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Abstract
This paper investigates the common set of solutions of a variational inequality, a
mixed equilibrium problem, and a hierarchical fixed-point problem in a Hilbert space.
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1 Introduction
LetH be a real Hilbert space, whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖.
Let C be a nonempty closed convex subset of H and A be a mapping from C into H . A
classical variational inequality problem, denoted byVI(A,C), is to find a vector u ∈ C such
that

〈v – u,Au〉 ≥ , ∀v ∈ C. (.)

The solution of VI(A,C) is denoted by �∗. It is easy to observe that

u∗ ∈ �∗ ⇐⇒ u∗ = PC
[
u∗ – ρAu∗], where ρ > .

We now have a variety of techniques to suggest and analyze various iterative algorithms
for solving variational inequalities and the related optimization problems; see [–]. The
fixed-point theory has played an important role in the development of various algorithms
for solving variational inequalities. Using the projection operator technique, one usually
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establishes an equivalence between the variational inequalities and the fixed-point prob-
lem. This alternative equivalent formulation was used by Lions and Stampacchia [] to
study the existence of a solution of the variational inequalities.
We introduce the following definitions, which are useful in the following analysis.

Definition . The mapping T : C →H is said to be
(a) monotone if

〈Tx – Ty,x – y〉 ≥ , ∀x, y ∈ C;

(b) strongly monotone if there exists an α >  such that

〈Tx – Ty,x – y〉 ≥ α‖x – y‖, ∀x, y ∈ C;

(c) α-inverse strongly monotone if there exists an α >  such that

〈Tx – Ty,x – y〉 ≥ α‖Tx – Ty‖, ∀x, y ∈ C;

(d) nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C;

(e) k-Lipschitz continuous if there exists a constant k >  such that

‖Tx – Ty‖ ≤ k‖x – y‖, ∀x, y ∈ C;

(f ) contraction on C if there exists a constant  ≤ k <  such that

‖Tx – Ty‖ ≤ k‖x – y‖, ∀x, y ∈ C.

It is easy to observe that every α-inverse strongly monotone T is monotone and Lipschitz
continuous. A mapping T : C → H is called k-strict pseudo-contraction if there exists a
constant ≤ k <  such that

‖Tx – Ty‖ ≤ ‖x – y‖ + k
∥∥(I – T)x – (I – T)y

∥∥, ∀x, y ∈ C. (.)

The fixed-point problem for the mapping T is to find x ∈ C such that

Tx = x. (.)

We denote by F(T) the set of solutions of (.). It is well known that the class of strict
pseudo-contractions includes the class of Lipschitzian mappings, then F(T) is closed and
convex and PF(T) is well defined (see []).

The mixed equilibrium problem, denoted byMEP, is to find x ∈ C such that

F(x, y) + 〈Dx, y – x〉 ≥ , ∀y ∈ C, (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/154
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where F : C ×C → R is a bifunction, and D : C → H is a nonlinear mapping. This prob-
lem was introduced and studied by Moudafi and Théra [] and Moudafi []. The set of
solutions of (.) is denoted by

MEP(F) :=
{
x ∈ C : F(x, y) + 〈Dx, y – x〉 ≥ ,∀y ∈ C

}
. (.)

If D = , then it is reduced to the equilibrium problem, which is to find x ∈ C such that

F(x, y) ≥ , ∀y ∈ C. (.)

The solution set of (.) is denoted by EP(F). Numerous problems in physics, optimiza-
tion, and economics reduce to finding a solution of (.); see [–]. In , Combettes
and Hirstoaga [] introduced an iterative scheme of finding the best approximation to
the initial data when EP(F) is nonempty. Recently Plubtieng and Punpaeng [] introduced
an iterative method for finding the common element of the set F(T)∩ �∗ ∩ EP(F).
Let S : C → H be a nonexpansive mapping. The following problem is called a hierarchi-

cal fixed point problem: Find x ∈ F(T) such that

〈x – Sx, y – x〉 ≥ , ∀y ∈ F(T). (.)

It is known that the hierarchical fixed-point problem (.) links with somemonotone vari-
ational inequalities and convex programming problems; see [, , ]. Various meth-
ods have been proposed to solve the hierarchical fixed-point problem; see Moudafi [],
Mainge and Moudafi in [], Marino and Xu in [] and Cianciaruso et al. []. Very re-
cently, Yao et al. [] introduced the following strong convergence iterative algorithm to
solve problem (.):

yn = βnSxn + ( – βn)xn,

xn+ = PC
[
αnf (xn) + ( – αn)Tyn

]
, ∀n≥ , (.)

where f : C → H is a contraction mapping, and {αn} and {βn} are two sequences in (, ).
Under some certain restrictions on the parameters, Yao et al. proved that the sequence
{xn} generated by (.) converges strongly to z ∈ F(T), which is the unique solution of the
following variational inequality:

〈
(I – f )z, y – z

〉 ≥ , ∀y ∈ F(T). (.)

In , Ceng et al. [] investigated the following iterative method:

xn+ = PC
[
αnρU(xn) + (I – αnμF)

(
T(yn)

)]
, ∀n≥ , (.)

where U is a Lipschitzian mapping, and F is a Lipschitzian and strongly monotone map-
ping. They proved that under some approximate assumptions on the operators and pa-
rameters, the sequence {xn} generated by (.) converges strongly to the unique solution
of the variational inequality

〈
ρU(z) –μF(z),x – z

〉 ≥ , ∀x ∈ Fix(T).

http://www.journalofinequalitiesandapplications.com/content/2014/1/154
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In this paper, motivated by the work of Yao et al. [], Ceng et al. [], Bnouhachem [,
] and by the recent work going in this direction, we give an iterative method for find-
ing the approximate element of the common set of solutions of (.), (.), and (.) in
a real Hilbert space. We establish a strong convergence theorem based on this method.
We would like to mention that our proposed method is quite general and flexible and in-
cludes many known results for solving equilibrium problems, variational inequality prob-
lems, and hierarchical fixed-point problems; see, e.g., [, , –, , ] and relevant
references cited therein.

2 Preliminaries
In this section, we list some fundamental lemmas that are useful in the consequent anal-
ysis. The first lemma provides some basic properties of projection onto C.

Lemma . Let PC denote the projection of H onto C. Then we have the following inequal-
ities:

〈
z – PC[z],PC[z] – v

〉 ≥ , ∀z ∈H , v ∈ C; (.)〈
u – v,PC[u] – PC[v]

〉 ≥ ∥∥PC[u] – PC[v]
∥∥, ∀u, v ∈H ; (.)∥∥PC[u] – PC[v]

∥∥ ≤ ‖u – v‖, ∀u, v ∈H ; (.)∥∥u – PC[z]
∥∥ ≤ ‖z – u‖ – ∥∥z – PC[z]

∥∥, ∀z ∈H ,u ∈ C. (.)

Lemma . [] Let F : C×C →R be a bifunction satisfying the following assumptions:
(i) F(x,x) = , ∀x ∈ C;
(ii) F is monotone, i.e., F(x, y) + F(y,x)≤ , ∀x, y ∈ C;
(iii) for each x, y, z ∈ C, limt→ F(tz + ( – t)x, y) ≤ F(x, y);
(iv) for each x ∈ C, y → F(x, y) is convex and lower semicontinuous.

Let r >  and x ∈H . Then there exists z ∈ C such that

F(z, y) +

r
〈y – z, z – x〉 ≥ , ∀y ∈ C.

Lemma . [] Assume that F : C ×C → R satisfies assumptions (i)-(iv) of Lemma .,
and for r >  and ∀x ∈H , define a mapping Tr :H → C as follows:

Tr(x) =
{
z ∈ C : F(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}
.

Then the following hold:
(i) Tr is single-valued;
(ii) Tr is firmly nonexpansive, i.e.,

‖Trx – Try‖ ≤ 〈Trx – Try,x – y〉, ∀x, y ∈H ;

(iii) F(Tr) = EP(F);
(iv) EP(F) is closed and convex.

http://www.journalofinequalitiesandapplications.com/content/2014/1/154


Bnouhachem Journal of Inequalities and Applications 2014, 2014:154 Page 5 of 24
http://www.journalofinequalitiesandapplications.com/content/2014/1/154

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H . If T :
C → C is a nonexpansivemapping with Fix(T) �= ∅, then themapping I–T is demiclosed at
, i.e., if {xn} is a sequence in C weakly converging to x and if {(I –T)xn} converges strongly
to , then (I – T)x = .

