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Abstract
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1 Introduction

Throughout this paper, we always assume that H is a real Hilbert space with inner product
(-,-)andnorm || - ||, C is a nonempty closed convex subset of H and Pc is the metric projec-
tion of H onto C. In the sequel, we denote by — and — the strong convergence and weak
convergence, respectively. Let ¢ : C — N be a real-valued function and ® : C x C — 3t be
an equilibrium bifunctions, i.e., ®(u, u) = 0 for each u € C. We consider the mixed equi-
librium problem (MEP) which is to find x* € C such that

MEP: ©(x*,y) + p(y) —p(x*) =0, VyeC.

In particular, if ¢ = 0, this problem reduces to the equilibrium problem (EP), which is to
find x* € C such that

EP: ®(x*,y) > 0.

Denote the set of solutions of MEP by 2. The MEP includes fixed point problems, opti-
mization problems, variational inequality problems, Nash EPS and the EP as special cases.
Recall that a mapping T : C—C is said to be nonexpansive, if ||Tx — Ty|| < ||x — ||,
Vx,y € C.
Let C be a closed convex subset of a Hilbert space H. A family of mappings 4 := {S(s) :
0 <s<oo}:C — C is said to be a nonexpansive semigroup, if it satisfies the following
conditions:
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(1) S(s+t)=S(s)S(t), Vs, t € Rt and S(0) = I;
(i) IS(s)x =SSyl < llx =y, Yx,y € C,s > 0;
(ili) the mapping ¢+ S(¢)x is continuous for each x € C.
We denote by F(8) the set of common fixed points of 4, i.e., F(8) =)
known that F(38) is closed and convex.

=0 F(S(5)). It is well
Now let F: C — C be a nonlinear operator. The variational inequality problem is for-
mulated as finding a point * € C such that

VI(F, C):(Fx*,v—x*)z 0, VveC.
It is well known that the VI(F, C) is equivalent to the fixed point equation
x* = Pc[x* - ,uF(x*)], 1.1)

where @ > 0 is an arbitrarily fixed constant. So, fixed point methods can be implemented
to find a solution of the VI(F, C) provided F satisfies some conditions and u > 0 is cho-
sen appropriately. The fixed point formulation (1.1) involves the projection Pc, which may
not be easy to compute, due to the complexity of the convex set C. In order to reduce the
complexity probably caused by the projection Pc, Yamada [1] recently introduced a hybrid
steepest-descent method for solving the VI(F, C). Assume that F is an n-strongly mono-
tone and « -Lipschitzian mapping with « > 0, 7 > 0 on C. An equally important problem is
how to find an approximate solution of the VI(F, C) if any. A great deal of effort has been
done in this problem.

In 2007, Ceng and Yao [2] investigate the problem of finding a common element of the
set of solutions of a mixed equilibrium problem (MEP) and the set of common fixed points
of finitely many nonexpansive mappings in a real Hilbert space. Very recently, Yang et al.
[3] introduce two hybrid algorithms for finding a common fixed point of a nonexpansive
semigroup in Hilbert space.

Motivated and inspired by Ceng and Yao [2] and Yang et al. [3], the purpose of this
paper is to introduce two hybrid algorithms for the variational inequalities and mixed
equilibrium problems over the common fixed points set of nonexpansive semigroups in
Hilbert space. Under suitable conditions some strong convergence theorem for these two
hybrid algorithms are proved. The results presented in the paper extend and improve some
recent results.

2 Preliminaries
Let H be a real Hilbert space and C be a nonempty closed convex subset of H. For solving
mixed equilibrium problems, let us assume that the function ® : C x C — ) satisfies the
following conditions:

(H1) ® is monotone, ie., B(x,y) + O(y,x) <0, Vx,y € C;

(H2) for each fixed y € C, the mapping x — O(x, ) is concave and upper

semicontinuous;

(H3) for each fixed x € C, the mapping y — O(x, ) is convex.

A mapping F : C — C is said to be:

(i) x-Lipschitz continuous, if there exists a constant « > 0 such that

||Fx—FJ’||SK||x—J/||» Vx»yGC;
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(i) n-strongly monotone, if there exists a constant 1 > 0 such that
(Fx — Fy,x —y) > nllx —y||2, Vx,y € C.

