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1 Introduction

Let H be a real Hilbert space, whose inner product and norm are denoted by (-,-) and || - ||
Let C be a nonempty closed convex subset of H and A be a mapping from C into H. A
classical variational inequality problem, denoted by VI(4, C), is to find a vector u# € C such
that

(v—u,Au) >0, VveC. (1.1)
The solution of VI(4, C) is denoted by Q*. It is easy to observe that
uweQ = u'= Pc[u* - ,oAu*], where p > 0.

We now have a variety of techniques to suggest and analyze various iterative algorithms
for solving variational inequalities and the related optimization problems; see [1-25]. The
fixed-point theory has played an important role in the development of various algorithms

for solving variational inequalities. Using the projection operator technique, one usually
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establishes an equivalence between the variational inequalities and the fixed-point prob-
lem. This alternative equivalent formulation was used by Lions and Stampacchia [1] to
study the existence of a solution of the variational inequalities.

We introduce the following definitions, which are useful in the following analysis.

Definition 1.1 The mapping 7': C — H is said to be
(a) monotone if

(Ix—Ty,x—y) >0, Vx,yeC

(b) strongly monotone if there exists an & > 0 such that
(Tx— Ty, x—y) > allx—ylI>, Vx,yeC;

(c) a-inverse strongly monotone if there exists an o > 0 such that
(Tx — Ty, x—y) > || Tx — Ty||>, Vx,y€C;

(d) nonexpansive if
ITx =Tyl < llx = yll,  Vx,yeC

(e) k-Lipschitz continuous if there exists a constant k > 0 such that
ITx - Tyl < kllx—yll, VxyeC;

(f) contraction on C if there exists a constant 0 < k < 1 such that
ITx - Tyl <kllx—yll, Vx,yeC.

It is easy to observe that every a-inverse strongly monotone 7' is monotone and Lipschitz

continuous. A mapping T : C — H is called k-strict pseudo-contraction if there exists a
constant 0 < k <1 such that

1T — Ty|1% < llx = g1 + k|| (I = T)x = (I - T)y|”

, Vx,yeC. (1.2)
The fixed-point problem for the mapping T is to find x € C such that

Tx = x. (1.3)
We denote by F(T) the set of solutions of (1.3). It is well known that the class of strict
pseudo-contractions includes the class of Lipschitzian mappings, then F(T') is closed and

convex and Pp(r) is well defined (see [2]).

The mixed equilibrium problem, denoted by MEP, is to find x € C such that

Fi(x,y) + (Dx,y-x) 20, VyeC, (1.4)
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where F; : C x C — Ris a bifunction, and D : C — H is a nonlinear mapping. This prob-
lem was introduced and studied by Moudafi and Théra [3] and Moudafi [4]. The set of
solutions of (1.4) is denoted by

MEP(F,) := {x € C:Fi(x,9) + (Dx,y—x) > 0,Vy € C}. (1.5)
If D = 0, then it is reduced to the equilibrium problem, which is to find x € C such that
Fi(x,y) >0, VyeC. (1.6)

The solution set of (1.6) is denoted by EP(F;). Numerous problems in physics, optimiza-
tion, and economics reduce to finding a solution of (1.6); see [5-9]. In 1997, Combettes
and Hirstoaga [10] introduced an iterative scheme of finding the best approximation to
the initial data when EP(F) is nonempty. Recently Plubtieng and Punpaeng [7] introduced
an iterative method for finding the common element of the set F(T') N Q* N EP(F)).