Lemma . [] Let U : C → H be a τ -Lipschitzian mapping, and let F : C → H be a k-
Lipschitzian and η-strongly monotonemapping, then for  ≤ ρτ < μη,μF –ρU isμη–ρτ -
strongly monotone, i.e.,

〈
(μF – ρU)x – (μF – ρU)y,x – y

〉 ≥ (μη – ρτ )‖x – y‖, ∀x, y ∈ C.

Lemma . [] Suppose that λ ∈ (, ) and μ > . Let F : C →H be a k-Lipschitzian and
η-strongly monotone operator. In association with a nonexpansive mapping T : C → C,
define the mapping Tλ : C → H by

Tλx = Tx – λμFT(x), ∀x ∈ C.

Then Tλ is a contraction provided μ < η
k , that is,

∥∥Tλx – Tλy
∥∥ ≤ ( – λν)‖x – y‖, ∀x, y ∈ C,

where ν =  –
√
 –μ(η –μk).

Lemma . [] Assume that {an} is a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + δn,

where {γn} is a sequence in (, ), and δn is a sequence such that
()

∑∞
n= γn =∞;

() lim supn→∞ δn/γn ≤  or
∑∞

n= |δn| < ∞.
Then limn→∞ an = .

Lemma. [] Let C be a closed convex subset of H . Let {xn} be a bounded sequence in H .
Assume that

(i) the weak w-limit set ww(xn) ⊂ C, where ww(xn) = {x : xni ⇀ x};
(ii) for each z ∈ C, limn→∞ ‖xn – z‖ exists.

Then {xn} is weakly convergent to a point in C.

3 The proposedmethod and some properties
In this section, we suggest and analyze our method for finding the common solutions of
the variational inequality (.), the mixed equilibrium problem (.), and the hierarchical
fixed-point problem (.).
LetC be a nonempty closed convex subset of a real Hilbert spaceH . LetD,A : C →H be

θ , α-inverse stronglymonotonemappings, respectively. Let F : C×C →R be a bifunction
satisfying assumptions (i)-(iv) of Lemma. and S,T : C → C be a nonexpansivemappings
such that F(T) ∩ �∗ ∩ MEP(F) �= ∅. Let F : C → C be a k-Lipschitzian mapping and be
η-strongly monotone, and let U : C → C be a τ -Lipschitzian mapping.

http://www.journalofinequalitiesandapplications.com/content/2014/1/154
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Algorithm . For an arbitrary given x ∈ C, let the iterative sequences {un}, {xn}, {yn},
and {zn} be generated by

F(un, y) + 〈Dxn, y – un〉 + 
rn

〈y – un,un – xn〉 ≥ , ∀y ∈ C;

zn = PC[un – λnAun];

yn = βnSxn + ( – βn)zn;

xn+ = PC
[
αnρU(xn) + (I – αnμF)

(
T(yn)

)]
, ∀n≥ ,

(.)

where {λn} ⊂ (, α), {rn} ⊂ (, θ ). Suppose that the parameters satisfy  < μ < η
k ,

 ≤ ρτ < ν , where ν =  –
√
 –μ(η –μk). Also, {αn} and {βn} are sequences in (, )

satisfying the following conditions:
(a) limn→∞ αn =  and

∑∞
n= αn =∞,

(b) limn→∞(βn/αn) = ,
(c)

∑∞
n= |αn– – αn| < ∞ and

∑∞
n= |βn– – βn| <∞,

(d) lim infn→∞ rn >  and
∑∞

n= |rn– – rn| <∞,
(e) lim infn→∞ λn < lim supn→∞ λn < α and

∑∞
n= |λn– – λn| < ∞.

Remark . Our method can be viewed as an extension and improvement for some well-
known results, for example, the following.
• If A = , we obtain an extension and improvement of the method of Wang and Xu
[] for finding the approximate element of the common set of solutions of a mixed
equilibrium problem and a hierarchical fixed-point problem in a real Hilbert space.

• If we have the Lipschitzian mapping U = f , F = I , ρ = μ = , and A = , we obtain an
extension and improvement of the method of Yao et al. [] for finding the
approximate element of the common set of solutions of a mixed equilibrium problem
and a hierarchical fixed-point problem in a real Hilbert space.

• The contractive mapping f with a coefficient α ∈ [, ) in other papers [, , , ]
is extended to the cases of the Lipschitzian mapping U with a coefficient constant
γ ∈ [,∞).

This shows that Algorithm . is quite general and unifying.

Lemma . Let x∗ ∈ F(T)∩ �∗ ∩MEP(F). Then {xn}, {un}, {zn}, and {yn} are bounded.

Proof First, we show that the mapping (I – rnD) is nonexpansive. For any x, y ∈ C,

∥∥(I – rnD)x – (I – rnD)y
∥∥ =

∥∥(x – y) – rn(Dx –Dy)
∥∥

= ‖x – y‖ – rn〈x – y,Dx –Dy〉 + rn‖Dx –Dy‖

≤ ‖x – y‖ – rn(θ – rn)‖Dx –Dy‖

≤ ‖x – y‖.

Similarly, we can show that the mapping (I – λnA) is nonexpansive. It follows from
Lemma . that un = Trn (xn – rnDxn). Let x∗ ∈ F(T) ∩ �∗ ∩ MEP(F); we have x∗ =

http://www.journalofinequalitiesandapplications.com/content/2014/1/154
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Trn (x∗ – rnDx∗).

∥∥un – x∗∥∥ =
∥∥Trn (xn – rnDxn) – Trn

(
x∗ – rnDx∗)∥∥

≤ ∥∥(xn – rnDxn) –
(
x∗ – rnDx∗)∥∥

≤ ∥∥xn – x∗∥∥ – rn(θ – rn)
∥∥Dxn –Dx∗∥∥

≤ ∥∥xn – x∗∥∥. (.)

Since the mapping A is α-inverse strongly monotone, we have

∥∥zn – x∗∥∥ =
∥∥PC[un – λnAun) – PC

[
x∗ – λnAx∗]∥∥

≤ ∥∥un – x∗ – λn
(
Aun –Ax∗)∥∥

≤ ∥∥un – x∗∥∥ – λn(α – λn)
∥∥Aun –Ax∗∥∥

≤ ∥∥un – x∗∥∥

≤ ∥∥xn – x∗∥∥. (.)

We define Vn = αnρU(xn) + (I – αnμF)(T(yn)). Next, we prove that the sequence {xn} is
bounded, and without loss of generality we can assume that βn ≤ αn for all n ≥ . From
(.), we have

∥∥xn+ – x∗∥∥ =
∥∥PC[Vn] – PC

[
x∗]∥∥

≤ ∥∥αnρU(xn) + (I – αnμF)
(
T(yn)

)
– x∗∥∥

≤ αn
∥∥ρU(xn) –μF

(
x∗)∥∥ +

∥∥(I – αnμF)
(
T(yn)

)
– (I – αnμF)T

(
x∗)∥∥

= αn
∥∥ρU(xn) – ρU

(
x∗) + (ρU –μF)x∗∥∥

+
∥∥(I – αnμF)

(
T(yn)

)
– (I – αnμF)T

(
x∗)∥∥

≤ αnρτ
∥∥xn – x∗∥∥ + αn

∥∥(ρU –μF)x∗∥∥ + ( – αnν)
∥∥yn – x∗∥∥

≤ αnρτ
∥∥xn – x∗∥∥ + αn

∥∥(ρU –μF)x∗∥∥
+ ( – αnν)

∥∥βnSxn + ( – βn)zn – x∗∥∥
≤ αnρτ

∥∥xn – x∗∥∥ + αn
∥∥(ρU –μF)x∗∥∥

+ ( – αnν)
(
βn

∥∥Sxn – Sx∗∥∥ + βn
∥∥Sx∗ – x∗∥∥ + ( – βn)

