(xn)� g(xn+), g(yn) � g(yn+) and g(zn) � g(zn+) ()

for all n ≥ . Since g(x) � T(x, y, z), g(y) � T(y,x, y) and g(z) � T(z, y,x), in
view of g(x) = T(x, y, z), g(y) = T(y,x, z) and g(z) = T(z, y,x), we have g(x) �
g(x), g(y) � g(y), g(z) � g(z), that is, () holds for n = . We presume that () holds for
some n > . Now, by () and (), one deduces that

g(xn+) = Tn(xn, yn, zn) � Tn+(xn+, yn+, zn+) = g(xn+),

g(yn+) = Tn+(yn+,xn+, yn+) � Tn(yn,xn, yn) = g(yn+)

and

g(zn+) = Tn(zn, yn,xn) � Tn+(zn+, yn+,xn+) = g(zn+).

Thus by mathematical induction, we conclude that () holds for all n ≥ . Therefore, we
have

g(x)� g(x)� g(x) � · · · � g(xn+)� · · · ,
g(y) � g(y) � g(y)� · · · � g(yn+) � · · ·

and

g(z) � g(z) � g(z) � · · · � g(zn+) � · · · .

In view of the above considerations, we revise Definitions . and . as follows.

Definition . Let (X,d) be a metric space. {Ti}i∈N and g are compatible if

lim
n→+∞d

(
g
(
Tn(xn, yn, zn)

)
,Tn

(
g(xn), g(yn), g(zn)

))
= ,

lim
n→+∞d

(
g
(
Tn(yn,xn, yn)

)
,Tn

(
g(yn), g(xn), g(yn)

))
= 
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and

lim
n→+∞d

(
g
(
Tn(zn, yn,xn)

)
,Tn

(
g(zn), g(yn), g(xn)

))
= ,

whenever {xn}, {yn} and {zn} are sequences in X, such that

lim
n→+∞Tn(xn, yn, zn) = lim

n→+∞ g(xn+) = x,

lim
n→+∞Tn(yn,xn, yn) = lim

n→+∞ g(yn+) = y

and

lim
n→+∞Tn(zn, yn,xn) = lim

n→+∞ g(zn+) = z

for some x, y, z ∈ X.

Definition . {Ti}i∈N and g are called weakly reciprocally continuous if

lim
n→+∞ g

(
Tn(xn, yn, zn)

)
= g(x),

lim
n→+∞ g

(
Tn(yn,xn, yn)

)
= g(y)

and

lim
n→+∞ g

(
Tn(zn, yn,xn)

)
= g(z),

whenever {xn}, {yn}, and {zn} are sequences in X, such that

lim
n→+∞Tn(xn, yn, zn) = lim

n→+∞ g(xn+) = x,

lim
n→+∞Tn(yn,xn, yn) = lim

n→+∞ g(yn+) = y

and

lim
n→+∞Tn(zn, yn,xn) = lim

n→+∞ g(zn+) = z

for some x, y, z ∈ X.

Now, we establish the main result of this manuscript as follows.

Theorem . Let (X,d,�) be a partially ordered metric space. Let g be a self-mapping on
X and {Ti}i∈N be a sequence of mappings from X × X × X into X such that Ti(X × X ×
X) ⊆ g(X), g(X) is a complete subset of X, {Ti}i∈N and g are compatible,weakly reciprocally
continuous, g is monotonic non-decreasing, continuous, satisfying condition () and the
following condition:

d
(
Ti(x, y, z),Tj(u, v,w)

) ≤ βi,j
[
d
(
g(x),Ti(x, y, z)

)
+ d

(
g(u),Tj(u, v,w)

)]
+ γi,jd

(
g(u), g(x)

