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Abstract
In this paper, we shall use some simple inequalities and a deep result on the existence
of primitive divisors of Lucas numbers to prove that the exponential Diophantine
equation xy + yz = zx has no positive integer solution (x, y, z) with 2 | y.
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1 Introduction
Let Z, N be the sets of all integers and positive integers, respectively. Recently, Zhang and
Yuan [] were interested in the equation

xy + yz = zx, x, y, z ∈N. (.)

Using the Gel’fond-Baker method, they proved that all solutions (x, y, z) of (.) satisfy
max {x, y, z} < exp(exp(exp())). This upper bound is far beyond the computable scope at
present. In this paper, we shall use some simple inequalities and a deep result on the exis-
tence of primitive divisors of Lucas numbers to prove the following result.

Theorem Equation (.) has no solution (x, y, z) with  | y.

In addition, it is obvious that (x, y, z) = (, , ) is a solution of (.). Because one have not
found the other solutions, we propose a conjecture as follows:

Conjecture Equation (.) has only the solution (x, y, z) = (, , ).

Our theorem supports the above mentioned conjecture.

2 Preliminaries
Lemma . Let f (X) = X/ logX,where X is a real number.Then f (X) is an increasing func-
tion for X > e.

Proof Since f ′(X) = (logX – )/(logX), we have f ′(X) >  for X > e. Thus, the lemma is
proved. �

Lemma . Let g(X) =
√
X – ( + log(X))/π , where X is a real number. Then we have

g(X) >  for X ≥ .
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Proof Since g ′(X) = /
√
X –/πX >  for X ≥ , g(X) is an increasing function satisfying

g(X) ≥ g() >  for X ≥ . The lemma is proved. �

Lemma . ([, ]) The equation

X + m = Yn, X,Y ,m,n ∈N,gcd(X,Y ) = ,n >  (.)

has only the solutions (X,Y ,m,n) = (, , , ) and (, , , ).

Lemma . ([, Theorem .]) The equation

X + Ym = n, X,Y ,m,n ∈N,  � Y ,Y > ,m >  (.)

has only the solution (X,Y ,m,n) = (, , , ).

Lemma . ([, Theorem .]) The equation

X – Ym = n, X,Y ,m,n ∈N,  � Y ,Y > ,m > ,n >  (.)

has only the solution (X,Y ,m,n) = (, , , ).

Let D be a positive integer, and let h(–D) denote the class number of positive binary
quadratic primitive forms of discriminant –D.

Lemma . h(–D)≤D.

Proof Notice that h(–) = h(–) = h(–) = , h(–) = h(–) = h(–) = h(–) =
h(–) = h(–) = h(–) = h(–) = h(–) = , h(–) = , h(–) = h(–) = . The
lemma holds for D≤ . By Theorems .., .., and .. of [], if D ≥ , then

h(–D) <

√
D

π

(
 + log(D)

)
. (.)

Therefore, if h(–D) >D, then from (.) we get

√
D <


π

(
 + log(D)

)
. (.)

But, by Lemma ., (.) is impossible for D ≥ . Thus, the lemma is proved. �

Lemma . Let k be a positive integer with gcd(k, D) = . Every solution (X,Y ,Z) of the
equation

X +DY  = kZ , X,Y ,Z ∈ Z,gcd(X,Y ) = ,Z > , (.)

can be expressed as

Z = Zt, t ∈N,

X + Y
√
–D = λ(X + λY

√
–D)t , λ,λ ∈ {±},
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where X, Y, Z are positive integers satisfying

X
 +DY 

 = kZ , gcd(X,Y) = ,Z | h(–D).

Proof This lemma is the special case of [, Theorems  and ] for D =  and D < .
Let α, β be algebraic integers. If α + β and αβ are nonzero coprime integers and α/β is

not a root of unity, then (α,β) is called a Lucas pair. Further, let a = α +β and c = αβ . Then
we have

α =


(a + λ

√
b), β =



(a – λ

√
b), λ ∈ {±},

where b = a – c. We call (a,b) the parameters of the Lucas pair (α,β). Two Lucas pairs
(α,β) and (α,β) are equivalent if α/α = β/β = ±. Given a Lucas pair (α,β), one
defines the corresponding sequence of Lucas numbers by

Ln(α,β) =
αn – βn

α – β
, n = , , , . . . .

For equivalent Lucas pairs (α,β) and (α,β), we have Ln(α,β) = ±Ln(α,β) for any
n ≥ . A prime p is called a primitive divisor of Ln(α,β) (n > ) if p | Ln(α,β) and
p � bL(α,β) · · ·Ln–(α,β). A Lucas pair (α,β) such that Ln(α,β) has no primitive divisor
will be called an n-defective Lucas pair. Further, a positive integer n is called totally non-
defective if no Lucas pair is n-defective. �

Lemma . ([]) Let n satisfy  < n ≤  and n �= . Then, up to equivalence, all parame-
ters of n-defective Lucas pairs are given as follows:

(i) n = , (a,b) = (, ), (, –), (,–), (, –), (, –), (,–), (,–,).
(ii) n = , (a,b) = (, –), (, –).
(iii) n = , (a,b) = (,–), (, –).
(iv) n = , (a,b) = (,–), (, –), (, –).
(v) n = , (a,b) = (, ), (, –), (, –), (, –), (, –), (, –).
(vi) n ∈ {, , }, (a,b) = (, –).