∥∥zn – x∗∥∥)
≤ αnρτ

∥∥xn – x∗∥∥ + αn
∥∥(ρU –μF)x∗∥∥

+ ( – αnν)
(
βn

∥∥Sxn – Sx∗∥∥ + βn
∥∥Sx∗ – x∗∥∥ + ( – βn)

∥∥xn – x∗∥∥)
≤ αnρτ

∥∥xn – x∗∥∥ + αn
∥∥(ρU –μF)x∗∥∥

+ ( – αnν)
(
βn

∥∥xn – x∗∥∥ + βn
∥∥Sx∗ – x∗∥∥ + ( – βn)

∥∥xn – x∗∥∥)
=

(
 – αn(ν – ρτ )

)∥∥xn – x∗∥∥ + αn
∥∥(ρU –μF)x∗∥∥ + ( – αnν)βn

∥∥Sx∗ – x∗∥∥
≤ (

 – αn(ν – ρτ )
)∥∥xn – x∗∥∥ + αn

∥∥(ρU –μF)x∗∥∥ + βn
∥∥Sx∗ – x∗∥∥

≤ (
 – αn(ν – ρτ )

)∥∥xn – x∗∥∥ + αn
(∥∥(ρU –μF)x∗∥∥ +

∥∥Sx∗ – x∗∥∥)

http://www.journalofinequalitiesandapplications.com/content/2014/1/154
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=
(
 – αn(ν – ρτ )

)∥∥xn – x∗∥∥ +
αn(ν – ρτ )

ν – ρτ

(∥∥(ρU –μF)x∗∥∥ +
∥∥Sx∗ – x∗∥∥)

≤ max

{∥∥xn – x∗∥∥, 
ν – ρτ

(∥∥(ρU –μF)x∗∥∥ +
∥∥Sx∗ – x∗∥∥)}

,

where the third inequality follows from Lemma ..
By induction on n, we obtain ‖xn – x∗‖ ≤ max{‖x – x∗‖, 

ν–ρτ
(‖(ρU – μF)x∗‖ + ‖Sx∗ –

x∗‖)} for n≥  and x ∈ C. Hence, {xn} is bounded and, consequently, we deduce that {un},
{zn}, {vn}, {yn}, {S(xn)}, {T(xn)}, {F(T(yn))}, and {U(xn)} are bounded. �

Lemma . Let x∗ ∈ F(T) ∩ �∗ ∩ MEP(F) and {xn} be the sequence generated by Algo-
rithm .. Then we have:
(a) limn→∞ ‖xn+ – xn‖ = .
(b) The weak w-limit set ww(xn) ⊂ F(T), (ww(xn) = {x : xni ⇀ x}).

Proof From the nonexpansivity of the mapping (I – λnA) and PC , we have

‖zn – zn–‖ ≤ ∥∥(un – λnAun) – (un– – λn–Aun–)
∥∥

=
∥∥(un – un–) – λn(Aun –Aun–) – (λn – λn–)Aun–

∥∥
≤ ∥∥(un – un–) – λn(Aun –Aun–)

∥∥ + |λn – λn–|‖Aun–‖
≤ ‖un – un–‖ + |λn – λn–|‖Aun–‖. (.)

Next, we estimate that

‖yn – yn–‖ =
∥∥βnSxn + ( – βn)zn –

(
βn–Sxn– + ( – βn–)zn–

)∥∥
=

∥∥βn(Sxn – Sxn–) + (βn – βn–)Sxn–

+ ( – βn)(zn – zn–) + (βn– – βn)zn–
∥∥

≤ βn‖xn – xn–‖ + ( – βn)‖zn – zn–‖
+ |βn – βn–|

(‖Sxn–‖ + ‖zn–‖
)
. (.)

It follows from (.) and (.) that

‖yn – yn–‖ ≤ βn‖xn – xn–‖ + ( – βn)
{‖un – un–‖ + |λn – λn–|‖Aun–‖

}
+ |βn – βn–|

(‖Sxn–‖ + ‖zn–‖
)
. (.)

On the other hand, un = Trn (xn – rnDxn) and un– = Trn– (xn– – rn–Dxn–), we have

F(un, y) + 〈Dxn, y – un〉 + 
rn

〈y – un,un – xn〉 ≥ , ∀y ∈ C (.)

and

F(un–, y) + 〈Dxn–, y – un–〉 + 
rn–

〈y – un–,un– – xn–〉 ≥ , ∀y ∈ C. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/154
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Take y = un– in (.) and y = un in (.), we get

F(un,un–) + 〈Dxn,un– – un〉 + 
rn

〈un– – un,un – xn〉 ≥  (.)

and

F(un–,un) + 〈Dxn–,un – un–〉 + 
rn–

〈un – un–,un– – xn–〉 ≥ . (.)

Adding (.) and (.) and using the monotonicity of F, we have

〈Dxn– –Dxn,un – un–〉 +
〈
un – un–,

un– – xn–
rn–

–
un – xn

rn

〉
≥ ,

which implies that

 ≤
〈
un – un–, rn(Dxn– –Dxn) +

rn
rn–

(un– – xn–) – (un – xn)
〉

=
〈
un– – un,un – un– +

(
 –

rn
rn–

)
un–

+ (xn– – rnDxn–) – (xn – rnDxn) – xn– +
rn
rn–

xn–
〉

=
〈
un– – un,

(
 –

rn
rn–

)
un– + (xn– – rnDxn–) – (xn – rnDxn) – xn– +

rn
rn–

xn–
〉

– ‖un – un–‖

=
〈
un– – un,

(
 –

rn
rn–

)
(un– – xn–) + (xn– – rnDxn–) – (xn – rnDxn)

〉

– ‖un – un–‖

≤ ‖un– – un‖
{∣∣∣∣ – rn

rn–

∣∣∣∣‖un– – xn–‖ +
∥∥(xn– – rnDxn–) – (xn – rnDxn

∥∥}

– ‖un – un–‖

≤ ‖un– – un‖
{∣∣∣∣ – rn

rn–

∣∣∣∣‖un– – xn–‖ + ‖xn– – xn‖
}
– ‖un – un–‖,

and then

‖un– – un‖ ≤
∣∣∣∣ – rn

rn–

∣∣∣∣‖un– – xn–‖ + ‖xn– – xn‖.

Without loss of generality, let us assume that there exists a real number μ such that rn >
μ >  for all positive integers n. Then we get

‖un– – un‖ ≤ ‖xn– – xn‖ + 
μ

|rn– – rn|‖un– – xn–‖. (.)

It follows from (.) and (.) that

‖yn – yn–‖ ≤ βn‖xn – xn–‖ + ( – βn)
{
‖xn – xn–‖ + 

μ
|rn – rn–|‖un– – xn–‖
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+ |λn – λn–|‖Aun–‖
}
+ |βn – βn–|

(‖Sxn–‖ + ‖zn–‖
)

= ‖xn – xn–‖ + ( – βn)
{

μ

|rn – rn–|‖un– – xn–‖ + |λn – λn–|‖Aun–‖
}

+ |βn – βn–|
(‖Sxn–‖ + ‖zn–‖

)
. (.)

Next, we estimate that

‖xn+ – xn‖ =
∥∥PC[Vn] – PC[Vn–

∥∥
≤ ∥∥αnρ

(
U(xn) –U(xn–)

)
+ (αn – αn–)ρU(xn–) + (I – αnμF)

(
T(yn)

)
– (I – αnμF)T(yn–) + (I – αnμF)

(
T(yn–)

)
– (I – αn–μF)

(
T(yn–)

)∥∥
≤ αnρτ‖xn – xn–‖ + ( – αnν)‖yn – yn–‖

+ |αn – αn–|
(∥∥ρU(xn–)

∥∥ +
∥∥μF

(
T(yn–)

)∥∥)
, (.)

where the second inequality follows from Lemma .. From (.) and (.), we have

‖xn+ – xn‖ ≤ αnρτ‖xn – xn–‖ + ( – αnν)

×
(

‖xn – xn–‖ + 
μ

|rn – rn–|‖un– – xn–‖ + |λn – λn–|‖Aun–‖
)

+ |βn – βn–|
(‖Sxn–‖ + ‖zn–‖

)
+ |αn – αn–|

(∥∥ρU(xn–)
∥∥ +

∥∥μF
(
T(yn–)

)∥∥)
≤ (

 – (ν – ρτ )αn
)‖xn – xn–‖

+

μ

|rn – rn–|‖un– – xn–‖ + |λn – λn–|‖Aun–‖

+ |βn – βn–|
(‖Sxn–‖ + ‖zn–‖

)
+ |αn – αn–|

(∥∥ρU(xn–)
∥∥ +

∥∥μF
(
T(yn–)

)∥∥)
≤ (

 – (ν – ρτ )αn
)‖xn – xn–‖

+M
(

μ

|rn – rn–| + |λn – λn–| + |βn – βn–| + |αn – αn–|
)
. (.)