)
()

http://www.journalofinequalitiesandapplications.com/content/2014/1/176
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for x, y, z,u, v,w ∈ X with g(x) � g(u), g(v) � g(y), g(z) � g(w) or g(x) � g(u), g(v) � g(y),
g(z) � g(w);  ≤ βi,j,γi,j <  for i, j ∈ N ; limn→+∞ supβi,n < . Suppose also that there exists
(x, y, z) ∈ X × X × X such that g(x) � T(x, y, z), g(y) � T(y,x, y) and g(z) �
T(z, y,x). If

∑+∞
i= (

βi,i++γi,i+
–βi,i+

) is an α-series and g(X) is regular, then {Ti}i∈N and g have a
tripled coincidence point, that is, there exists (x, y, z) ∈ X×X×X such that g(x) = Ti(x, y, z),
g(y) = Ti(y,x, y), and g(z) = Ti(z, y,x) for i ∈ N.

Proof We consider the sequences {xn}, {yn}, and {zn} constructed above and denote δn =
d(g(xn), g(xn+)) + d(g(yn), g(yn+)) + d(g(zn), g(zn+)). Then, by (), we get

d
(
g(x), g(x)

)
= d

(
T(x, y, z),T(x, y, z)

)
≤ β,

[
d
(
g(x),T(x, y.z)

)
+ d

(
g(x),T(x, y, z)

)]
+ γ,d

(
g(x), g(x)

)
= β,

[
d
(
g(x), g(x)

)
+ d

(
g(x), g(x)

)]
+ γ,d

(
g(x), g(x)

)
.

It follows that

( – β,)d
(
g(x), g(x)

) ≤ (β, + γ,)d
(
g(x), g(x)

)
or, equivalently,

d
(
g(x), g(x)

) ≤
(

β, + γ,

 – β,

)
d
(
g(x), g(x)

)
.

Also, one obtains

d
(
g(x), g(x)

)
= d

(
T(x, y, z),T(x, y, z)

)
≤

(
β, + γ,

 – β,

)
d
(
g(x), g(x)

)

≤
(

β, + γ,

 – β,

)(
β, + γ,

 – β,

)
d
(
g(x), g(x)

)
.

Repeating the above procedure, we have

d
(
g(xn), g(xn+)

) ≤
n–∏
i=

(
βi,i+ + γi,i+

 – βi,i+

)
d
(
g(x), g(x)

)
. ()

Using similar arguments as above, one can also show that

d
(
g(yn), g(yn+)

) ≤
n–∏
i=

(
βi,i+ + γi,i+

 – βi,i+

)
d
(
g(y), g(y)

)
()

and

d
(
g(zn), g(zn+)

) ≤
n–∏
i=

(
βi,i+ + γi,i+

 – βi,i+

)
d
(
g(z), g(z)

)
. ()
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Adding (), (), and (), we have

δn = d
(
g(xn), g(xn+)

)
+ d

(
g(yn), g(yn+)

)
+ d

(
g(zn), g(zn+)

)
≤

n–∏
i=

(
βi,i+ + γi,i+

 – βi,i+

)[
d
(
g(x), g(x)

)
+ d

(
g(y), g(y)

)
+ d

(
g(z), g(z)

)]

=
n–∏
i=

(
βi,i+ + γi,i+

 – βi,i+

)
δ.

Moreover, for p >  and by repeated use of the triangle inequality, one obtains

d
(
g(xn), g(xn+p)

)
+ d

(
g(yn), g(yn+p)

)
+ d

(
g(zn), g(zn+p)

)
≤ d

(
g(xn), g(xn+)

)
+ d

(
g(yn), g(yn+)

)
+ d

(
g(zn), g(zn+)

)
+ d

(
g(xn+), g(xn+)

)
+ d

(
g(yn+), g(yn+)

)
+ d

(
g(zn+), g(zn+)

)
+ · · · + d

(
g(xn+p–), g(xn+p)

)
+ d

(
g(yn+p–), g(yn+p)

)
+ d

(
g(zn+p–), g(zn+p)

)

≤
n–∏
i=

(
βi,i+ + γi,i+

 – βi,i+

)
δ +

n∏
i=

(
βi,i+ + γi,i+

 – βi,i+

)
δ

+ · · · +
n+p–∏
i=

(
βi,i+ + γi,i+

 – βi,i+

)
δ

=
p–∑
k=

n+k–∏
i=

(
βi,i+ + γi,i+

 – βi,i+

)
δ =

n+p–∑
k=n

k–∏
i=

(
βi,i+ + γi,i+

 – βi,i+

)
δ.