Let S: C — H be a nonexpansive mapping. The following problem is called a hierarchi-
cal fixed point problem: Find x € F(T) such that

(x—Sx,y—x) >0, VyeF(T). (1.7)

It is known that the hierarchical fixed-point problem (1.7) links with some monotone vari-
ational inequalities and convex programming problems; see [11, 12, 26]. Various meth-
ods have been proposed to solve the hierarchical fixed-point problem; see Moudafi [13],
Mainge and Moudafi in [14], Marino and Xu in [15] and Cianciaruso et al. [16]. Very re-
cently, Yao et al. [12] introduced the following strong convergence iterative algorithm to
solve problem (1.7):

Vi = BuSxy + (1= Bp)xy,
%ne1 = Pclogf (%) + (1 - @) Tyu], V>0, (1.8)

where f: C — H is a contraction mapping, and {«,} and {8,} are two sequences in (0, 1).
Under some certain restrictions on the parameters, Yao et al. proved that the sequence
{x,} generated by (1.8) converges strongly to z € F(T'), which is the unique solution of the
following variational inequality:

(U-f)zy-2)=0, VYyeF(T). (1.9)
In 2011, Ceng et al. [17] investigated the following iterative method:
%na1 = PclanpU(xy) + (I = ayuF)(T(yn))], Vn>0, (1.10)

where U is a Lipschitzian mapping, and F is a Lipschitzian and strongly monotone map-
ping. They proved that under some approximate assumptions on the operators and pa-
rameters, the sequence {x,} generated by (1.10) converges strongly to the unique solution
of the variational inequality

(pU(2) — uF(2),x—2) >0, VxeFix(T).
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In this paper, motivated by the work of Yao et al. [12], Ceng et al. [17], Bnouhachem [18,
19] and by the recent work going in this direction, we give an iterative method for find-
ing the approximate element of the common set of solutions of (1.1), (1.4), and (1.7) in
a real Hilbert space. We establish a strong convergence theorem based on this method.
We would like to mention that our proposed method is quite general and flexible and in-
cludes many known results for solving equilibrium problems, variational inequality prob-
lems, and hierarchical fixed-point problems; see, e.g, [11, 12, 1417, 24, 25] and relevant

references cited therein.

2 Preliminaries
In this section, we list some fundamental lemmas that are useful in the consequent anal-

ysis. The first lemma provides some basic properties of projection onto C.

Lemma 2.1 Let P¢ denote the projection of H onto C. Then we have the following inequal-
ities:
(z—Pclz],Pclz] -v) >0, VzeH,veC; (2.1)
(1~ v,Pclul - Pc[v]) = || Pclu] - Pl |, Vuv e H; (2.2)
|Pclu] = Pc| < lu—vl, Vu,veH; (2.3)

|t = Pclel|” < llz—ull® - |2 = Pclzl|)?,

Vze HueC. (2.4)

Lemma 2.2 [20] Let F; : C x C — R be a bifunction satisfying the following assumptions:
(i) Fi(x,x)=0,Vx e C;
(i) F is monotone, i.e., Fi(x,y) + Fi(y,x) <0, Vx,y € C;
(iii) for each x,y,z € C, lim;_,o Fi(tz + (1 - t)x,y) < Fi(x,y);
(iv) for each x € C, y — Fy(x,y) is convex and lower semicontinuous.
Letr >0 and x € H. Then there exists z € C such that

1
Fi(z,y)+-(y-zz-x)>0, VyeC.
r

Lemma 2.3 [10] Assume that F; : C x C — R satisfies assumptions (i)-(iv) of Lemma 2.2,
and for r > 0 and Nx € H, define a mapping T, : H — C as follows:

1
T,(x) = {ze C:Fl(zy) + ;(y—z,z—x) >0,Vye C}.

Then the following hold.:
(i) T, is single-valued;

(i) T, is firmly nonexpansive, i.e.,
| Tox — Toyll> < (Tox — T,y,x—y), Vx,y€H;

(iti) F(T,) = EP(F1);
(iv) EP(Fy) is closed and convex.


http://www.journalofinequalitiesandapplications.com/content/2014/1/154

Bnouhachem Journal of Inequalities and Applications 2014, 2014:154 Page 5 of 24
http://www.journalofinequalitiesandapplications.com/content/2014/1/154

Lemma 2.4 [21] Let C be a nonempty closed convex subset of a real Hilbert space H. If T :
C — Cisa nonexpansive mapping with Fix(T) # 0, then the mapping I - T is demiclosed at
0, i.e., if {x,} is a sequence in C weakly converging to x and if {(I — T)x,,} converges strongly
to 0, then (I - T)x=0.