Here

M = max
{
sup
n≥

‖un– – xn–‖, sup
n≥

‖Aun–‖, sup
n≥

(‖Sxn–‖ + ‖zn–‖
)
,

sup
n≥

(∥∥ρU(xn–)
∥∥ +

∥∥μF
(
T(yn–)

)∥∥)}
.

It follows by conditions (a)-(e) of Algorithm . and Lemma . that

lim
n→∞‖xn+ – xn‖ = .
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Next, we show that limn→∞ ‖un – xn‖ = . Since x∗ ∈ F(T)∩ �∗ ∩MEP(F), by using (.)
and (.), we obtain

∥∥xn+ – x∗∥∥ =
〈
PC(Vn) – x∗,xn+ – x∗〉

=
〈
PC(Vn) –Vn,PC(Vn) – x∗〉 + 〈

Vn – x∗,xn+ – x∗〉
≤ 〈

αn
(
ρU(xn) –μF

(
x∗)) + (I – αnμF)

(
T(yn)

)
– (I – αnμF)

(
T

(
x∗)),xn+ – x∗〉

=
〈
αnρ

(
U(xn) –U

(
x∗)),xn+ – x∗〉 + αn

〈
ρU

(
x∗) –μF

(
x∗),xn+ – x∗〉

+
〈
(I – αnμF)

(
T(yn)

)
– (I – αnμF)

(
T

(
x∗)),xn+ – x∗〉

≤ αnρτ
∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥ + αn

〈
ρU

(
x∗) –μF

(
x∗),xn+ – x∗〉

+ ( – αnν)
∥∥yn – x∗∥∥∥∥xn+ – x∗∥∥

≤ αnρτ


(∥∥xn – x∗∥∥ +

∥∥xn+ – x∗∥∥) + αn
〈
ρU

(
x∗) –μF

(
x∗),xn+ – x∗〉

+
( – αnν)


(∥∥yn – x∗∥∥ +

∥∥xn+ – x∗∥∥)
≤ ( – αn(ν – ρτ ))


∥∥xn+ – x∗∥∥ +

αnρτ


∥∥xn – x∗∥∥

+ αn
〈
ρU

(
x∗) –μF

(
x∗),xn+ – x∗〉

+
( – αnν)


(
βn

∥∥Sxn – x∗∥∥ + ( – βn)
∥∥zn – x∗∥∥)

≤ ( – αn(ν – ρτ ))


∥∥xn+ – x∗∥∥ +
αnρτ


∥∥xn – x∗∥∥

+ αn
〈
ρU

(
x∗) –μF

(
x∗),xn+ – x∗〉 + ( – αnν)βn


∥∥Sxn – x∗∥∥

+
( – αnν)( – βn)


{∥∥xn – x∗∥∥ – rn(θ – rn)

∥∥Dxn –Dx∗∥∥

– λn(α – λn)
∥∥Aun –Ax∗∥∥}, (.)

which implies that

∥∥xn+ – x∗∥∥ ≤ αnρτ

 + αn(ν – ρτ )
∥∥xn – x∗∥∥

+
αn

 + αn(ν – ρτ )
〈
ρU

(
x∗) –μF

(
x∗),xn+ – x∗〉

+
( – αnν)βn

 + αn(ν – ρτ )
∥∥Sxn – x∗∥∥

+
( – αnν)( – βn)
 + αn(ν – ρτ )

{∥∥xn – x∗∥∥ – rn(θ – rn)
∥∥Dxn –Dx∗∥∥

– λn(α – λn)
∥∥Aun –Ax∗∥∥}

≤ αnρτ

 + αn(ν – ρτ )
∥∥xn – x∗∥∥

+
αn

 + αn(ν – ρτ )
〈
ρU

(
x∗) –μF

(
x∗),xn+ – x∗〉
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+
∥∥xn – x∗∥∥ +

( – αnν)βn

 + αn(ν – ρτ )
∥∥Sxn – x∗∥∥

–
( – αnν)( – βn)
 + αn(ν – ρτ )

{
rn(θ – rn)

∥∥Dxn –Dx∗∥∥

+ λn(α – λn)
∥∥Aun –Ax∗∥∥}.

Then, from the inequality above, we get

( – αnν)( – βn)
 + αn(ν – ρτ )

{
rn(θ – rn)

∥∥Dxn –Dx∗∥∥ + λn(α – λn)
∥∥Aun –Ax∗∥∥}

≤ αnρτ

 + αn(ν – ρτ )
∥∥xn – x∗∥∥ +

αn

 + αn(ν – ρτ )
〈
ρU

(
x∗) –μF

(
x∗),xn+ – x∗〉

+ βn
∥∥Sxn – x∗∥∥ +

∥∥xn – x∗∥∥ –
∥∥xn+ – x∗∥∥

≤ αnρτ

 + αn(ν – ρτ )
∥∥xn – x∗∥∥ +

αn

 + αn(ν – ρτ )
〈
ρU

(
x∗) –μF

(
x∗),xn+ – x∗〉

+ βn
∥∥Sxn – x∗∥∥ +

(∥∥xn – x∗∥∥ +
∥∥xn+ – x∗∥∥)‖xn+ – xn‖.

Since lim infn→∞ λn ≤ lim supn→∞ λn < α, {rn} ⊂ (, θ ), limn→∞ ‖xn+ – xn‖ = , αn → ,
and βn → , we obtain limn→∞ ‖Dxn –Dx∗‖ =  and limn→∞ ‖Aun –Ax∗‖ = .
Since Trn is firmly nonexpansive, we have

∥∥un – x∗∥∥ =
∥∥Trn (xn – rnDxn) – Trn

(
x∗ – rnDx∗)∥∥

≤ 〈
un – x∗, (xn – rnDxn) –

(
x∗ – rnDx∗)〉

=


{∥∥un – x∗∥∥ +

∥∥(xn – rnDxn) –
(
x∗ – rnDx∗)∥∥

–
∥∥un – x∗ –

[
(xn – rnDxn) –

(
x∗ – rnDx∗)]∥∥}.

Hence,

∥∥un – x∗∥∥ ≤ ∥∥(xn – rnDxn) –
(
x∗ – rnDx∗)∥∥ –

∥∥un – xn + rn
(
Dxn –Dx∗)∥∥

≤ ∥∥xn – x∗∥∥ –
∥∥un – xn + rn

(
Dxn –Dx∗)∥∥

≤ ∥∥xn – x∗∥∥ – ‖un – xn‖ + rn‖un – xn‖
∥∥Dxn –Dx∗∥∥.

