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1 Introduction
In the previous paper, we derived tight bounds for the logarithmic mean in the case of the

Frobenius norm, inspired by the work of Zou in [1].

Theorem 1.1 ([2]) For any matrices S, T, X with S,T > 0, my > 1, my > 2 and Frobenius

norm ||-||p, the following inequalities hold:
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Although the Frobenius norm is only a special case of unitarily invariant norm, our
bounds for the logarithmic mean have improved those in the following results by Hiai
and Kosaki [3, 4].
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Theorem 1.2 ([3,4]) Forany bounded linear operators S, T,X withS,T > 0,m; > 1, my >

2 and any unitarily invariant norm ||| - ||, the following inequalities hold:
1 [lm 1
|||SI/2XT1/2 ||| < — Z Sk/(ml+1)XT(m1+1—k)/(m1+1) < / SUXTl—v dv
m\\ o 0
1= 1
_ Z SkIlma=1) xr(ma=1-k)/(ma-1) ||| ~ISX + XTI
- 1445) =0 -2

In this paper, we give tighter bounds for the logarithmic mean than those by Hiai and
Kosaki [3, 4] for every unitarily invariant norm. That is, we give the generalized results of
Theorem 1.1 for the unitarily invariant norm. For this purpose, we firstly introduce two
quantities.

Definition 1.3 For o € R and %,y > 0, we set

WED (xHy), DD (xAy),
Pyx,y) =1 7" and Q,(x,y) =1 *7

x (x=9), x (x=9).

We note that we have the following bounds of logarithmic mean with the above two
means (see the appendix in the paper [2]):

Qumx,y) < LM(x,y) < Pym(x,y)  (ifx>y),
Prym(%,y) < LM(%,9) < Qum(x,y)  (ifx <),

where the logarithmic mean is defined by

Xy
logx—logy (x #-y)’

LM(x,y) =
wr x (x=y).

@)

We here define a few symmetric homogeneous means using P, (x,y) and Qq(x,y) in the
following way.

Definition 1.4
(i) For |o| <1and x #y, we define

o(x* +y"‘)(x—y)‘

1 1
Aul®y) = SPul®y) + 5 Qulxy) = 20 — )

(i) For @ € R and x #y, we define

Py (%,y) — Qu(x,9)
log P, (x,y) —log Qu(x,7)

La(xﬁy) = :LM(x,y)r

which is independent of «.
(iii) For |a| <2 and x #y, we define

/2 _
Gul,9) = VPolo ) Qi) = L))

X =y
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(iv) For || <1 and x #y, we define

H (x )= 2Po¢(x1y)Qot(x7y) _ 206(96)/)“ (x—y)
OV ) + Qulny) | A 4y a

and we also set A, (x,y) = Ly (%, ) = Gy (x,y) = Hy(x,y) =x for x = y.

We have the following relations for the above means:

1 .
Ai(x,y) = AM(x,y) = E(x +9) Ao, y) = (}gr(l)Aa(x,y) = LM(x,y),

Go(x,y) = lim Ga(x,) = LM(x,3),  Gi(x,y) = GM(x,3) = /xy,

2x .
Galos) = HM(9) = 2, Holtu) = Jim Ho () = LM(,0),

HI/Z(xry) = GM(x:y)7 H1(x»J’) =HM(?¢’J’)

and H, (x,) = Gau(x, ). In addition, the above means are written as the following geomet-
ric bridges:

Aa(xiy) = [Ba(x!y)]a[sa(x’y)]lia: La(xi.y) = [Ea(xry)]a[sa(xry)]liay

Got(x’y) = [GM(xry)]a[Sa(xxy)]l_a’ Ha(x’y) = [Da(xry)]a[sa(x;y)]l_a;

where

1/(1-a) o 1/a
swn=(%2) L mea=("7)

and

2 1/a X% _ 1/a
Dq(x,y) = ")k (x,y) = __ B )
X%+ a(logx —logy)