A differentiable function K : C — 0 is said to be:

(i) &-convex [4], if
K(y) -K(x) > (K'(x),£(,%)), Vx,yeC,

where K'(x) is the Fréchet derivative of K at ;
(i) &-strongly convex [5], if there exists a constant o > 0 such that

K(y) - K(x) - (K'(x),£ (5, %)) = (a/2)|x - yI|*>, Vx,y€C.

The following lemmas will be needed in proving our main results.

Lemma 2.1 [2] Let C be a nonempty closed convex subset of a real Hilbert space H and
@ : C — N be a lower semicontinuous and convex functional. Let 60 : C x C — N be an
equilibrium bifunction satisfying the conditions (H1)-(H3). Assume that
(i) &:C x C— H is A-Lipschitz continuous such that
(2) £(x,) +£(,x) = 0, ¥,y € C;
(b) &(-,-) is affine in the first variable;
(c) foreach fixed x € C, the mapping y — & (x,y) is sequentially continuous from the
weak topology to the weak topology;
(i) K:C— N is &-strongly convex with constant o > 0, and its derivative K’ is
sequentially continuous from the weak topology to the strong topology;
(iii) for each x € C there exist a bounded subset D, C C and a point z, € C such that, for

anyy € C\ Dy,
O, zx) + ¢(zx) — () + (K/(y —K'(%),6(20,9)) < 0
For given r >0, let J,: C — C be the mapping defined by
Jo(%) = {y €C:0(,2) +¢(2) —p0y) + (K’(y) K'(x),£(2,9) = 0,¥z € C}
xeC. (2.1)

Then
(i) Jr is single-valued,
(ii) J is nonexpansive if K’ is Lipschitz continuous with constant v > 0 and

(K'(%1) = K'(x2), 1 — t2) = (K" (1) = K' (), 1 — ), V(#1,%3) € C x C,

where u; = J(x;) for i =1,2;


http://www.journalofinequalitiesandapplications.com/content/2014/1/174

Jiang and Wang Journal of Inequalities and Applications 2014, 2014:174 Page 4 of 15
http://www.journalofinequalitiesandapplications.com/content/2014/1/174

(ili) F(J;) = QO, ), where Q(O, @) is the set of solutions of the following mixed

equilibrium problem:
O@,y) +9() —9x) =0, VyeC.
(iv) Q(®, ) is closed and convex.

Lemma 2.2 [6] Let x, and y, be bounded sequences in a Banach space E and let B, be
a sequence in [0,1] with 0 < liminf,_, « B, < limsup,_, . Bx < 1. Suppose that x,,1 = (1 —
Bn)Vu + Buxn for all integers n > 1 and limsup,,_, o (|¥ne1 — Yull = %001 — %) < 0. Then

lim,,—, o |1y — %41l = 0.

Lemma 2.3 [7] Let {a,} be a sequence of nonnegative real numbers such that
Aps1 = (1 - )‘n)ﬂn + Apby + VYn> Vn > ny,

where ny is some nonnegative integer, {A,}, {8,}, and {y,} are sequences satisfying
() A Cl0,1] and Y 2 Ay = 00,
(i) limsup, 8, <0 or Y o) Aud, < 00,
(iii) yn >0 (1> 0), 302 ¥y < 00.
Then lim,_, o a, = 0.

Lemma 2.4 [8] Let C be a bounded closed convex subset of H and 8 = {S(s) : 0 < s < 00}

be a nonexpansive semigroup on C, then for any h >0

%/()tS(s)xds—S(h)(% /:S(s)xds>

Lemma 2.5 [9] Let C be a nonempty bounded closed convex subset of H, x,, be a sequence in

lim sup
§—>00 xeC

-o

C and 8 ={S(s) : 0 < s < 00} be a nonexpansive semigroup on C. If the following conditions
are satisfied:

(i) % — 2z

(ii) limsup,_, . limsup,_, . [IS(s)x, — x| =0,
then z € F(8).

Lemma 2.6 [10] Let F be an n-strongly monotone and k -Lipschitzian operator on a Hilbert
space H with 0 < n <k and 0 <t <n/k?. Then T = (I — tF) : H — H is a contraction with

contraction coefficient T, = /1 — t(2n — tk2).