From (.), (.), and the inequality above, we have

∥∥xn+ – x∗∥∥ ≤ ( – αn(ν – ρτ ))


∥∥xn+ – x∗∥∥ +
αnρτ


∥∥xn – x∗∥∥

+ αn
〈
ρU

(
x∗) –μF

(
x∗),xn+ – x∗〉

+
( – αnν)


(
βn

∥∥Sxn – x∗∥∥ + ( – βn)
∥∥zn – x∗∥∥)

≤ ( – αn(ν – ρτ ))


∥∥xn+ – x∗∥∥ +
αnρτ


∥∥xn – x∗∥∥

+ αn
〈
ρU

(
x∗) –μF

(
x∗),xn+ – x∗〉

+
( – αnν)


(
βn

∥∥Sxn – x∗∥∥ + ( – βn)
∥∥un – x∗∥∥)
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≤ ( – αn(ν – ρτ ))


∥∥xn+ – x∗∥∥ +
αnρτ


∥∥xn – x∗∥∥

+ αn
〈
ρU

(
x∗) –μF

(
x∗),xn+ – x∗〉

+
( – αnν)


{
βn

∥∥Sxn – x∗∥∥ + ( – βn)
(∥∥xn – x∗∥∥ – ‖un – xn‖

+ rn‖un – xn‖
∥∥Dxn –Dx∗∥∥)}

,

which implies that

∥∥xn+ – x∗∥∥ ≤ αnρτ

 + αn(ν – ρτ )
∥∥xn – x∗∥∥

+
αn

 + αn(ν – ρτ )
〈
ρU

(
x∗) –μF

(
x∗),xn+ – x∗〉

+
( – αnν)βn

 + αn(ν – ρτ )
∥∥Sxn – x∗∥∥

+
( – αnν)( – βn)
 + αn(ν – ρτ )

{∥∥xn – x∗∥∥ – ‖un – xn‖

+ rn‖un – xn‖
∥∥Dxn –Dx∗∥∥}

≤ αnρτ

 + αn(ν – ρτ )
∥∥xn – x∗∥∥

+
αn

 + αn(ν – ρτ )
〈
ρU

(
x∗) –μF

(
x∗),xn+ – x∗〉

+
( – αnν)βn

 + αn(ν – ρτ )
∥∥Sxn – x∗∥∥

+
∥∥xn – x∗∥∥ +

( – αnν)( – βn)
 + αn(ν – ρτ )

{
–‖un – xn‖

+ rn‖un – xn‖
∥∥Dxn –Dx∗∥∥}

.

Hence,

( – αnν)( – βn)
 + αn(ν – ρτ )

‖un – xn‖ ≤ αnρτ

 + αn(ν – ρτ )
∥∥xn – x∗∥∥

+
αn

 + αn(ν – ρτ )
〈
ρU

(
x∗) –μF

(
x∗),xn+ – x∗〉

+
( – αnν)βn

 + αn(ν – ρτ )
∥∥Sxn – x∗∥∥

+
( – αnν)( – βn)rn

 + αn(ν – ρτ )
‖un – xn‖

∥∥Dxn –Dx∗∥∥
+

∥∥xn – x∗∥∥ –
∥∥xn+ – x∗∥∥

=
αnρτ

 + αn(ν – ρτ )
∥∥xn – x∗∥∥

+
αn

 + αn(ν – ρτ )
〈
ρU

(
x∗) –μF

(
x∗),xn+ – x∗〉

+
( – αnν)βn

 + αn(ν – ρτ )
∥∥Sxn – x∗∥∥
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+
( – αnν)( – βn)rn

 + αn(ν – ρτ )
‖un – xn‖

∥∥Dxn –Dx∗∥∥
+

(∥∥xn – x∗∥∥ +
∥∥xn+ – x∗∥∥)‖xn+ – xn‖.

Since limn→∞ ‖xn+ – xn‖ = , αn → , βn → , and limn→∞ ‖Dxn –Dx∗‖ = , we obtain

lim
n→∞‖un – xn‖ = . (.)

From (.), we get

∥∥zn – x∗∥∥ =
∥∥PC[un – λnAun] – PC

[
x∗ – λnAx∗]∥∥

≤ 〈
zn – x∗, (un – λnAun) –

(
x∗ – λnAx∗)〉

=


{∥∥zn – x∗∥∥ +

∥∥un – x∗ – λn
(
Aun –Ax∗)∥∥

–
∥∥un – x∗ – λn

(
Aun –Ax∗) – (

zn – x∗)∥∥}
≤ 


{∥∥zn – x∗∥∥ +

∥∥un – x∗∥∥ –
∥∥un – zn – λn

(
Aun –Ax∗)∥∥}

≤ 

{∥∥zn – x∗∥∥ +

∥∥un – x∗∥∥ – ‖un – zn‖ + λn
〈
un – zn,Aun –Ax∗〉}

≤ 

{∥∥zn – x∗∥∥ +

∥∥un – x∗∥∥ – ‖un – zn‖ + λn‖un – zn‖
∥∥Aun –Ax∗∥∥}

.

Hence,

∥∥zn – x∗∥∥ ≤ ∥∥un – x∗∥∥ – ‖un – zn‖ + λn‖un – zn‖
∥∥Aun –Ax∗∥∥

≤ ∥∥xn – x∗∥∥ – ‖un – zn‖ + λn‖un – zn‖
∥∥Aun –Ax∗∥∥.

From (.) and the inequality above, we have

∥∥xn+ – x∗∥∥ ≤ ( – αn(ν – ρτ ))


∥∥xn+ – x∗∥∥ +
αnρτ


∥∥xn – x∗∥∥

+ αn
〈
ρU

(
x∗) –μF

(
x∗),xn+ – x∗〉

+
( – αnν)


(
βn

∥∥Sxn – x∗∥∥ + ( – βn)
∥∥zn – x∗∥∥)

≤ ( – αn(ν – ρτ ))


∥∥xn+ – x∗∥∥ +
αnρτ


∥∥xn – x∗∥∥

+ αn
〈
ρU

(
x∗) –μF

(
x∗),xn+ – x∗〉

+
( – αnν)


{
βn

∥∥Sxn – x∗∥∥ + ( – βn)
(∥∥xn – x∗∥∥

– ‖un – zn‖ + λn‖un – zn‖
∥∥Aun –Ax∗∥∥)}

,

which implies that

∥∥xn+ – x∗∥∥ ≤ αnρτ

 + αn(ν – ρτ )
∥∥xn – x∗∥∥

+
αn

 + αn(ν – ρτ )
〈
ρU

(
x∗) –μF

(
x∗),xn+ – x∗〉
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+
( – αnν)βn

 + αn(ν – ρτ )
∥∥Sxn – x∗∥∥

+
( – αnν)( – βn)
 + αn(ν – ρτ )

{∥∥xn – x∗∥∥ – ‖un – zn‖

+ λn‖un – zn‖
∥∥Aun –Ax∗∥∥}

.

Hence,

( – αnν)( – βn)
 + αn(ν – ρτ )

‖un – zn‖

≤ αnρτ

 + αn(ν – ρτ )
∥∥xn – x∗∥∥ +

αn

 + αn(ν – ρτ )
〈
ρU

(
x∗) –μF

(
x∗),xn+ – x∗〉

+
( – αnν)βn

 + αn(ν – ρτ )
∥∥Sxn – x∗∥∥ +

∥∥xn – x∗∥∥ –
∥∥xn+ – x∗∥∥

+ λn‖un – zn‖
∥∥Aun –Ax∗∥∥

=
αnρτ

 + αn(ν – ρτ )
∥∥xn – x∗∥∥ +

αn

 + αn(ν – ρτ )
〈
ρU

(
x∗) –μF

(
x∗),xn+ – x∗〉

+
( – αnν)βn

 + αn(ν – ρτ )
∥∥Sxn – x∗∥∥ +

(∥∥xn – x∗∥∥ +
∥∥xn+ – x∗∥∥)‖xn+ – xn‖

+ λn‖un – zn‖
∥∥Aun –Ax∗∥∥.

Since limn→∞ ‖xn+ – xn‖ = , αn → , βn → , and limn→∞ ‖Aun –Ax∗‖ = , we obtain

lim
n→∞‖un – zn‖ = . (.)

It follows from (.) and (.) that

lim
n→∞‖xn – zn‖ = . (.)