Let α and nα be as in Definition ., then, for n≥ nα , and using the fact that the geometric
mean of non-negative numbers is less than or equal to the arithmetic mean, it follows that

d
(
g(xn), g(xn+p)

)
+ d

(
g(yn), g(yn+p)

)
+ d

(
g(zn), g(zn+p)

)

≤
n+p–∑
k=n

[

k

k–∑
i=

(
βi,i+ + γi,i+

 – βi,i+

)]k

δ

≤
(n+p–∑

k=n

αk

)
δ

≤ αn

 – α
δ.

Now, taking the limit as n → +∞, one deduces that

lim
n→+∞

[
d
(
g(xn), g(xn+p)

)
+ d

(
g(yn), g(yn+p)

)
+ d

(
g(zn), g(zn+p)

)]
= ,

which further implies that

lim
n→+∞d

(
g(xn), g(xn+p)

)
= lim

n→+∞d
(
g(yn), g(yn+p)

)
= lim

n→+∞d
(
g(zn), g(zn+p)

)
= .
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Thus {g(xn)}, {g(yn)} and {g(zn)} are Cauchy sequences in X. Since g(X) is complete, then
there exists (r, s, t) ∈ X ×X ×X, with g(r) = x, g(s) = y and g(t) = z, such that

lim
n→+∞ g(xn+) = lim

n→+∞Tn(xn, yn, zn) = x,

lim
n→+∞ g(yn+) = lim

n→+∞Tn(yn,xn, yn) = y

and

lim
n→+∞ g(zn+) = lim

n→+∞Tn(zn, yn,xn) = z.

Now, as {Ti}i∈N and g are weakly reciprocally continuous, we have

lim
n→+∞ g

(
Tn(xn, yn, zn)

)
= g(x), lim

n→+∞ g
(
Tn(yn,xn, yn)

)
= g(y)

and

lim
n→+∞ g

(
Tn(zn, yn,xn)

)
= g(z).

On the other hand, the compatibility of {Ti}i∈N and g yields

lim
n→+∞d

(
g
(
Tn(xn, yn, zn)

)
,Tn

(
g(xn), g(yn), g(zn)

))
= ,

lim
n→+∞d

(
g
(
Tn(yn,xn, yn)

)
,Tn

(
g(yn), g(xn), g(yn)

))
= 

and

lim
n→+∞d

(
g
(
Tn(zn, yn,xn)

)
,Tn

(
g(zn), g(yn), g(xn)

))
= .

Then we have

lim
n→+∞Tn

(
g(xn), g(yn), g(zn)

)
= g(x), ()

lim
n→+∞Tn

(
g(yn), g(xn), g(yn)

)
= g(y) ()

and

lim
n→+∞Tn

(
g(zn), g(yn), g(xn)

)
= g(z). ()

Since {g(xn)} and {g(zn)} are non-decreasing and {g(yn)} is non-increasing, using the reg-
ularity of X, we have g(xn) � x, y � g(yn) and g(zn) � z for all n ≥ . Then by (), one
obtains

d
(
Ti(x, y, z),Tn

(
g(xn), g(yn), g(zn)

)) ≤ βi,n
[
d
(
g(x),Ti(x, y, z)

)
+ d

(
g
(
g(xn)

)
,Tn

(
g(xn), g(yn), g(zn)

))]
+ γi,nd

(
g
(
g(xn)

)
, g(x)

)
. �
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Taking the limit as n → +∞, we obtain Ti(x, y, z) = g(x) as βi,n < . Similarly, it can be
proved that g(y) = Ti(y,x, y) and g(z) = Ti(z, y,x). Thus, (x, y, z) is a tripled coincidence point
of {Ti}i∈N and g .
Now, we give useful conditions for the existence and uniqueness of a tripled common

fixed point.