Lemma 2.7 In a real Hilbert space H, we have the inequality

ll = y11* = lll® = 2¢x,9) + 7117,

|2+ (L= 1)y = Allell® + @ = 2yl = AL = W)l =y

forall x,y € H and A € [0,1].
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Recall that a Banach space E is said to satisfy the Opial condition, if for any sequence x,
in E with x,, — x, then for every y € E with y # x we have

liminf ||x, — x| < liminf|x, — y|.
n— 00 n—0o0
It is well known that each Hilbert space satisfies the Opial condition.

3 Main results

Now we will show our main results.

Theorem 3.1 Let H be a real Hilbert space. Let ¢ : H — N be a lower semicontinuous and
convex functional. Let ® : H x H — N be an equilibrium functions satisfying conditions
(H1)-(H3). Let 8 := {S(s) : 0 < s < 00} be a nonexpansive semigroup on H. Let F be an n-
strongly monotone and «k-Lipschitzian operator on H. Let {y,}o««1 be a continuous net of
positive real numbers such that lim,_.o, y; = +00. Putting t, = \/1 - t(2n — tk?), for each
t € (0,n/k?), let the net {x;} be defined by the following implicit scheme:

vt
= —/ [ - tF)], %] ds, (3.1)

where ], : H — H is the mapping defined by (2.1). Suppose the following conditions are
satisfied:

(i) &:H x H— H is A-Lipschitz continuous such that
(@) £(x,y) +&(y,x) =0, Vx,y € H;

(b) x> &(x,y) is affine;
(c) y+> &(x,y) is sequentially continuous from the weak topology to the weak
topology;

(i) K:H — N is &-strongly convex with constant o > 0, and its derivative K' is not only
sequentially continuous from the weak topology to the strong topology but also
Lipschitz continuous with a Lipschitz constant v > 0 and o > Lv;

(iii) for each x € H there exist a bounded subset D,, C H and a point z, € H such that, for
anyy € H\ Dy,

O, zx) + ¢(zx) —9(y) + (I(/(y) K'(x),€(2:,9)) <0,

and if T := Q(O, ) NF(8) # 0. Then, as t — 07, the net {x,} converges strongly to an element
x* of T provided ], is firmly nonexpansive which is the unique solution of the following

variational inequality:
(Fx*,x* - u) <0, Vuel. (3.2)
Proof We divide the proof into several steps.
Step 1. First, we note that the net {x;} defined by (3.1) is well defined. In fact, we define

a mapping

Vi
Px:=— / t [U - tF),x]ds, te(0,n/k?),x€H. (3.3)
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Because J, is nonexpansive. It follows from Lemma 2.6 that
1
1P~ Pl = — [ IS - eFe] - SO - 1] ds
<[t~ Py~ U~ tF)y| < el -yl
Hence, the P; is a contraction, and so it has a unique fixed point. Therefore, the net {x;}

defined by (3.1) is well defined.
Step 2. We prove that {x;} is bounded. Taking # € I" and using Lemma 2.6, we have

1 Yt
[l — 2 = H Z ./o S(S)[(I - tF)],xt] ds—u

) H % /0 S V] ds - % /oyz S(s)/uds

t

< [0l - ] - stul s
Yt Jo

< ||t - eF)x, - u
< || - tF)x, — (I - tF)u — tFu

< Tellxy — ul| + ]| Ful|.

It follows that

lloee =l < —— (3.4)
Observe that

tl_i)r(1)1+ l—ttt - % (3:5)

Thus, (3.4) and (3.5) imply that the net {x;} is bounded for small enough ¢. Without loss of
generality, we may assume that the net {x;} is bounded for all ¢ € (0, n/«?). Consequently,
we deduce that {Fx,} and {J,x;} are also bounded.

