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Abstract
In this paper we consider the following Hardy-Littlewood-Sobolev (HLS)-type system
of nonlinear equations in the half-space Rn+: u(x) =

∫
Rn+
( 1
|x–y|n–α – 1

|x∗–y|n–α )v
q(y)dy,

v(x) =
∫
Rn+
( 1
|x–y|n–α – 1

|x∗–y|n–α )u
p(y)dy, where p,q > 1 and x∗ is the reflection of x about

the boundary {xn = 0}. By using the method of moving planes in integral forms, we
obtain monotonicity of the positive solution of the integral equations system of the
abstract in three cases: the so-called subcritical, critical, and supercritical cases, and
we obtain a new Liouville-type theorem of this system under some integrability
conditions. In particular, our results unify and generalize many cases of Liouville-type
theorems in (Cao and Dai in J. Math. Anal. Appl. 389:1365-1373, 2012; Cao and Dai in
J. Inequal. Appl. 2013:37, 2013) and (Li et al. in Complex Var. Elliptic Equ. 2013,
doi:10.1080/17476933.2013.854346).
MSC: 35B05; 35B45
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1 Introduction
In [], Chen and Li discussed the HLS-type system of nonlinear equations in the whole
space Rn:

{
u(x) =

∫
Rn


|x–y|n–α vq(y)dy,

v(x) =
∫
Rn


|x–y|n–α up(y)dy, x ∈ Rn.

(.)

By the method of moving planes in integral forms they derived that the positive solutions
of (.) are radially symmetric and such solutions are nonexistent under some integrability
conditions.
In a recent paper of Chen and Li [], the equivalence between integral equation (.) and

the following PDEs was established:

{
(–�) α

 u(x) = vq(x),
(–�) α

 v(x) = up(x), x ∈ Rn,
(.)

where α is any even number between  and n. In fact, their equivalence results are more
general than above. Such an equivalence provides a technique for studying the PDEs: one
can use the corresponding integral equations to investigate the global properties.
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In this paper we want to generalize monotonicity and nonexistence results of positive
solutions of an HLS-type system in the whole space Rn to ones in a half-space.
Let Rn

+ be the upper half Euclidean space

Rn
+ =

{
x = (x, . . . ,xn) ∈ Rn|xn > 

}
.

For convenience we introduce the function G(x, y,α) in this paper

G(x, y,α) =


|x – y|n–α
–


|x∗ – y|n–α

, (.)

then the integral system of the abstract can be rewritten as follows:

{
u(x) =

∫
Rn+

G(x, y,α)vq(y)dy,
v(x) =

∫
Rn+

G(x, y,α)up(y)dy, ∀x ∈ Rn
+.

(.)

The integral system (.) is usually divided into three cases according to the value of the
exponents (p,q). We say that system (.) is in the critical case when the pair (p,q) satisfies
the relation


q + 

+


p + 
=
n – α

n
; (.)

it is in the supercritical case when ‘<’ holds; and in the subcritical case when ‘>’ holds, i.e.


q + 

+


p + 
>
n – α

n
. (.)

In [], the first and the second authors concluded to the nonexistence of (.) in the
critical case.

Theorem . ([]) Let (u, v) be a pair of positive solutions of (.) in the critical case (.).
Assume that u ∈ Lp+(Rn

+) and v ∈ Lq+(Rn
+), then both u and v are strictly monotonically

increasing with the variable xn.

Theorem . ([]) Let (u, v) be a pair of positive solutions of (.) with the critical case
(.). Assume that u ∈ Lp+(Rn

+) and v ∈ Lq+(Rn
+) are nonnegative, then u = v ≡ .

In this paper, we further consider the nonnegative solution of the integral equations
system (.) by using the method of moving planes in integral forms. We prove that the
positive solution pair (u, v) of (.) is strictly monotonically increasing with respect to the
variable xn.

Theorem . Assume that  < p,q < ∞, and that there exist p ≥  and q ≥  such that

p – 
p

+
q – 
q

≥ α
n
, (.)

p – 
p

,
q – 
q

< , (.)
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p
p
,
q
q

>
α

n
. (.)

Suppose that u ∈ Lp (Rn
+) and v ∈ Lq (Rn

+) is a pair of positive solutions of integral system
(.), then both u and v are strictly monotonically increasing with respect to the variable xn.

Theorem . yields the main result of the paper.

Theorem. Let (u, v) be a pair of positive solutions of (.)with  < p,q < ∞, and let there
exist p ≥  and q ≥  such that (.), (.), and (.) hold. Assume that u ∈ Lp (Rn

+) and
v ∈ Lq (Rn

+) are nonnegative, then u = v≡ .