Since T(xn) ∈ C, we have

∥∥xn – T(xn)
∥∥ ≤ ‖xn – xn+‖ +

∥∥xn+ – T(xn)
∥∥

= ‖xn – xn+‖ +
∥∥PC[Vn] – PC

[
T(xn)

]∥∥
≤ ‖xn – xn+‖ +

∥∥αn
(
ρU(xn) –μF

(
T(yn)

))
+ T(yn) – T(xn)

∥∥
≤ ‖xn – xn+‖ + αn

∥∥ρU(xn) –μF
(
T(yn)

)∥∥ + ‖yn – xn‖
≤ ‖xn – xn+‖ + αn

∥∥ρU(xn) –μF
(
T(yn)

)∥∥ +
∥∥βnSxn + ( – βn)zn – xn

∥∥
≤ ‖xn – xn+‖ + αn

∥∥ρU(xn) –μF
(
T(yn)

)∥∥
+ βn‖Sxn – xn‖ + ( – βn)‖zn – xn‖.

Since limn→∞ ‖xn+ – xn‖ = , αn → , βn → , and ‖ρU(xn) –μF(T(yn))‖ and ‖Sxn – xn‖
are bounded, and limn→∞ ‖xn – zn‖ = , we obtain

lim
n→∞

∥∥xn – T(xn)
∥∥ = .
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Since {xn} is bounded, without loss of generalitywe can assume that xn ⇀ x∗ ∈ C. It follows
from Lemma . that x∗ ∈ F(T). Therefore, ww(xn) ⊂ F(T). �

Theorem . The sequence {xn} generated by Algorithm . converges strongly to z, which
is the unique solution of the variational inequality

〈
ρU(z) –μF(z),x – z

〉 ≤ , ∀x ∈ �∗ ∩MEP(F)∩ F(T). (.)

Proof Since {xn} is bounded xn ⇀ w and from Lemma ., we have w ∈ F(T). Next, we
show that w ∈MEP(F). Since un = Trn (xn – rnDxn), we have

F(un, y) + 〈Dxn, y – un〉 + 
rn

〈y – un,un – xn〉 ≥ , ∀y ∈ C.

It follows from the monotonicity of F that

〈Dxn, y – un〉 + 
rn

〈y – un,un – xn〉 ≥ F(y,un), ∀y ∈ C

and

〈Dxnk , y – unk 〉 +
〈
y – unk ,

unk – xnk
rnk

〉
≥ F(y,unk ), ∀y ∈ C. (.)

Since limn→∞ ‖un – xn‖ = , and xn ⇀ w, it is easy to observe that unk → w. For any  <
t ≤  and y ∈ C, let yt = ty + ( – t)w, and we have yt ∈ C. Then from (.), we obtain

〈Dyt , yt – unk 〉 ≥ 〈Dyt , yt – unk 〉 – 〈Dxnk , yt – unk 〉 –
〈
yt – unk ,

unk – xnk
rnk

〉
+ F(yt ,unk )

= 〈Dyt –Dunk , yt – unk 〉 + 〈Dunk –Dxnk , yt – unk 〉

–
〈
yt – unk ,

unk – xnk
rnk

〉
+ F(yt ,unk ). (.)

Since D is Lipschitz continuous and limn→∞ ‖un – xn‖ = , we obtain limk→∞ ‖Dunk –
Dxnk‖ = . From the monotonicity of D and unk → w, it follows from (.) that

〈Dyt , yt –w〉 ≥ F(yt ,w). (.)

Hence, from assumptions (i)-(iv) of Lemma . and (.), we have

 = F(yt , yt) ≤ tF(yt , y) + ( – t)F(yt ,w)

≤ tF(yt , y) + ( – t)〈Dyt , yt –w〉
≤ tF(yt , y) + ( – t)t〈Dyt , y –w〉, (.)

which implies that F(yt , y) + ( – t)〈Dyt , y –w〉 ≥ . Letting t → +, we have

F(w, y) + 〈Dw, y –w〉 ≥ , ∀y ∈ C,

which implies that w ∈ MEP(F).
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Furthermore, we show that w ∈ �∗. Let

Tv =

{
Av +NCv, ∀v ∈ C,
∅, otherwise,

where NCv := {w ∈ H : 〈w, v – u〉 ≥ ,∀u ∈ C} is the normal cone to C at v ∈ C. Then T is
maximal monotone and  ∈ Tv if and only if v ∈ �∗ (see []). Let G(T) denote the graph
of T , and let (v,u) ∈G(T); since u –Av ∈NCv and zn ∈ C, we have

〈v – zn,u –Av〉 ≥ . (.)

On the other hand, it follows from zn = PC[un – λnAun] and v ∈ C that

〈
v – zn, zn – (un – λnAun)

〉 ≥ 

and

〈
v – zn,

zn – un
λn

+Aun
〉
≥ .

Therefore, from (.) and the inverse strong monotonicity of A, we have

〈v – znk ,u〉 ≥ 〈v – znk ,Av〉

≥ 〈v – znk ,Av〉 –
〈
v – znk ,

znk – unk
λnk

+Aunk

〉

≥ 〈v – znk ,Av –Aznk 〉 + 〈v – znk ,Aznk –Aunk 〉 –
〈
v – znk ,

znk – unk
λnk

〉

≥ 〈v – znk ,Aznk –Aunk 〉 –
〈
v – znk ,

znk – unk
λnk

〉
.

Since limn→∞ ‖un – zn‖ =  and unk → w, it is easy to observe that znk → w. Hence, we
obtain 〈v–w,u〉 ≥ . Since T is maximal monotone, we have w ∈ T–, and hence w ∈ �∗.
Thus we have

w ∈ �∗ ∩MEP(F)∩ F(T).

Observe that the constants satisfy  ≤ ρτ < ν and

k ≥ η ⇐⇒ k ≥ η

⇐⇒  – μη +μk ≥  – μη +μη

⇐⇒
√
 –μ

(
η –μk

) ≥  –μη

⇐⇒ μη ≥  –
√
 –μ

(
η –μk

)
⇐⇒ μη ≥ ν,
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Bnouhachem Journal of Inequalities and Applications 2014, 2014:154 Page 18 of 24
http://www.journalofinequalitiesandapplications.com/content/2014/1/154

therefore, from Lemma ., the operator μF – ρU is μη – ρτ strongly monotone, and
we get the uniqueness of the solution of the variational inequality (.) and denote it by
z ∈ �∗ ∩MEP(F)∩ F(T).
Next, we claim that lim supn→∞〈ρU(z) –μF(z),xn – z〉 ≤ . Since {xn} is bounded, there

exists a subsequence {xnk } of {xn} such that

lim sup
n→∞

〈
ρU(z) –μF(z),xn – z

〉
= lim sup

k→∞

〈
ρU(z) –μF(z),xnk – z

〉
=

〈
ρU(z) –μF(z),w – z

〉 ≤ .

Next, we show that xn → z. We have

‖xn+ – z‖ =
〈
PC(Vn) – z,xn+ – z

〉
=

〈
PC(Vn) –Vn,PC(Vn) – z

〉
+ 〈Vn – z,xn+ – z〉

≤ 〈
αn

(
ρU(xn) –μF(z)

)
+ (I – αnμF)

(
T(yn)

)
– (I – αnμF)

(
T(z)

)
,xn+ – z

〉
=

〈
αnρ

(
U(xn) –U(z)

)
,xn+ – z

〉
+ αn

〈
ρU(z) –μF(z),xn+ – z

〉
+

〈
(I – αnμF)

(
T(yn)

)
– (I – αnμF)

(
T(z)

)
,xn+ – z

〉
≤ αnρτ‖xn – z‖‖xn+ – z‖ + αn

〈
ρU(z) –μF(z),xn+ – z

〉
+ ( – αnν)‖yn – z‖‖xn+ – z‖

≤ αnρτ‖xn – z‖‖xn+ – z‖ + αn
〈
ρU(z) –μF(z),xn+ – z

〉
+ ( – αnν)

{
βn‖Sxn – Sz‖ + βn‖Sz – z‖ + ( – βn)‖zn – z‖}‖xn+ – z‖

≤ αnρτ‖xn – z‖‖xn+ – z‖ + αn
〈
ρU(z) –μF(z),xn+ – z

〉
+ ( – αnν)

{
βn‖xn – z‖ + βn‖Sz – z‖ + ( – βn)‖xn – z‖}‖xn+ – z‖

=
(
 – αn(ν – ρτ )

)‖xn – z‖‖xn+ – z‖ + αn
〈
ρU(z) –μF(z),xn+ – z

〉
+ ( – αnν)βn‖Sz – z‖‖xn+ – z‖

≤  – αn(ν – ρτ )


(‖xn – z‖ + ‖xn+ – z‖) + αn
〈
ρU(z) –μF(z),xn+ – z

〉
+ ( – αnν)βn‖Sz – z‖‖xn+ – z‖,

which implies that

‖xn+ – z‖ ≤  – αn(ν – ρτ )
 + αn(ν – ρτ )

‖xn – z‖ + αn

 + αn(ν – ρτ )
〈
ρU(z) –μF(z),xn+ – z

〉

+
( – αnν)βn

 + αn(ν – ρτ )
‖Sz – z‖‖xn+ – z‖

≤ (
 – αn(ν – ρτ )

)‖xn – z‖ + αn(ν – ρτ )
 + αn(ν – ρτ )

×
{


ν – ρτ

〈
ρU(z) –μF(z),xn+ – z

〉
+
( – αnν)βn

αn(ν – ρτ )
‖Sz – z‖‖xn+ – z‖

}
.