Step 3. On the other hand, from (3.1) and (3.4), we have

|20 Stohe|

< S(s)xt—S(s)<i / ) S(s)xtds)
Yt Jo

1 [ 1 [
— / S(s)x; ds —x; || + S(S)( S(s Xy ds) / S(s)x; ds
Yt Jo Ye Jo

1 vt 1 Vi
;/ S(s)xs ds —x; || + S(s)(— S(s)xmfs)—;/o S(s)x; ds

%f 8)xy s——/ I tF],xt]
+ S(s)(;/o S(s)xtds> —%/0 S(s)x; ds

+

-

:2‘
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<1 / " IS = SO[U - tFYyx]| ds
- vdo

1 Yt 1 Yt
S(s)(;/0 S(s)xtds> - Z/o S(s)x, ds

1 43 1 Yt
S(s)(;/o S(s)xtds> —E/O S(s)x; ds

+

= 2”xt — (I —tF)]x ” +

1 V43 1 V43
<2l el + 26 Fle] + S<s>(— | s ds) [T somas. o
Ve Jo Ve Jo
In fact, we have
1 (7
I -l = | — f SO[ - tFy] ds - u
Ye Jo
1 Yt 1 Yt
= —/ S(s)[(l—tF)]rxt] ds — —/ S(s)uds
Yt Jo Ve Jo
1 Yt
<L / IS - tF)e] - S(s)u| dis
Yt Jo
=< ||(1_tF)]rxt_u )
)
e = ull? < | = PV — ue|)®
< W — ull® + | FLoxe||* = 26 (T, — 1, Floxe)
< llwe = ull® = llwe = Joxe|1* + N Floee > = 26, — u, Exy),
observe that
lloce = T 1> < £\ FLxel|* = 28T — u, FTxe),
then
tl_i,rél+ llc: = Jrxe |l = 0. (3.7)
This together with Lemma 2.4 and (3.6) implies that
lir(r)l Xp — S(s)x,” =0. (3.8)
t—0t

Let {t,} C (0,1) be a sequence such that £, — 0 as n — co. Put x,, := x;, and y,, = J,x,,. Since
{yn} is bounded, there exists a subsequence {y,;} of {y,} which converges weakly to w € H.
Without loss of generality, we can assume that y,, — w. Next we prove that

wel :=Q(0,p)NF(S).

(a) In fact, we have

Hyn ~ S(8)yn H = ”yn — %X + %y — S(8)xy + S(8)xn _S(S)yn” = 2|lyn — xull + Hxn — S(s)xu H
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With (3.7) and (3.8), we have
im [y, — S(s)y = 0. (3.9)

Indeed, from Lemma 2.5 and (3.9) we know that w € F(§), i.e., w = S(s)w, Vs > 0.
(b) Now we prove that w € Q = Q(8, ¢). In fact, since y, = J,x,, we have

OU,%1,2) + 92) ~ 9Ur) + (K Ue) ~ K (o) o)) 2 0, V€ H.

From the monotonicity of ®, we have

%<I</(]rxn) - I(/(xn))g(x¢]rxn)> + (P(x) - w(]rxn) > _®(]rxnrx) > ®(x’]rxn)

and hence

I(/(]rxn,') - I(/(xn/)
<f’§(x7]rxnj)> + <P(x) - (/)(]rxn/) Z ®(xr]rxnj)- (310)

Since (3.7), then (K /(]rxnj) -K ’(xni))/r — 0 and Vg = W, from the weak lower semiconti-
nuity of ¢ and O(x, y) in the second variable y, we have O(x, w) + p(w) — ¢(x) < 0 for all
x€H.ForO<t<landx e H,letx; =tx+(1—¢t)w.Sincex € Hand w € H, we havex; € H
and hence O (x;, w) + (W) —@(x;) < 0. From the convexity of equilibrium bifunction ®(x;, y)
in the second variable y, we have

0 = Oxs, %) + @(xs) — (%)
<tO(xg,x) + (1 - 1)O(xr, W) + tp(x) + (1 - £)p(w) — p(xr)
< t[O(x;,x) + p(x) — (x)],
and hence ©(xy, x) + ¢(x) — ¢(x;) > 0. Then we have ©(w, x) + ¢(x) —(w) > 0 forallx € H.
Sowe Q.