Lemma 2.5 [17] Let U : C — H be a t-Lipschitzian mapping, and let F : C — H be a k-
Lipschitzian and n-strongly monotone mapping, then for 0 < pt < un, uF —pU is un—pt-
strongly monotone, i.e.,

((WF = pU)x = (WF - pU)y,x - y) = (un - p)x = y]>,  Vx,y€C.

Lemma 2.6 [22] Suppose that A € (0,1) and 1 > 0. Let F : C — H be a k-Lipschitzian and
n-strongly monotone operator. In association with a nonexpansive mapping T : C — C,
define the mapping T" : C — H by

T*x = Tx — \uFT(x), VxeC.

Then T* is a contraction provided u < i—g, that is,

” T % - TkyH <@-m)lx-yl, VYxyeC,

where v =1— /1 — u(2n — uk?).

Lemma 2.7 [23] Assume that {a,} is a sequence of nonnegative real numbers such that
an < (L= Yu)ay + 8n

where {y,} is a sequence in (0,1), and §,, is a sequence such that
(1) chz)l Vi = O0;
(2) limsup,, o 8,/ys < 0 0r 3%, 18,] < 0.
Then lim,,_, , a,, = 0.

Lemma 2.8 [27] Let C be a closed convex subset of H. Let {x,} be a bounded sequence in H.
Assume that

(i) the weak w-limit set wy,(x,) C C, where wy,(x,,) = {x : %, — x};

(ii) foreach z € C,lim,_,  ||x, — z|| exists.
Then {x,} is weakly convergent to a point in C.

3 The proposed method and some properties

In this section, we suggest and analyze our method for finding the common solutions of
the variational inequality (1.1), the mixed equilibrium problem (1.4), and the hierarchical
fixed-point problem (1.7).

Let C be a nonempty closed convex subset of a real Hilbert space H. Let D,A : C — H be
0, a-inverse strongly monotone mappings, respectively. Let F; : C x C — R be a bifunction
satisfying assumptions (i)-(iv) of Lemma 2.2 and S, T : C — C be a nonexpansive mappings
such that F(T) N Q* N MEP(F,) # . Let F: C — C be a k-Lipschitzian mapping and be
n-strongly monotone, and let U/ : C — C be a t-Lipschitzian mapping.
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Algorithm 3.1 For an arbitrary given xy € C, let the iterative sequences {u,}, {x,}, {¥4},

and {z,} be generated by

1
Fl(umy)"' (Dxmy_un) + _(y_umun_xn) >0, VyG G
T,

n

Zy = PC[un - )"nAun];
Yn = ,anxn + (1 - lgn)zn;

%1 = Pe[anplU(x,) + (I — ayuF)(T(ya))], ¥n=0,

where {A,} C (0,2w), {r,} C (0,26). Suppose that the parameters satisfy 0 < p < i—’{,
0<pt<v,wherev=1- m Also, {a,} and {B,} are sequences in (0,1)
satisfying the following conditions:

() limyooay=0and ) o7, = 00,

(b) lim,—, 0o(Bu/etn) =0,

© Yopilopa — el <ooand Y02 | Bue1 — Bul < 00,

(d) liminf,—eory >0and Y o) |7yt — 14| < 00,

(e) liminf, oo Ay <limsup, , Ay <2 and Y ooy [Ay_1 — Ayl < 00.

Remark 3.1 Our method can be viewed as an extension and improvement for some well-
known results, for example, the following.

+ If A =0, we obtain an extension and improvement of the method of Wang and Xu
[24] for finding the approximate element of the common set of solutions of a mixed
equilibrium problem and a hierarchical fixed-point problem in a real Hilbert space.