To prove Theorem ., we will use the method of moving planes in integral forms to
obtain the monotonicity of the positive solutions of system (.). Corresponding to the
half-space problem (.), the Liouville-type Theorem . for the whole space problem (.)
was established by Chen and Li [].

Remark  Theorem . concerningmonotonicity and nonexistence of solutions is true in
all three cases: subcritical, critical, and supercritical.

Remark  Theorem . unifies and generalizes some Liouville-type results of positive
solutions of other integral systems. In particular, we find some examples to show the ex-
istence of such pairs of (p,q) that satisfy all these conditions (.), (.), and (.) in The-
orem ..

2 Preliminaries
In this section, we introduce some lemmas as preliminaries.
For x, y ∈ Rn

+, define

G(x, y,α) =


|x – y|n–α
–


|x∗ – y|n–α

,

where x∗ = (x, . . . ,xn–, –xn) is the reflection of the point x about the ∂Rn
+.

Let λ be a positive real number. Define

�λ =
{
x = (x,x, . . . ,xn) ∈ Rn| < xn < λ

}
,

Tλ =
{
x ∈ Rn

+|xn = λ
}
, �C

λ = Rn
+\�λ.

Let

xλ = (x,x, . . . ,xn–, λ – xn)

be the reflection of the point x = (x,x, . . . ,xn) about the plane Tλ.
The following lemma states some properties of the function G(x, y,α).

Lemma . (Lemma . in [])
(i) For any x, y ∈ �λ, x 	= y, we have

G
(
xλ, yλ,α

)
>max

{
G

(
xλ, y,α

)
,G

(
x, yλ,α

)}

http://www.journalofinequalitiesandapplications.com/content/2014/1/173


Cao et al. Journal of Inequalities and Applications 2014, 2014:173 Page 4 of 9
http://www.journalofinequalitiesandapplications.com/content/2014/1/173

and

G
(
xλ, yλ,α

)
–G(x, y,α) >

∣∣G(
xλ, y,α

)
–G

(
x, yλ,α

)∣∣.
(ii) For any x ∈ �λ, y ∈ �C

λ , we have

G
(
xλ, y,α

)
>G(x, y,α).

Lemma . (Lemma . in []) Let (u, v) be any pair of positive solutions of (.), for any
x ∈ �λ, we have

u(x) – uλ(x)≤
∫

�λ

[
G

(
xλ, yλ,α

)
–G

(
x, yλ,α

)][
vq(y) – vqλ(y)

]
dy,

v(x) – vλ(x)≤
∫

�λ

[
G

(
xλ, yλ,α

)
–G

(
x, yλ,α

)][
up(y) – upλ(y)

]
dy.

In addition, we need the equivalent form of the Hardy-Littlewood-Sobolev inequality.

Lemma . (Classical HLS inequality) Let g ∈ L
nr

n+αp (Rn) for n
n–α

< r < ∞. Define

Tg(x) =
∫
Rn


|x – y|n–α

g(y)dy.

Then

‖Tg‖Lr (Rn) ≤ C(n,α, r)‖g‖L nr
n+αr (Rn). (.)

3 Proof of main theorems
In this section, by the method of moving planes in integral forms we derive the nonex-
istence of positive solutions to the integral system (.) and obtain a new Liouville-type
theorem in a half-space. To prove the theorem, we need some proper match of the expo-
nents in the involving integrals, which will be prepared in Part . The moving of planes
will be carried out in Part .
Part . The preparations.
Step . For convenience, we may assume equality in (.):

p – 
p

–
α

n
+
q – 
q

–
α

n
=  (.)

by increasing p and q to p̄ and q̄ while still (.) and (.) hold. To see this, let (p,q) be
the pair where the three inequalities (.), (.), and (.) holds. Obviously, (.) remains
true by increasing p and q. If we continuously increase p up to p and q up to q until
the strict inequality (.) becomes the equality:

p
p

=
α

n
=

q
q

,

then we would have

p – 
p

–
α

n
+
q – 
q

–
α

n
= –


p

–

q

< .
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It follows from the intermediate value theorem that there exist p̄ ∈ (p,p) and q̄ ∈
(q,q), such that the equality (.) holds with p and q replaced by p̄ and q̄ while (.)
remains true. Hence, without loss of generality and for simplicity, in the next step, we may
assume (.).
Step . Under the conditions of the theorem, there exist two non-empty open intervals

Is and Ir such that for any r ∈ Ir and a corresponding s ∈ Is, we have

r ≥ p and s ≥ q, (.)

r, s >
n

n – α
, (.)

n + αr
nr

=
q – 
q

+

s

and
n + αs
ns

=
p – 
p

+

r
. (.)

We have


s
<

α

n
+

r

and

r
<

α

n
+

s
. (.)