We can obtain w € I' := Q N F(§) and x,, — w.
Step 4. Finally, from (3.1), we have

2

o, — u)|? = ‘ i /(;yt S(s)[([— tF)],xt] ds—u
t
1 [ 2
= ‘ ;/0 [S(s)(]— tF)].x; —S(s)],u] ds
< || - tF)x, - (I - tF)u — tFul|”
< 2l — ull® + 1| Ful|® + 2¢{(I — tF)u — (I - tF)x,, Fu)
< 1|l — ul|® + || Ful|® + 2 (u — x;, Fu) + 2t* (Fx, — Fu, Fu)
< 1l — ul* + | Ful* + 26u — x4, Fu) + 26 ||, — ||| Ful|.
Therefore,

2

t
llov — wall || Foe]. (3.11)

2 2t
llace — u]|* < —— | Fuel|* + (u —x¢, Fu) +
l—Tt l—ft 1

Page 8 of 15
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It follows that

2 _ b 2 2 f
llocy = wlI” < ——IFw||” + ——— (W —xy, Fw) + I, = wlll| Ew]|.
=T, l—frn =Tt
Thus, x, — w implies that x,, — w.
Again, from (3.11), we obtain
£ t Kt
Nl — ul|* < —"— | Ful|* + ——— (u — x,,, Fut) + (| — wl| | Fu]. (3.12)
1- tn =ty 1- Tty

It is clear that lim,_oo(£2/1-1;,) = 0, lim,— o (2t,/1—1;,) = 2/n, and lim,_ o (2c22/
1-1,,) = 0. We deduce immediately from (3.12) that (Fu,w — u) < 0, which is equiva-
lent to its dual variational inequality (Fw,w — 1) < 0. That is, w € I is a solution of the
variational inequality (3.2).

Suppose that x* € I and w € T" both are solutions to the variational inequality (3.2); then

(Fx*,x* - w) <0,
(3.13)
<Fw,w - x*) <0.

Adding up (3.13) and the last inequality yields (Fx* — Fw,x* — w) < 0. The strong mono-
tonicity of F implies that x* = w and the uniqueness is proved. Later, we will use x* € T to

denote the unique solution of (3.2). This completes the proof. O
Next we introduce an explicit algorithm for finding an element of I".

Theorem 3.2 Let H be a real Hilbert space. Let ¢ : H — R be a lower semicontinuous and
convex functional. Let ® : H x H — 0 be an equilibrium functions satisfying conditions
(H1)-(H3). Let 8 := {S(s) : 0 < s < 00} be a nonexpansive semigroup on H such that F(8) # ().
Let F be an n-strongly monotone and « -Lipschitzian operator on H with 0 < n < k. For given

xo € H arbitrarily, define a sequence {x,} iteratively by

Yn =%y — MnF (%),

1 tn (3.14)
Xnsl = (1 - an)yn + ant_ / S(S)]ryn dS, n= O’

n J0

where {),.}, {t,} are sequences in (0,00), {a,} is a sequence in [0,1], and J, : H — H is the
mapping defined by (2.1). Suppose the following conditions are satisfied:
(i) &:H x H— H is A-Lipschitz continuous such that
(@) Ex,y)+&(,x)=0,VYx,y € H;
(b) x> &(x,y) is affine;
(c) y+> &(x,y) is sequentially continuous from the weak topology to the weak
topology;
(i) K:H — N is &-strongly convex with constant o > 0, and its derivative K' is not only
sequentially continuous from the weak topology to the strong topology but also
Lipschitz continuous with a Lipschitz constant v > 0 and ¢ > Lv;

Page 9 of 15
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(iii) For each x € H there exist a bounded subset D, C H and a point z, € H such that,
foranyy e H\ Dy,

©0,2) + 9(z) - 90) + - {K'0) - K'(), £ (7)) <0

(iv) limsup,_, oo Ay <n/k? and Yy 021 ky = 00;

(vi) limy— o0 by = 00 and limy,_, oo (tys1/t,) = 1;

(vii) 0 <y <liminf,_, o, <limsup,_, . o, <1, for somey € (0,1).
IfT := Q(O,9) NF(8) # 0, then the sequences {x,} and {y,} converge strongly to an element
x* of T provided J, is firmly nonexpansive if and only if 1, F(x,) — 0, where x* is the unique

solution of the following variational inequality:
(Fx*,x* - u) <0, VYuerl.