Sa(x,7) and B, (x, y) are called Stolarsky mean and binomial mean, respectively.
In the previous paper [2], as tight bounds of logarithmic mean, the scalar inequalities
were shown

Guymx,y) <LM(x,y) (m=>1), LM(x,y) < Aym(x,y)  (m=>2)

which equivalently implied Frobenius norm inequalities (Theorem 1.1). See Theorem 2.2
and Theorem 3.2 in [2] for details. In this paper, we give unitarily invariant norm inequal-

ities which are general results including Frobenius norm inequalities as a special case.

2 Unitarily invariant norm inequalities
To obtain unitarily invariant norm inequalities, we apply the method established by Hiai
and Kosaki [4-7].

Definition 2.1 A continuous positive real function M(x, y) for x,y > 0 is called a symmet-
ric homogeneous mean if the function M satisfies the following properties:
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(2) M(x,y) = My, ).
(b) M(cx,cy) = cM(x,y) for ¢ > 0.

(c) M(x,y) is non-decreasing in x, y.
(d) min{x,y} < M(x,y) < max{x,y}.

The functions A, (x,¥), Ly (%, %), Gu(x,9), Hy(x,) defined in Definition 1.4 are symmet-
ric homogeneous means. We give powerful theorem to obtain unitarily invariant norm
inequalities. In the references [4—7], another equivalent conditions were given. However,
here we give minimum conditions to obtain our results in this paper. Throughout this
paper, we use the symbol B(7{) as the set of all bounded linear operators on a separable
Hilbert space /. We also use the notation K > 0 if K € B(H) satisfies (Kx,x) > 0 for all
x € H (then K is called a positive operator).

Theorem 2.2 ([4-7]) For two symmetric homogeneous means M and N, the following con-
ditions are equivalent:
1) WM, XN < IIN(S, T)X || for any S, T, X € B(H) with S, T > 0 and for any
unitarily invariant norm ||| - |||.
(ii) The function M(e*,1)/N(€',1) is positive definite function on R (then we denote
M =< N), where the positive definiteness of a real continuous function ¢ on R means
that [¢(t; — t))ij-1,..n is positive definite for any t,...,t, € R with any n € N.

Thanks to Theorem 2.2, our task to obtain unitarily invariant norm inequalities in this
paper is to show the relation M < N, which is stronger than the usual scalar inequalities
M < N. That is, M(s, ) < N(s, t) implies M(s,t) < N(s, £).

We firstly give monotonicity of three means H, (x,y), G (*, y) and A, (x, y) for the param-
eter « € R. Since we have H_,(x,y) = Hy (%, ), G_o(%,9) = Gy (x,y) and A_y(x,y) = Ax(x,9),
we consider the case o > 0. Then we have the following proposition.

Proposition 2.3
(i) f0<a<pB <1, then Hg < H,.
(ii) If0 <a< B <2,then Gg < Gg.
(iii) IfO0<a<pB <1,then Ay < Ap.

Proof
(i) We calculate

Hpg(e',1)  2BeP'(e! - 1) e -1  p P -1) Bsinhat
H,(et, 1)  e28t-1 2ae*t(et —1) o ev(e2Pt—1) o sinh Bt

This is a positive definite function for the case o < §, so that we have Hg < H,.