Theorem . In addition to the hypotheses of Theorem ., suppose that the set of coin-
cidence points is comparable with respect to g , then {Ti}i∈N and g have a unique tripled
common fixed point, that is, there exists (x, y, z) ∈ X ×X ×X such that x = g(x) = Ti(x, y, z),
y = g(y) = Ti(y,x, y), and z = g(z) = Ti(z, y,x) for i ∈ N.

Proof From Theorem ., the set of tripled coincidence points is non-empty. Now, we
show that if (x, y, z) and (r, s, t) are tripled coincidence points, that is, if g(x) = Ti(x, y, z),
g(y) = Ti(y,x, y), g(z) = Ti(z, y,x), g(r) = Ti(r, s, t), g(s) = Ti(s, r, s), and g(t) = Ti(t, s, r), then
g(x) = g(r), g(y) = g(s) and g(z) = g(t). Since the set of coincidence points is comparable,
applying condition () to these points, we get

d
(
g(x), g(r)

)
= d

(
Ti(x, y, z),Tj(r, s, t)

)
≤ βi,j

[
d
(
g(x),Ti(x, y, z)

)
+ d

(
g(r),Tj(r, s, t)

)]
+ γi,jd

(
g(r), g(x)

)
,

and so as γi,j < , it follows that d(g(x), g(r)) = , that is, g(x) = g(r). Similarly, it can be
proved that g(y) = g(s) and g(z) = g(t). Hence, {Ti}i∈N and g have a unique tripled point of
coincidence. It is well known that two compatible mappings are also weakly compatible,
that is, they commute at their coincidence points. Thus, it is clear that {Ti}i∈N and g have
a unique tripled common fixed point whenever {Ti}i∈N and g are weakly compatible. This
finishes the proof. �

If g is the identity mapping, as a consequence of Theorem ., we state the following
corollary.

Corollary . Let (X,d,�) be a complete partially ordered metric space. Let {Ti}i∈N be a
sequence ofmappings fromX×X×X into X such that {Ti}i∈N satisfies, for x, y, z,u, v,w ∈ X,
with x � u, v � y, z � w or u� x, y� v, and w� z, the following conditions:

(i) Tn(x, y, z) � Tn+(u, v,w),
(ii) d(Ti(x, y, z),Tj(u, v,w)) ≤ βi,j[d(x,Ti(x, y, z)) + d(u,Tj(u, v,w))] + γi,jd(u,x), with

 ≤ βi,j,γi,j <  and i, j ∈N.
Suppose also that there exists (x, y, z) ∈ X × X × X such that x � T(x, y, z), y �
T(y,x, y) and z � T(z, y, z). If

∑+∞
i= (

βi,i++γi,i+
–βi,i+

) is an α-series and X is regular, then
{Ti}i∈N has a tripled fixed point, that is, there exists (x, y, z) ∈ X × X × X such that x =
Ti(x, y, z), y = Ti(y,x, y) and z = Ti(z, y,x), for i ∈N .