Proof The necessity is obvious. We only need to prove the sufficiency. Suppose that
AaF(x,) — 0.

Step 1. First, we show that {x,}, {y,}, {S(s)y.}, {Fx,}, and {J,x,} are bounded. In fact,
letting u € T, we have u = S(s)J,u.

Then

1%6ps1 — ull = ” (1 —on)yn + an% /0 t.S(S)ynds —u
= “ Q-an)yn—u) + oy <% /Otn S($)]yn ds — u) H

1 [
S (1 - an)”yn - u” + ant_ / ”S(S)]ryn - S(S)]ru” dS
n JO

<@ _(xn)Hyn = ull + o lly, — ull

= [|yn —ull. (3.15)

From condition (iv), without loss of generality, we can assume that A, < a < n/«2, ¥n > 0.
By (3.14) and Lemma 2.6, we have

lyn —ull = ”xn — AuF(x,) - Lt” = ” (I = AF)xy, - (I_AHF)M_)‘-nFu”

< | = huF)xn = (I = A Fus | + hn| Fusll < 3, 11 — ] + A | Ful (3.16)

where 75, = /1 - 4,(2n — A,k?) € (0,1).

Then, from (3.15) and (3.16), we obtain

An
%1 = 28] < T, 1%, — 2]l + Al Fual] = [1 = (1= 3,,) [l — aal] + (1 - Txn)l . (2
— 1,

An
< maxy [|x, — ull, [ Fuef| -
1- Ty

n

Observe that lim,,_,(1,/1 — 7;,,) = 1/n, we have by induction

1921 — ]| < max{ llxo — ull, My || Fuell }, (3.17)

Page 10 of 15
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where M; = sup,{A,/1-13,} < 00. Hence {x,} is bounded. Consequently, we deduce that

{yu}, {S(8)yn}, {Fx,} and {J,x,} are also bounded.

Step 2. Define x,,,; = (1 — a,))x,, + oy, Y1 > 0, then u,, = i [ — (A = a)x,].

Observe that
Xz — (L= )1 X1 — (1 — at)wy,
le£51 — unll = -
Oyl Oy
H (1 Ol;’1+1)yn+1 tOp1 el ftml S(S ]ryn+1 ds - (1 an+1)xn+1
- Oyl
(1 oy yn"'ant f() ) ynds — (1 - ay)xy,
oy
1 tn1
725 Ty fO S)yns1 ds — (1= o) hni1 F(041)
(07788}
ant f() S(S)]ryn ds — (1 — o)A, F(x,)
oy
tnsl
< / S ynrds — — / $)rynds
Ina1 Jo
l-«o
s H)\'VI+IF Kn+l H )”
Oyl

Next, we estimate

1 (7751 1 tn
[ sOrds— - [ srzas
n+l JO Ly 0
1 2785 tn+l
E / S(S)]ryn+l dS - / S(S)]ryn dS
L1 0 n+l JO
tn+l 1 tn
+ / S()ynds — — / S(s)],yn ds
n+l JO tn 0

= ||}’n+1 __yn” +

tnl 1 tn
/ S(s)]ynds — — / S(8)]ynds
0 In Jo

n+l
ty tn1
S Yner = yull + -— / S(S)rynds|| + / S()yynds
Ly n 0 n+1 tn
=< ||xn+l = hns1F(Xne1) = %n + )\nF(xn)H +| -1 M,
n+1

t
< %ns1 = xull + ”)LnHF(an)” + ”}\nF(xn)” + tn

’MZ)

where My = sup,{2||S(s)],yx ||} < co. From (3.18) and (3.19), we have

— Wyl

”um—l - Mn” = ||)"n+1F Xn+l || + — ”)"nF(xn)” + ||xn+1 _xn”

H n+1F(xn+1)“ + ”)L F(x,) ”

=1l

(3.18)

(3.19)
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This together with condition (vii) implies that

1 t,
N1 = sl < = ([|AnerF @) | + | AnF @) + N6er = all + | == — 1'M2. (3:20)
14 Lns1
Namely,
1 tn
”Mn+1 - un” - ||xn+1 _xn” = _(||)"n+1F(xn+1)|| + “)\nF(xn)”) + - I‘MZ
14 tn+l