(ii) The similar calculation

Gp(e*,1) 2BePt(e* — 1) -1 B ePt(e2t —1) _ B sinhat

G,(e2,1) et -1 . 2uet(e2 —1) o . et(e2t—1) « . sinh Bt

implies Gg < G,.
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(iii) Since the case 0 =« < B <1 follows from the limit of the case 0 < & < 8 <1, we may
assume 0 <« < B < 1. Since we have

Aq(€’,1) a sinhptcoshat
Ag(e*,1) B coshBtsinhat’

we calculate by the formula sinh(x) = 2 cosh(x/2) sinh(x/2) repeatedly

sinh Btcoshat  sinh(B-a)t 2 cosh(£7%£) sinh(£3% 1)
cosh St sinh ot ~ coshBtsinhat cosh ftsinh ot
2" 17, cos(Z2t) sinh( ’32’,,“ t)
= lim A
n—00 cosh St sinh ot

From Proposition 4 in [8], the sufficient condition that the function

(T, cosh(((B — @)/2%)t))/ cosh Bt is positive definite is Yy, (B —a)/B2%) <1, ie.,
(B —a)(1-27") < B. The sufficient condition that the function

(sinh(((8 — «)/2™)t))/ sinh et is positive definite is (8 — «)/2" < «. The conditions
(B-—a)(1-2"") < Band (B —a)/2" < « are satisfied with a natural number n

sufficiently large. Thus we conclude A, < Ag. O

It may be notable that (iii) of the above proposition can be proven by a similar argument
to Theorem 2.1 of the paper [4].
Next we give the relation among the four means H, (x, ), G4 (x,¥), Ly (x,y), and A, (x, y).

Proposition 2.4 Forany S, T,X € B(H) with S, T > 0, |«| < 1 and any unitarily invariant
norm ||| - |II, we have

[1He s, T)X]| < (| Ga(S, TX| < Lo, DX]| = [[4u(S, D]

Proof We firstly calculate

Hy(e,1)  2ae™ (¢-1) e'-1  2e77 9 R
Ga(et, 1) - eat +1 eOlt -1 aeo{t/Z(et _ 1) - eat +1 - eat/z + e—Olt/Z - COSh%t,

which is a positive definite function. Thus we have H, < G, so that the first inequality of
this proposition holds thanks to Theorem 2.2.
The calculation

Gu(e,1)  ae*?(e -1) ot at ~ ¢

Ly(ef, 1) evi—1 e —1 extl2 gt ginh ¥

implies G, < L. Thus we have the second inequality of this proposition.
Finally the calculation

Ly(eh,1) e -1 2(e*t - 1) 2 e @2 tanh %
Aglet, 1)t alet+1)(ef-1) at et2iyet2

implies L, < A,. Thus we have the third inequality of this proposition. d
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In the papers [3, 4], the unitarily invariant norm inequalities of the power difference
mean (or A-L-G interpolating mean) M, (x,y) was systematically studied. We give the re-
lation for our means with the power difference mean:

a-1 X

15T @A)
X (x=9).

My(x,y) =

Theorem 2.5 For any S,T,X € B(H) with S,T > 0, m € N and any unitarily invariant

norm ||| - |Il, we have

[Mnin (S, DX | = (| Grim(S, TIX| < |G, TIX|

(More concrete expressions of these inequalities will be written down in (8) of Section 4.)

Proof The second inequality and the third inequality have already been proven in Propo-
sition 2.4.
To prove the first inequality, for 0 < «, 8 < 1 we calculate

Mp(e*,1) p-1 eF'-1 -1  1-B sinhpr  sinhat
Gu(e,1) B e2B-Di_1 e(e2—1) «f  sinh¢ sinh(1- B)¢
_20-8) sinh B¢ cosh % . sinh &
af sinh ¢ sinh(1 - B)t’

By Proposition 5 in [8], the function (sinh 8t cosh«£/2)/sinh¢ is positive definite, if 8 +
a/2 <landa/2 < % The function (sinh «£/2)/sinh(1 — B)¢ is also positive definite, if /2 <
1- B. The case « = 1/m and B = m/(m + 1) satisfies the above conditions. Thus we have
Myyom+1) = Gijm which leads to the first inequality of this proposition.