Remark The proof of Part  is the same as the proof in [].

Part . The method of moving planes.
To prove Theorem ., we compare (u(x), v(x)) and (uλ(x), vλ(x)) on �λ. The proof con-

sists of two steps.
In the first step, we start from the very lower end of our region Rn

+, i.e. near xn = . We
will show that for λ sufficiently small,

uλ(x)≥ u(x) and vλ(x)≥ v(x), ∀x ∈ �λ. (.)

In the second step, wewill move our planeTλ toward the positive direction of the xn-axis
as long as the inequality (.) holds.
Step . Define

�u
λ =

{
x|x ∈ �λ,u(x) > uλ(x)

}
and

�v
λ =

{
x|x ∈ �λ, v(x) > vλ(x)

}
.

We show that for sufficiently small positive λ,�u
λ , and�v

λ must havemeasure zero. In fact,
by Lemma ., it is easy to verify that

u(x) – uλ(x) ≤
∫

�λ

[
G

(
xλ, yλ,α

)
–G

(
x, yλ,α

)](
vq(y) – vqλ(y)

)
dy

=
∫

�λ\�v
λ

[
G

(
xλ, yλ,α

)
–G

(
x, yλ,α

)](
vq(y) – vqλ(y)

)
dy

+
∫

�v
λ

[
G

(
xλ, yλ,α

)
–G

(
x, yλ,α

)](
vq(y) – vqλ(y)

)
dy

≤
∫

�v
λ

[
G

(
xλ, yλ,α

)
–G

(
x, yλ,α

)](
vq(y) – vqλ(y)

)
dy
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≤
∫

�v
λ

G
(
xλ, yλ,α

)[
vq(y) – vqλ(y)

]
dy

≤ q
∫

�v
λ


|x – y|n–α

ψ
q–
λ (y)

[
v(y) – vλ(y)

]
dy

≤ q
∫

�v
λ


|x – y|n–α

vq–(y)
[
v(y) – vλ(y)

]
dy,

where ψλ(y) is valued between v(y) and vλ(y); therefore on �v
λ, we have

 ≤ vλ(y) ≤ ψλ(y) ≤ v(y).

Let (r, s) be a pair of numbers that satisfy (.)-(.). It follows from theHardy-Littlewood-
Sobolev inequality (.) that

‖uλ – u‖Lr (�u
λ ) ≤ C

∥∥vq–(vλ – v)
∥∥
L(nr)/(n+αr)(�v

λ)
.

Then by the Hölder inequality,

‖uλ – u‖Lr (�u
λ ) ≤ C‖v‖q–Lq (�v

λ)
‖vλ – v‖Ls(�v

λ). (.)

Similarly, one can show that

‖vλ – v‖Ls(�v
λ) ≤ C‖u‖p–Lp (�u

λ )
‖uλ – u‖Lr (�u

λ ). (.)

Combining (.) and (.), we arrive at

‖uλ – u‖Lr (�u
λ ) ≤ C‖v‖q–Lq (�v

λ)
‖u‖p–Lp (�u

λ )
‖uλ – u‖Lr (�u

λ ). (.)

By the conditions that u ∈ Lp (Rn
+) and v ∈ Lq (Rn

+), we can choose sufficiently small positive
λ, such that

C‖v‖q–Lq (�v
λ)
‖u‖p–Lp (�u

λ )
≤ 


.

Now inequality (.) implies ‖uλ – u‖Lp+(�u
λ )
= , and therefore �u

λ must have measure
zero. Similarly, one can show that �v

λ has measure zero. Therefore (.) holds. This com-
pletes Step .
Step . (Move the plane to the limiting position to derive symmetry and monotonicity.)
Inequality (.) provides a starting point to move the plane Tλ. Now we start from the

neighborhood of xn =  and move the plane up as long as (.) holds to the limiting posi-
tion. We will show that the solution u(x) and v(x) must be symmetric about the limiting
plane and be strictly monotonically increasing with respect to xn. More precisely, define

λ = sup
{
λ|u(x)≤ uμ(x) and v(x)≤ vμ(x),∀x ∈ �μ,μ ≤ λ

}
.

Suppose that for such a λ, we will show that both u(x) and v(x) must be symmetric about
the plane Tλ by using a contradiction argument. Assume that on �λ , we have

u(x)≤ uλ (x) and v(x)≤ vλ (x), but u(x) 	≡ uλ (x) or v(x) 	≡ vλ (x).

http://www.journalofinequalitiesandapplications.com/content/2014/1/173
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We show that the plane can be moved further up. More precisely, there exist an ε > 
depending on n, α, and the solution (u(x), v(x)) such that

u(x)≤ uλ(x) and v(x)≤ vλ(x) on �λ for all λ in [λ,λ + ε). (.)