Since A, F(x,) — 0 and condition (vi), we get
lim sup(J|ss1 — thull = 6041 — xa]l) < 0.
n—0o0
Consequently, by Lemma 2.2, we deduce lim,,_,  ||#4,, — %, || = 0. Therefore,

19511 — Xull = @ty llety, — x4l = 0 (2 — 00). (3.21)

Step 3. Next, we claim that lim,,_, » ||, — S(s)x,,|| = 0. Observe that

S(s)x, — S(s) (tl /(; " S(s)x, ds)

S(s)(% /0 " S(s) ds) - tl /0 " S(s)nds

1 [
— / S(s)x, ds — x,
0

n

s(s)<ti /0 " S, ds) _ tl /0 " S5y, ds

% = S(s)xa | < +

1 [
— / S(s)x, ds — x,
0

n

+

<2

+ . (3.22)

Note that

n

1 [
— / S(s)x, ds — x,
tw Jo

= “xn _xn+1|| +

1 [
P—— / S(s)n dis
tn 0

= %y = Xper |l +

1 [ 1 [
1 —ap)yy +oy— / S($)yynds — — / S(s)x, ds
In Jo ty Jo

n

=< “xn _xn+1|| + (1 - an)

1 [
YV — —/ S(s)x, ds
tn 0
1 [ 1 b
—/ S(s)x,, ds — —/ S(s)],y, ds
0 tn Jo

+ 0y
tn

1 [
Xy — — / S(s)x, ds
In Jo

n

< %y — Xy |l + (1 - an)”yn =%l + (1 —cty)

+ oty |, = Jrynll.
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It follows that

1 [
— / S(s)x,, ds — x,,
0

Ly

1
< a—(nxn = x|l + (1= ) | AnF @) || + el = Jyull).- (3.23)

n
From (3.15), we have

1 2
||~7CV1+1_M||2 = H (l_an)yn +ant_/tns(s)]ryn dS—I/t
n JO

2
<@ =an)llyn—ul® +ay

1 [
- / S(S)]ryn ds—u
tw Jo

n

= (1 - an)”xn - }\nF(xn) - Z't”z + an”]ryn - I/l||2
< (L= )%, — ull? + (1= ) |2 E o) |* + (1120 = ll® = 16 = Ty 1?)

2
E (1 - C(,,) ”)VnF(xn)” + ”xn - MHZ - an”xn _]ryn”Z;
then
2
an”xn _]r_ynnz = (1 - an)H)\nF(xn)H + ”xn - u”2 - ||xn+1 - u”2
2
<Q1- an)“)LnF(xn)H + (1% — X || (”xn —ull + |41 = u”)
This together with condition (vii), A,,F(x,) — 0, and (3.21), we have
lim ||x, = Jyyull = 0. (3.24)
n—0oQ
By Lemma 2.4, (3.21)-(3.24), and A, F(x,) — 0, we derive
lim || %, — S(s)x,| = 0. (3.25)
n—0oQ

Step 4. Next, we show that limsup,,_, . (Fx*,x* — x,) < 0, where x* = lim,_, o, %, and
xy, is defined by x,, = (1/¢,) ot” S()[( = t,F)]yx,) ds. Since {x,} is bounded, there exists a
subsequence {x,, } of {x,} that converges weakly to w. Similarly be able to prove w € I" like
Theorem 3.1. Hence, by Theorem 3.1, we have

lim sup(Fx*,x* - xn) = klim (Fx*,x* - x,,k) = <Fx*,x* - w) <0. (3.26)
n—00 —>00

Step 5. Finally, we prove that {x,} converges strongly to x* € I". From (3.14), we have

w1 ="

2

1
= H (1 - an)yn +ant—/t,,S(s)]ryn ds — x*
n JO

2
< (L= |y =2 +

1 [
— / S($)]yyn ds — x*
tn 0
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<=0y =2 + o lya —°°

IA

=]

||x,, — X, F(x,) —x* ||2

| = 3nF)xy = (I = Ay F)x* = Ex*|*

IA

t}m ”x,, - ” +A 2HF( )”2 + 2An<(1— AnE)x* — (I - )»,,F)x,,,F(x*))

T [0 =)+ L2 F ()| + 220" = 20, Fx*) + 20, (A Fity, Fx®) = 222 Fx*|?