To prove the last inequality, for 0 < « <1 and 8 > 1, we also calculate

Au(e,1)  af sinhtsinh(B-1)t o sinh ¢ coshat sinh(B8 — 1)¢

Mg(e?,1)  2(B-1) tanhatsinhft  2(8-1) sinh B¢ sinh ot

_ap  sinhg(Br)cosh %(BE) sinh(p - 1)t
T208-1) sinh Bt " sinhat

By Proposition 5 in [8], the function (sinh1/8(8t) cosha/8(B¢))/sinh Bt is positive definite,
ifl/B+a/B <land /B < % The function (sinh(8 — 1)¢)/sinh «¢ is also positive definite,
if B —1 < «. From these conditions, we have 8 =« + 1 and @ < 1. The case @ = 1/m and
B = (m + 1)/m satisfies the above conditions. Thus we have Ay, < M1y, Which leads

to the last inequality. O

Remark 2.6 Since (m + 1)/m < m/(m — 1), by Theorem 2.1 in [4], we have M11)m =<
My/m-1)- Thus we have

”’M(mﬂ)/m(sx T)X”’ < ”’Mm/(m—l)(sr T)X

’

which means that Theorem 2.5 gives a general result for Theorem 1.1.
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Remark 2.7 From the well-known fact M, < Mg for o < B, we have H; = HM = M_; <
M1/2 = GM and H1/2 =GM = M1/2 < Mz/g. Thus we have

”’Hl/m(Si T)X”’ < ”’Mm/(mﬂ)(si T)X

, ()

forany S, T,X € B(H) with S, T > 0, m = 1,2 and any unitarily invariant norm ||| - [||.

However, we do not have the scalar inequality Hy/3(t,1) < M3/4(¢,1) for ¢ > 0 in general,
so that the inequality (2) is not true for m = 3. We also do not have the scalar inequality
Hij3(t,1) > M34(2,1) for £ > 0, in general.

3 Norm continuity in parameter
In this section, we consider the norm continuity argument with respect to the parameter
on our introduced means. Since we have the relation H,(x,y) = Gy (%, %), we firstly con-

sider the norm continuity in the parameter on G, (S, T').

Proposition3.1 Let S, T,X € B(H) withS,T > 0.If0 < a < B <2 and ||G4(S, T)X|| < oo,

then we have, for any unitarily invariant norm ||| - ||,
lim [|Gs(S, T)X - Gy (S, T)X|| = 0.
B'—B

Proof From the following equality (see Eq. (1.4) in [4] for example):

Gp(e?,1) B sinhat B /00 its sin(75") p
= — - = — e S,
Go(e?,1) a sinhpt o 2B{cosh(%) +cos(%)}
we have, for0 <o <f <2,
Gs(S, T oos *(Gy(S, T)X)(T. ‘ inCy) d
L, T)X = u x (S, X " —ix :
p(S.T) [w( suros) ( D )( supp7) 2a{cosh(%)+cos(%°‘)} *

applying Theorem 3.4 in [5] with Gg(1,0) = 0. Here Sy, s represents the support projec-

tion of S. Thus we have

sin( %‘")

2ar{cosh(%) + cos(F*)} - 2a{cosh(%7) + cos(%7)}

sin( 7}—‘?‘)

1G5 (S, )X - Gar(S, TIX| < ‘

1

x J|6a(s. X[ >0 (8~ £).
by the Lebesgue dominated convergence theorem. O

We secondly consider the norm continuity in the parameter on A, (S, 7).