Example . TakeX = [, ] endowedwith usualmetric d = |x–y| for all x, y ∈ X and� be
defined as ‘greater than/equal to’ the (X,d,�) be partial order metric space. Let Ti : X →
X be mapping defined as Ti(x, y, z) = x+y+z

i ; i ∈N and g is self-mapping defined as g(x) = x.
Clearly, Ti(x, y, z) ⊆ g(X), g(X) is a complete subset of X.
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By choosing the sequences {xn} = 
n , {yn} = 

n+ and {zn} = 
n+ , one can easily observe

that {Ti}i∈N and g are compatible, weakly reciprocally continuous; g is monotonic non-
decreasing, continuous, as well as satisfying condition ().
Again by taking  < βi,j <  and ≤ γi,j < , it is easy to check inequality () holds, thus all

the hypotheses of Theorem . are satisfied and (, , ), (, , ) are the tripled coincident
points of g andTi.Moreover, using the sameTi and g in Theorem., (, , ) is the unique
fixed point of g and Ti.

Remark . Open problem: In this paper, we prove tripled fixed point results. The idea
can be extended to multidimensional cases. But the technicalities in the proofs therein
will be different. We consider this as an open problem.
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17. Lakshmikantham, V, Ćirić, L: Coupled fixed point theorems for nonlinear contractions in partially ordered metric

spaces. Nonlinear Anal. 70, 4341-4349 (2009)
18. Berinde, V, Borcut, M: Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces.

Nonlinear Anal. 74(15), 4889-4897 (2011)

http://www.journalofinequalitiesandapplications.com/content/2014/1/176


Vats et al. Journal of Inequalities and Applications 2014, 2014:176 Page 12 of 12
http://www.journalofinequalitiesandapplications.com/content/2014/1/176

19. Aydi, H, Karapinar, E, Shatanawi, W: Tripled common fixed point results for generalized contractions in ordered
generalized metric spaces. Fixed Point Theory Appl. 2012, 101 (2012)

20. Aydi, H, Karapinar, E, Vetroc, C: Meir-Keeler type contractions for tripled fixed points. Acta Math. Sci. 32(6), 2119-2130
(2012)

21. Aydi, H, Karapinar, E, Shatanawi, W: Tripled fixed point results in generalized metric spaces. J. Appl. Math. 2012, Article
ID 314279 (2012)

22. Aydi, H, Karapinar, E, Postolache, M: Tripled coincidence point theorems for weak ϕ-contractions in partially ordered
metric spaces. Fixed Point Theory Appl. 2012, 44 (2012)

23. Aydi, H, Karapinar, E, Radenovic, S: Tripled coincidence fixed point results for Boyd-Wong and Matkowski type
contractions. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. a Mat. 107(2), 339-353 (2013)

24. Aydi, H, Abbas, M, Sintunavarat, W, Kumam, P: Tripled fixed point ofW-compatible mappings in abstract metric
spaces. Fixed Point Theory Appl. 2012, 134 (2012)

25. Abbas, M, Ali, B, Sintunavarat, W, Kumam, P: Tripled fixed point and tripled coincidence point theorems in
intuitionistic fuzzy normed spaces. Fixed Point Theory Appl. 2012, 187 (2012)

26. Abbas, M, Aydi, H, Karapinar, E: Tripled fixed points of multi-valued nonlinear contraction mappings in partially
ordered metric spaces. Abstr. Appl. Anal. 2011, Article ID 812690 (2011)

27. Karapinar, E, Aydi, H, Mustafa, Z: Some tripled coincidence point theorems for almost generalized contractions in
ordered metric spaces. Tamkang J. Math. 44(3), 233-251 (2013)

28. Borcut, M, Berinde, V: Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces.
Appl. Math. Comput. 218(10), 5929-5936 (2012)

29. Borcut, M: Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces. Appl.
Math. Comput. 218(14), 7339-7346 (2012)

10.1186/1029-242X-2014-176
Cite this article as: Vats et al.: Triple fixed point theorems via α-series in partially ordered metric spaces. Journal of
Inequalities and Applications 2014, 2014:176

http://www.journalofinequalitiesandapplications.com/content/2014/1/176

	Triple ﬁxed point theorems via alpha-series in partially ordered metric spaces
	Abstract
	MSC
	Keywords

	Introduction and preliminaries
	Main results
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