IA

IA

[1 -(1- r,\n)] ”x,, —x* ”2 + 2)»,,(96* - x,,,Fx*) +2Ay ||)»,,F(x,,) || ”Fx* ” - )»fl ”Fx* HZ

[ |

= (1= 8,) |0 = x| + 8,00 (3:27)

20, || Fx*||
=T,

IA

[1-(1-1,)]]%n —x* ||2 +(1- ‘Exn)|: )W; (" — 2, Fx*) +

1-

where 8, =1-1;, and p, = fk" (x* —x,,, Fx*) + 2)\””}% LjiAnE (%)l Obviously, Y52, 8, = 00

and limsup,_, ., oy < 0. Hence, all conditions of Lemma 2.3 are satisfied. Therefore, we

immediately deduce that the sequence {x,} converges strongly to x* € I'.

Observe that

|y = || < lyn = ®ull + |20 — 5| < [|AnFGn)| + |20 -5 = 0, n—o00.  (3.28)

It is clear that {y,} converges strongly to x* € I". From x* = lim;_, ¢ x; and Theorem 3.1, we

see that x* is the unique solution of the variational inequality (3.2). This completes the

proof. O

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Acknowledgements
The research was supported by Fujian Nature Science Foundation.

Received: 22 March 2014 Accepted: 14 April 2014 Published: 12 May 2014

References

1.

Yamada, I: The hybrid steepest descent method for the variational inequality problem over the intersection of fixed
point sets of nonexpansive mappings. In: Butnariu, D, Censor, Y, Reich, S (eds.) Inherently Parallel Algorithms in
Feasibility and Optimization and Their Applications, vol. 8, pp. 473-504. North-Holland, Amsterdam (2001)

. Ceng, LG, Yao, JC: A hybrid iterative scheme for mixed equilibrium problems and fixed point problems. J. Comput.

Appl. Math. 214, 186-201 (2008)

. Yang, PX, Yao, YH, Liou, Y-C, Chen, R: Hybrid algorithms of nonexpansive semigroups for variational inequalities.

J. Appl. Math. 2012, Article ID 634927 (2012)

. Hanson, MA: On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80, 545-550 (1981)
. Ansari, QH, Yao, JC: Iterative schemes for solving mixed variational-like inequalities. J. Optim. Theory Appl. 108(3),

527-541 (2001)

. Suzuki, T: Strong convergence of Krasnoselskii and Mann's type sequences for one-parameter nonexpansive

semigroups without Bochner integrals. J. Math. Anal. Appl. 305, 227-239 (2005)

. Xu, HK: A regularization method for the proximal point algorithm. J. Glob. Optim. 36(1), 115-125 (2006)
. Shimizu, T, Takahashi, W: Strong convergence to common fixed points of families of nonexpansive mappings. J. Math.

Anal. Appl. 211, 71-83 (1997)

. Tan, KK, Xu, HK: The nonlinear ergodic theorem for asymptotically nonexpansive mappings in Banach spaces. Proc.

Am. Math. Soc. 114, 399-404 (1992)

. Wang, S, Hu, C: Two new iterative methods for a countable family of nonexpansive mappings in Hilbert spaces. Fixed

Point Theory Appl. 2010, Article ID 852030 (2010)


http://www.journalofinequalitiesandapplications.com/content/2014/1/174

Jiang and Wang Journal of Inequalities and Applications 2014, 2014:174 Page 15 of 15
http://www.journalofinequalitiesandapplications.com/content/2014/1/174

10.1186/1029-242X-2014-174
Cite this article as: Jiang and Wang: Hybrid algorithms of nonexpansive semigroups for mixed equilibrium
problems, variational inequalities, and fixed point problems. Journal of Inequalities and Applications 2014, 2014:174

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



http://www.journalofinequalitiesandapplications.com/content/2014/1/174

	Hybrid algorithms of nonexpansive semigroups for mixed equilibrium problems, variational inequalities, and ﬁxed point problems
	Abstract
	Keywords

	Introduction
	Preliminaries
	Main results
	Competing interests
	Authors' contributions
	Acknowledgements
	References