Proposition 3.2 Let S, T,X € B(H) with S,T > 0. If 0 < a < B <1, then we have, for any

unitarily invariant norm ||| - ||,

22245, TOX ®)

ll4a(s, x| < ll4s(s, T)X| < =
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and

2(f —a)

|[Aa (S, T)X = Ag(S, T)X|| <
a

[l4a(s. Dx]]. @

Proof The first inequality of (3) has been proved in (iii) of Proposition 2.3. Since 1/ cosh ¢
and (sinh(8 — «)t)/ sinh B¢ are positive definite functions,

a Agle*,1) _ coshatsinh Bt —cosh Btsinhat 1 sinh(8 — a)t
B Al(e2,1) coshat sinh B¢ ~ coshat sinh B¢

is positive definite. If we set
B o
A(s, t) = ——Ay(s, t) — ——Agp(s, b),
(s,2) s (s,2) 5w p(s,2)

then we have A(ef,1)/A4(ef,1) = B/(B —a) - 1/(cosh(at/2)) - ((sinh((8 — «)t/2))/(sinh(Bt/2))),
which is a positive definite function. Thus we have

W p P aus mx- G DX < [JAu(s, TX] ®

by Theorem 2.4 in [7]. (Actually, A(s, ) may not be a symmetric homogeneous mean. How-
ever, we easily find that it satisfies A(s, t) = A(¢,s) and A(s,s) = s. Then Theorem 2.4 in [7]
ensures that the inequality (5) is valid.) Therefore we have

st D = 22 ants x| s mix- 22 ags x|
< (ﬂ’f . 1) [ Au(S, )] = 2;:; l4u(s, T)x]),
which is the second inequality of (3).
We prove the inequality (4):
Aa (S, T)X = Ap(S, T)X ||
- H‘ <1 - §>AD,(S, )X + gAa (S, T)X — Ag(S, T)Xm
< (*ga;"‘) ot x| + | £ auts 11 - a5, T)xm. (6)

From the inequality (5), we have
m gAa(S, T)X - Ag(S, T)Xm < ’30[;“ l4q (s, T)X]).

Thus the right hand side of the inequality (6) is bounded from the above:

(25 ) Iauts o]

o

gAa (S, T)X — Ag(S, T)X

BRI

|Aa(S, T)X]|.
o

Thus we have the inequality (4). O

We also have the following proposition.
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Proposition 3.3 LetS,T,X € B(H) with S, T > 0.1f0 <« < 8 <1and ||Ap(S, T)X||| < oo,

then we have, for any unitarily invariant norm || - ||,

Jim [[Aa (S, T)X = A (S, T)X|| = 0. 7)
Proof We firstly prove (7) for the case 0 <@ < 8 < 1. For o € [a, ), we have

ats, X - A5, DX ]| < 22X =2 a5, 1) < 292D a5, 1|

by Proposition 3.2. For o’ € [¢/2,«], we similarly have

2

2(a — o 4|
14a(5, X - 405, X < 29~ a5, x| < 2= flagis, x|
o

We thus obtain for o’ € [a/2, B),

)

428, )X = 405, D)X < 2= a5, T)x |

which implies (7) for the case 0 < < 8 < 1.
We secondly show (7) for the case @ = 0. When 0 <« < 8 <1, we have

Aa(eZt,l) o sinh(ﬂt)cosh(at) a «a sinh((8 - a)t)
Aglex,1) B cosh(t) sinh(at) E+E.cosh(ﬂt)sinh(at)'

If we put B(s, t) = Aq(s, t) — (a/B)Ap(s, t), then we have

B(e?*,1) _a  sinh((8 - a)t)
Agle?,1) E . cosh(B¢) sinh(at)’

which is a positive definite function, as shown in (iii) of Proposition 2.3. We also find that

Ap(e*,1) 1 sinh(B?)

Ap(e?,1) Bt ' cosh(8t)

in the limit @ — 0. Then we put the Fourier transforms qga, () and qgo, (t) of two functions
¢,p(s) and ¢ g(s) in the following:

a  sinh((B — a)t)

E cosh(B¢) sinh(at)’
1 sinh(Bt)

Bt cosh(Bt)’

f € o 5($) s = by (0)

/ o 5(s) ds = o, (t)
Since we have B(1,0) = 0 and Ay(1,0) = 0, we have
o o . .
Ay(S, T)X - EA/S S, T)X = f (SsuppS)ls (A/S(S» T)X)(Tsupp T)_Ls¢a,ﬂ (s)ds,

Ao(S, T)X = / (Suapps)* (A5 (S, TIX) (Toupp )05 (5) s
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from Theorem 3.4 in [5]. Then we have
(40 (S, T)X - Ao(S, )X < (% + I — o nl) 4,65, Dx]|.