In the case

v(x) 	≡ vλ (x) on �λ ,

by Lemma ., we have in fact u(x) < uλ (x) in the interior of �λ . Let

�
u
λ =

{
x ∈ �λ |u(x) ≥ uλ (x)

}
and �

v
λ =

{
x ∈ �λ |v(x)≥ vλ (x)

}
.

Then obviously �
u
λ has measure zero, and limλ→λ �u

λ ⊂ �
u
λ . The same is true for that

of v. From (.) and (.), we deduce

‖uλ – u‖Lr (�u
λ ) ≤ C‖v‖q–Lq (�v

λ)
‖u‖p–Lp (�u

λ )
‖uλ – u‖Lr (�u

λ ). (.)

Again the conditions that u ∈ Lp (Rn
+) and v ∈ Lq (Rn

+) ensure that one can choose ε suffi-
ciently small, so that for all λ in [λ,λ + ε),

C‖v‖q–Lq (�v
λ)
‖u‖p–Lp (�u

λ )
≤ 


.

Now by (.), we have ‖uλ – u‖Lp (�u
λ ) = , therefore �u

λ must have measure zero. Simi-
larly, �v

λ must also have measure zero. This verifies (.), therefore both u(x) and v(x) are
symmetric about the plane Tλ .
Next, we will show that the plane cannot stop at xn = λ for some λ < +∞, that is, we

will prove that λ = +∞.
Suppose that λ < +∞, Theorem . shows that the plane xn = λ entails the symmetric

points of the boundary ∂Rn
+ with respect to the plane Tλ , and we derive u(x) =  and

v(x) =  when x is on the plane xn = λ. This contradicts the pair of positive solutions
(u(x), v(x)) of (.), thus λ = +∞. Also themonotonicity easily follows from the argument.
This completes the proof of Theorem ..

Proof of Theorem . We know that both u(x) and v(x) of positive solutions of (.) are
strictly monotonically increasing in the positive direction of xn-axis, but u ∈ Lp (Rn

+) and
v ∈ Lq (Rn

+), so we come to the conclusion that the pair of positive solutions (u(x), v(x)) of
(.) does not exist.
This completes the proof of the Theorem .. �

4 Some examples of the pair (p1,q1) concerning Liouville-type theorems
One would naturally ask the existence of such pairs of (p,q) that satisfy all these condi-
tions (.), (.), and (.) in Theorem ., here we present some examples to answer the
question.

Example  In the special case where p = q and u(x) = v(x), system (.) becomes the fol-
lowing single integral equation:

u(x) =
∫
Rn+

G(x, y,α)up(y)dy, x ∈ Rn
+. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/173
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The first and the second authors in [] obtained the following Liouville-type theorem.

Theorem . ([]) Suppose p > n
n–α

. If the solution u of (.) satisfies u ∈ L
n(p–)

α (Rn
+) and is

nonnegative, then u≡ .

Compared with Theorem ., Theorem . is the special case where p = q = n(p–)
α

.

Example  The first and the second authors in [] also considered system (.) under the
critical case (.) and obtained Theorem ..We could find that Theorem . is coincident
with the special case p = p + , q = q + .

Example  In [], the authors discussed the more general integral system

{
u(x) =

∫
Rn+

G(x, y,α)|y|–svq(y)dy,
v(x) =

∫
Rn+

G(x, y,α)|y|–tup(y)dy, ∀x ∈ Rn
+.

(.)

They considered the case when p and q are both subcritical, that is,

p <  ∗ (t) –  =:
(n – t)
n – α

–  and q <  ∗ (s) –  =:
(n – s)
n – α

– , (.)

and they showed the Liouville-type theorem as follows.

Theorem . ([]) Suppose that u(x), v(x) ∈ C(Rn) are positive solutions of (.) with
(.). If

∫
Rn+

up+
|x|t dx < ∞,

∫
Rn+

vq+
|x|s dx < ∞ and α – s > , α – t > , then u≡  and v≡ .

Now consider the special case s = t =  in (.), and system (.) reduces to the simple
system (.). For convenience we rewrite Theorem . as follows.

Theorem . Suppose that u(x), v(x) ∈ C(Rn) are positive solutions of (.) with p and
q are both subcritical, that is, p,q < n+α

n–α
. Assume that u ∈ Lp+(Rn

+) and v ∈ Lq+(Rn
+) are

nonnegative, then u = v ≡ .

Theorem . above is just Theorem . when p = p + , q = q + .

Remark  Both Theorem . and Theorem . are special cases when p = p+, q = q+
in Theorem ., the former concerns the critical case and the latter the subcritical case for
system (.).
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