Lemma . ([]) If n > , then n is totally non-defective.

3 Further lemmas on the solutions of (1.1)
Throughout this section, we assume that (x, y, z) is a solution of (.) with (x, y, z) �= (, , ).

Lemma . ([]) x, y and z are coprime.

Lemma . min{x, y, z} ≥ .

Proof Since zx = xy + yz > , we have z > . If x = , since (x, y, z) �= (, , ), then y >  and
z = + yz ≥ +z ≥ z+, a contradiction. Similarly, if y = , then x >  and x+ = zx ≥ x ≥
x + , a contradiction. Therefore, we have min{x, y, z} ≥ .
If x = , then

y + yz = z. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/170


Lu and Li Journal of Inequalities and Applications 2014, 2014:170 Page 4 of 6
http://www.journalofinequalitiesandapplications.com/content/2014/1/170

Further, by Lemma ., y and z are odd integers with min{y, z} ≥ . Hence, we see from
(.) that (.) has the solution (X,Y ,m,n) = (z, y, z, y). But, by Lemma ., it is impossible.
Similarly, if y =  or z = , then we have

x + z = zx,  � xz,min{x, z} ≥  (.)

or

xy + y = x,  � xy,min{x, y} ≥ . (.)

But, by Lemmas . and ., (.) and (.) are impossible. Thus, we get min{x, y, z} ≥ .
The lemma is proved. �

Lemma . y < x.

Proof By (.), we have zx > xy and zx > yz . Hence,

x
logx

>
y

log z
(.)

and

x
log y

>
z

log z
. (.)

In addition, by Lemmas . and ., x, y and z are distinct.
If x < y < z, by Lemma ., then ≤ x < y < z. Hence, by Lemma ., we get

z
log z

>
x

logx
>

x
log y

, (.)

which contradicts (.). Similarly, we can remove the case that x < z < y.
If z < x < y, then  ≤ z < x < y and

y
log z

>
y

log y
>

x
logx

, (.)

which contradicts (.). Thus, we get y < x. The lemma is proved. �

4 Proof of theorem
We now assume that (x, y, z) is a solution of (.) with  | y. Since (x, y, z) �= (, , ), by Lem-
mas ., . and ., we have  � xz, gcd(y, z) = , min{x, y, z} ≥  and x > y.
We see from (.) that the equation

X + yY  = zZ , X,Y ,Z ∈ Z,gcd(X,Y ) = ,Z >  (.)

has the solution

(X,Y ,Z) =
(
xy/, y(z–)/,x

)
. (.)
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Applying Lemma . to (.) and (.), we have

x = Zt, t ∈N, (.)

xy/ + y(z–)/
√
–y = λ(X + λY

√
–y)t , λ,λ ∈ {±}, (.)

where X, Y, Z are positive integers satisfying

X
 + yY 

 = zZ , gcd(X,Y) =  (.)

and

Z | h(–y). (.)

Let

α = X + Y
√
–y, β = X – Y

√
–y. (.)

We see from (.) and (.) that α + β = X and αβ = zZ are coprime nonzero integers,
α/β = ((X

 – yY 
 ) + XY

√–y)/zZ is not a root of unity. Hence, (α,β) is a Lucas pair with
parameters (X, –yY 

 ). Further, Let Ln(α,β) (n = , , , . . .) denote the corresponding
Lucas numbers. By (.) and (.), we have

y(z–)/ =
∣
∣Lt(α,β)

∣
∣. (.)

We find from (.) and (.) that the Lucas number Lt(α,β) has no primitive divisor.
Therefore, by Lemma ., we have t ≤ . Further, since  � x and  � t by (.), it is easy
to remove all cases in Lemma . and conclude that t ∈ {, }.
If t = , then from (.) we get

y(z–)/ = λλY
(
X

 – yY 

)
. (.)

Let d = gcd(Y, X
 – yY 

 ). Since gcd(X,Y) = , we have d |  and d ∈ {, }. Further, since
t | x, we get  | x,  � y and d �=  by (.). Therefore, we have d =  and, by (.), gcd(y, X

 –
yY 

 ) =  and

Y = y(z–)/, X
 – yY 

 =±. (.)

It implies that

X
 ∓  = yz. (.)

But, since  | y and z ≥ , we get from (.) that  � X and  ≡ yz ≡ X
 ∓  ≡ ∓  �≡ 

(mod ), a contradiction.
If t = , then from (.) and (.) that x = Z, x | h(–y) and

x ≤ h(–y). (.)
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But recall that x > y, by Lemma ., (.) is impossible. Thus, (.) has no solution (x, y, z)
with  | y. The theorem is proved.
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