Let γn = αn(ν – ρτ ) and δn = αn(ν–ρτ )
+αn(ν–ρτ ) { 

ν–ρτ
〈ρU(z) – μF(z),xn+ – z〉 + (–αnν)βn

αn(ν–ρτ ) ‖Sz –
z‖‖xn+ – z‖}.
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We have

∞∑
n=

αn =∞

and

lim sup
n→∞

{


ν – ρτ

〈
ρU(z) –μF(z),xn+ – z

〉
+
( – αnν)βn

αn(ν – ρτ )
‖Sz – z‖‖xn+ – z‖

}
≤ .

It follows that

∞∑
n=

γn =∞ and lim sup
n→∞

δn

γn
≤ .

Thus all the conditions of Lemma . are satisfied. Hence we deduce that xn → z. This
completes the proof. �

4 Applications
In this section, we obtain the following results by using a special case of the proposed
method for example.
Putting A =  in Algorithm ., we obtain the following result which can be viewed as

an extension and improvement of the method of Wang and Xu [] for finding the ap-
proximate element of the common set of solutions of a mixed equilibrium problem and a
hierarchical fixed-point problem in a real Hilbert space.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
D : C → H be θ -inverse strongly monotone mappings. Let F : C × C → R be a bifunction
satisfying assumptions (i)-(iv) of Lemma . and S,T : C → C be a nonexpansive mappings
such that F(T)∩MEP(F) �= ∅.Let F : C → C be a k-Lipschitzianmapping and be η-strongly
monotone, and let U : C → C be a τ -Lipschitzian mapping. For an arbitrary given x ∈ C,
let the iterative sequences {un}, {xn}, {yn}, and {zn} be generated by

F(un, y) + 〈Dxn, y – un〉 + 
rn

〈y – un,un – xn〉 ≥ , ∀y ∈ C;

yn = βnSxn + ( – βn)un;

xn+ = PC
[
αnρU(xn) + (I – αnμF)

(
T(yn)

)]
, ∀n≥ ,

where {rn} ⊂ (, θ ), {αn} ⊂ (, ), {βn} ⊂ (, ). Suppose that the parameters satisfy  < μ <
η
k ,  ≤ ρτ < ν , where ν =  –

√
 –μ(η –μk). Also, {αn}, {βn}, and {rn} are sequences

satisfying conditions (a)-(d) of Algorithm .. The sequence {xn} converges strongly to z,
which is the unique solution of the variational inequality

〈
ρU(z) –μF(z),x – z

〉 ≤ , ∀x ∈MEP(F)∩ F(T).

Putting U = f , F = I , ρ = μ = , and A = ,we obtain an extension and improvement of the
method of Yao et al. [] for finding the approximate element of the common set of solutions

http://www.journalofinequalitiesandapplications.com/content/2014/1/154
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of a mixed equilibrium problem and a hierarchical fixed-point problem in a real Hilbert
space.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
D : C → H be θ -inverse strongly monotone mappings. Let F : C × C → R be a bifunction
satisfying assumptions (i)-(iv) of Lemma . and S,T : C → C be a nonexpansive mappings
such that F(T)∩MEP(F) �= ∅. Let f : C → C be a τ -Lipschitzianmapping. For an arbitrary
given x ∈ C, let the iterative sequences {un}, {xn}, {yn}, and {zn} be generated by

F(un, y) + 〈Dxn, y – un〉 + 
rn

〈y – un,un – xn〉 ≥ , ∀y ∈ C;

yn = βnSxn + ( – βn)un;

xn+ = PC
[
αnf (xn) + ( – αn)T(yn)

]
, ∀n≥ ,

where {rn} ⊂ (, θ ), {αn}, {βn} are sequences in (, ) satisfying conditions (a)-(d) of Al-
gorithm .. The sequence {xn} converges strongly to z, which is the unique solution of the
variational inequality

〈
f (z) – z,x – z

〉 ≤ , ∀x ∈MEP(F)∩ F(T).

Remark . Some existingmethods (e.g., [, , , , ]) can be viewed as special cases
of Algorithm .. Therefore, the new algorithm is expected to be widely applicable.

To verify the theoretical assertions, we consider the following example.

Example . Let αn = 
n , βn = 

n , λn = 
(n+) , and rn = n

n+ .
We have

lim
n→∞αn =




lim
n→∞


n
= 

and

∞∑
n=

αn =



∞∑
n=


n
=∞.

The sequence {αn} satisfies condition (a).

lim
n→∞

βn

αn
= lim

n→∞

n

= .

Condition (b) is satisfied. We compute

αn– – αn =



(


n – 
–

n

)
=


n(n – )

.

It is easy to show
∑∞

n= |αn– – αn| < ∞. Similarly, we can show
∑∞

n= |βn– – βn| < ∞. The
sequences {αn} and {βn} satisfy condition (c). We have

lim inf
n→∞ rn = lim inf

n→∞
n

n + 
= 
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and

∞∑
n=

|rn– – rn| =
∞∑
n=

∣∣∣∣n – 
n

–
n

n + 

∣∣∣∣
=

∞∑
n=


n(n + )

≤
∞∑
n=


n

< ∞.

Then, the sequence {rn} satisfies condition (d). We compute

∞∑
n=

|λn– – λn| =
∞∑
n=

∣∣∣∣ 
n

–


(n + )

∣∣∣∣
=




< ∞.

Then, the sequence {λn} satisfies condition (e).
Let R be the set of real numbers, D = , and let the mapping A :R→ R be defined by

Ax =
x

, ∀x ∈R,

let the mapping T :R →R be defined by

T(x) =
x

, ∀x ∈R,

let the mapping F :R →R be defined by

F(x) =
x + 


, ∀x ∈R,

let the mapping S :R→ R be defined by

S(x) =
x

, ∀x ∈R,

let the mapping U :R →R be defined by

U(x) =
x


, ∀x ∈R,

and let the mapping F :R×R →R be defined by

F(x, y) = –x + xy + y, ∀(x, y) ∈R×R.

It is easy to show that A is a -inverse strongly monotone mapping, T and S are non-
expansive mappings, F is a -Lipschitzian mapping and 

 -strongly monotone and U is
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Table 1 The values of {un}, {zn}, {yn}, and {xn} with initial values x1 = 30 and x1 = –30

x1 = 30 x1 = –30

un zn yn xn un zn yn xn
n = 1 8.571429 4.285714 15.000000 30.000000 –8.571429 –4.285714 –15.000000 –30.0000000
n = 2 1.710361 0.427590 0.837364 7.411565 –1.726060 –0.431515 –0.845050 –7.479592
n = 3 0.085202 0.000000 0.007495 0.404709 –0.093178 0.000000 –0.008196 –0.442594
n = 4 –0.001479 0.000370 0.000306 –0.007393 –0.003130 0.000783 0.000648 –0.015652
n = 5 –0.001617 0.000808 0.000769 –0.008354 –0.001585 0.000792 0.000753 –0.008187
n = 6 –0.001215 0.000911 0.000892 –0.006422 –0.001216 0.000912 0.000893 –0.006430
n = 7 –0.000972 0.000972 0.000962 –0.005226 –0.000972 0.000972 0.000962 –0.005225
n = 8 –0.000805 0.001006 0.000999 –0.004380 –0.000805 0.001006 0.000999 –0.004380
n = 9 –0.000682 0.001024 0.001020 –0.003754 –0.000682 0.001024 0.001020 –0.003754
n = 10 –0.000590 0.001032 0.001030 –0.003271 –0.000590 0.001032 0.001030 –0.003271


 -Lipschitzian. It is clear that

�∗ ∩MEP(F)∩ F(T) = {}.