To prove limg o, [l¢ws — doslli = 0, we have only to prove limy o, |¢ap — Posll2 = O
thanks to Lemma 5.8 in [5]. Since we have f_O:O Ga,p(s)ds = éa,ﬂ(O) = (B — a)/B, we have
f_o; ¢o,p(s)ds = (]30,,3(0) =1 in the limit « — 0. From the fact sinhx > x for x > 0, we
also have 0 < &a,ﬂ(t),dgo,ﬂ(t) < 1/(B|t]). Since éa,ﬁ(t) and ¢A>0,,g(t) are positive definite func-
tions, we have (Z)a,,g(t) < (lga,ﬁ(O) =(B-a)/B <1and éo,ﬁ(t) < qgo,ﬁ(O) = 1. (See Chap-
ter 5 in [9] for some basic properties of the positive definite function.) We thus ob-
tain dga,ﬁ(t),qgo,ﬁ(t) < min(1,1/(B|¢t])) for two L?-functions q';a,ﬁ and ¢30,ﬂ~ We finally obtain
|¢A>a,ﬂ(t) - (;go'ﬂ(t)|2 < 4min(1,1/8¢2). Since min(1,1/8¢2) is integrable and lim,_, ¢ qAbo,,ﬁ(t) =
qgo,ﬁ(t), we obtain limg_, o, ||<Z>a,ﬁ - qso,,g l2 = 0 by the Lebesgue dominated convergence the-
orem. (I

We note that the assumption [||Ag(S, T)X||| < oo for some § € (0,1] is equivalent to [||SX +
XT || < 00, since we have [|A5(S, T)X|I| < [141(S, )Xl < ((2-B)/B) A (S, T)X]|| using the

inequality (3).

4 Conclusion
We obtained new and tight bounds for the logarithmic mean for unitarily invariant norm.
Our results improved the famous inequalities by Hiai and Kosaki [3, 4]. Concluding this

paper, we summarize Theorem 2.5 in the familiar form. From the calculations

1 &
Gl/m1 (S, t) - Z S(2k—1)/2m1 t(2m1—(2k—1))/2m1
™S

and

1 f: ki ((my—k)/ 1
Aty (s,8) = — ghimzgim=Rime _ (s +¢) |,
my k=0 2

we have

1 &
Gl/ml (S, T)X — ; Z S(2k—1)/2m1XT(2m1—(2k—1))/2m1
1
k=1

and

1 (& 1
Aty (S, T)X = — (2 Skima xptma=hlmy _ E(SX + XT)).
2 \x=0

In addition, from the paper [4], we know that

1 &
Mo fmy (S, T)X = —= > gHtme X tm1=0lm b
1
k=1
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and
mp—1

1
Mo omy-1)(S, T)X = — > gHmat) yplmtRima-),
2
k=0

Thus Theorem 2.5 can be rewritten as the following inequalities, which are our main result
of the present paper:

my

my
i Z Sk/(m1+1)XT(m1+l—k)/(m1+l) < i Z S(Zk—l)/2m1XT(2m1—(2k—1))/2m1
o= G (e

1
/ S"XTY™ dv

=<
0
1 (| 1
< — | skimxTtmim _ —(SX + XT)
my =0 2
1 mp—1
< — Z Sk/(mz—l)XT(mz—l—k)/(mz—l) , (8)
"2l =0

for S,T,X € B(H) with S, T > 0, m; > 1, m, > 2, and any unitarily invariant norm ||| - [[|.
We have also shown some properties for our means such as monotonicities and norm
continuities in the parameter.
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