By the definition of F, we have

 ≤ F(un, y) +

rn

〈y – un,un – xn〉

= –un + uny + y +

rn
(y – un)(un – xn).

Then

 ≤ rn
(
–un + uny + y

)
+

(
yun – yxn – un + unxn

)
= rny + (rnun + un – xn)y – rnun – un + unxn.

Let B(y) = rny + (rnun + un – xn)y – rnun – un + unxn. B(y) is a quadratic function of
y with coefficient a = rn, b = rnun + un – xn, c = –rnun – un + unxn. We determine the
discriminant � of B as follows:

� = b – ac

= (rnun + un – xn) – rn
(
–rnun – un + unxn

)
= un + rnun + unr


n – xnun – xnunrn + xn

= (un + unrn) – xn(un + unrn) + xn

= (un + unrn – xn).

We have B(y)≥ , ∀y ∈R. If it has at most one solution in R, then � = , we obtain

un =
xn

 + rn
. (.)
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Figure 1 The convergence of {un}, {zn}, {yn}, and {xn} with initial values x1 = 30 and x1 = –30.

For every n≥ , from (.), we rewrite (.) as follows:

⎧⎪⎨
⎪⎩
zn = xn

+rn –
xn

(n+)(+rn) ;
yn = xn

n + ( – 
n )zn;

xn+ = ρ xn
n +

yn
 –μ

yn+
n .

In all the tests we take ρ = 
 and μ = 

 . In our example, η = 
 , k = , τ = 

 . It is easy to
show that the parameters satisfy  < μ < η

k ,  ≤ ρτ < ν , where ν =  –
√
 –μ(η –μk).

All codes were written in Matlab, the values of {un}, {zn}, {yn}, and {xn} with different n
are reported in Table .

Remark . Table  and Figure  show that the sequences {un}, {zn}, {yn}, and {xn} con-
verge to , where {} =�∗ ∩MEP(F)∩ F(T).

Competing interests
The author declares that he has no competing interests.

Received: 19 October 2013 Accepted: 27 March 2014 Published: 02 May 2014

References
1. Lions, JL, Stampacchia, G: Variational inequalities. Commun. Pure Appl. Math. 20, 493-512 (1967)
2. Zhou, H: Convergence theorems of fixed points for k-strict pseudo-contractions in Hilbert spaces. Nonlinear Anal. 69,

456-462 (2008)
3. Moudafi, A, Théra, MM: Proximal and Dynamical Approaches to Equilibrium Problems. Lecture Notes in Economics

and Mathematical Systems, vol. 477. Springer, New York (1999)
4. Moudafi, A: Mixed equilibrium problems sensitivity analysis and algorithmic aspect. Comput. Math. Appl. 44,

1099-1108 (2002)
5. Chang, SS, Joseph Lee, HW, Chan, CK: A new method for solving equilibrium problem fixed point problem and

variational inequality problem with application to optimization. Nonlinear Anal. 70, 3307-3319 (2009)
6. Katchang, P, Kumam, P: A new iterative algorithm for equilibrium problems, variational inequalities and fixed point

problems in a Hilbert space. Appl. Math. Comput. 32, 19-38 (2010)
7. Plubtieng, S, Punpaeng, R: A general iterative method for equilibrium problems and fixed point problems in Hilbert

spaces. J. Math. Anal. Appl. 336, 455-469 (2007)
8. Qin, X, Shang, M, Su, Y: A general iterative method for equilibrium problem and fixed point problem in Hilbert spaces.

Nonlinear Anal. 69, 3897-3909 (2008)
9. Suwannaut, S, Kangtunyakarn, A: The combination of the set of solutions of equilibrium problem for convergence

theorem of the set of fixed points of strictly pseudo-contractive mappings and variational inequalities problem. Fixed
Point Theory Appl. 2013, 291 (2013)

10. Combettes, PL, Hirstoaga, SA: Equilibrium programming using proximal like algorithms. Math. Program. 78, 29-41
(1997)

11. Gu, G, Wang, S, Cho, YJ: Strong convergence algorithms for hierarchical fixed points problems and variational
inequalities. J. Appl. Math. 2011, 1-17 (2011)

http://www.journalofinequalitiesandapplications.com/content/2014/1/154


Bnouhachem Journal of Inequalities and Applications 2014, 2014:154 Page 24 of 24
http://www.journalofinequalitiesandapplications.com/content/2014/1/154

12. Yao, Y, Cho, YJ, Liou, YC: Iterative algorithms for hierarchical fixed points problems and variational inequalities. Math.
Comput. Model. 52(9-10), 1697-1705 (2010)

13. Moudafi, A: Krasnoselski-Mann iteration for hierarchical fixed-point problems. Inverse Probl. 23(4), 1635-1640 (2007)
14. Mainge, PE, Moudafi, A: Strong convergence of an iterative method for hierarchical fixed-point problems. Pac. J.

Optim. 3(3), 529-538 (2007)
15. Marino, G, Xu, HK: A general iterative method for nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl.

318(1), 43-52 (2006)
16. Cianciaruso, F, Marino, G, Muglia, L, Yao, Y: On a two-steps algorithm for hierarchical fixed point problems and

variational inequalities. J. Inequal. Appl. 2009, 1-13 (2009)
17. Ceng, LC, Anasri, QH, Yao, JC: Some iterative methods for finding fixed points and for solving constrained convex

minimization problems. Nonlinear Anal. 74, 5286-5302 (2011)
18. Bnouhachem, A: A modified projection method for a common solution of a system of variational inequalities, a split

equilibrium problem and a hierarchical fixed point problem. Fixed Point Theory Appl. 2014(22), 1-25 (2014)
19. Bnouhachem, A: Strong convergence algorithm for split equilibrium problems and hierarchical fixed point problems.

Sci. World J. 2014, Article ID 390956 (2014)
20. Blum, E, Oettli, W: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123-145

(1994)
21. Yao, Y, Liou, YC, Kang, SM: Approach to common elements of variational inequality problems and fixed point

problems via a relaxed extragradient method. Comput. Math. Appl. 59(11), 3472-3480 (2010)
22. Suzuki, N: Moudafi’s viscosity approximations with Meir-Keeler contractions. J. Math. Anal. Appl. 325, 342-352 (2007)
23. Xu, HK: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240-256 (2002)
24. Wang, Y, Xu, W: Strong convergence of a modified iterative algorithm for hierarchical fixed point problems and

variational inequalities. Fixed Point Theory Appl. 121(1), 1-9 (2013)
25. Tian, M: A general iterative algorithm for nonexpansive mappings in Hilbert spaces. Nonlinear Anal. 73, 689-694

(2010)
26. Marino, G, Xu, HK: Explicit hierarchical fixed point approach to variational inequalities. J. Optim. Theory Appl. 149(1),

61-78 (2011)
27. Acedo, GL, Xu, HK: Iterative methods for strictly pseudo-contractions in Hilbert space. Nonlinear Anal. 67, 2258-2271

(2007)
28. Rockafellar, RT: On the maximality of sums nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75-88 (1970)

10.1186/1029-242X-2014-154
Cite this article as: Bnouhachem: Strong convergence algorithm for approximating the common solutions of a
variational inequality, a mixed equilibrium problem and a hierarchical fixed-point problem. Journal of Inequalities and
Applications 2014, 2014:154

http://www.journalofinequalitiesandapplications.com/content/2014/1/154

	Strong convergence algorithm for approximating the common solutions of a variational inequality, a mixed equilibrium problem and a hierarchical ﬁxed-point problem
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	The proposed method and some properties
	Applications
	Competing interests
	References