« If we have the Lipschitzian mapping U =f, F =1, p = u =1, and A = 0, we obtain an
extension and improvement of the method of Yao et al. [12] for finding the
approximate element of the common set of solutions of a mixed equilibrium problem
and a hierarchical fixed-point problem in a real Hilbert space.

+ The contractive mapping f with a coefficient « € [0,1) in other papers [12, 15, 22, 25]
is extended to the cases of the Lipschitzian mapping U with a coefficient constant
y € [0,00).

This shows that Algorithm 3.1 is quite general and unifying.

Lemma 3.1 Let x* € F(T) N Q* N MEP(F,). Then {x,}, {u,}, {z.}, and {y,} are bounded.

Proof First, we show that the mapping (I — r,D) is nonexpansive. For any x,y € C,

| = D)~ (1 = r,D)y||* = [[ 6 =) — ra(Dx - Dy)|*
= lx = y|I> = 2r,(x — y,Dx — Dy) + ri||Dx—Dy||2
< lx = ylI* = r4(26 - 1) | Dx - Dyl||*
< lle—yl*.

Similarly, we can show that the mapping (I - A,A) is nonexpansive. It follows from
Lemma 2.3 that u, = T,, (x, — r,Dx,). Let x* € F(T) N Q* N MEP(F,); we have x* =

Page 6 of 24
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T,,(x* — r,Dx*).

||u,, —x* ||2 = || T, (% — raDxy) — Ty, (x* = r,Dx*) ||2
< | Gen = ruDxy) = (x* = ruDx*) ||2
< ||xn —x* ||2 —1,(20 —=1,) ||Dxn —Dx* HZ

2
< [l =" (3.2)
Since the mapping A is a-inverse strongly monotone, we have

|20 —2||” = | Peltn — 2nAmy) - Pe[x* - 2,457 |
< [t =& = An(Anty — Ax*) |
< [t = *||* = 220 = 1) A, — Ax*|?
<l —2*|?
< -] (3.3)
We define V,, = a,pU(x,) + (I - autF)(T(y,)). Next, we prove that the sequence {x,} is

bounded, and without loss of generality we can assume that 8, < «,, for all # > 1. From
(3.1), we have

s =" = [PelVi] = Pe[+])|
< |anol(xn) + (I - uuF)(T () - x°||
< o[ pUGen) = WF (") | + [ (7 = at F)(T () = U = ctat )T () |
= oy | pU(xn) — pU(x*) + (pU — puE)x*|
+ [T = ) (T ) = I = ctuuE)T (%) |
< aupt ||y — || + ]| (U — nE)x* || + (1 — auv) |30 — 7|
< 0 pt||xn — %)) + ]| (U — F)x¥
+ (L= 0tv) || BuSxn + (1= Bu)zn — ¥
< 0,7 ||y — &%) + o || (U — pF)x* |
+ (L= 0ty0) (B || S0 — Sa*|| + B | S —x* | + @ = B) | 20 —x*])
< 0T |0 — &% | + o | (U = wF)x*
+ (L= atyv) (B || S = Sa*|| + B || Sa™ — ™| + (1 = B) | — ¥ )
< aupt||xn — &% || + o] (U — F)x* |
+ (o) (Bl =" + Bl S5° 7] + (1= ) [ —2°])
= (L= an(v = p)) | w — 2| + | (pU = uF)x*|| + A = ct0) B || Sa* — x|
< (1= au(v = p0)) |20 = x| + o[ (U = wE)x* || + B || Sx* —5*

< (1=l = po) o = + (0L - w1 + 5 =]

Page 7 of 24
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Oln(V - pT)(

l(ots~ | + 55 ']
V—pT

= (1—au(v = p1)) || — | +

< max{ o — a* ([GoU = wF)x*|| + || Sx* — x* ||)},

R
V—pT

where the third inequality follows from Lemma 2.6.

By induction on #, we obtain |x, — x*| < max{||xo — x*||, U_lpr (Il — wF)x*|| + || Sx* —

x*|)} for n > 0 and x¢ € C. Hence, {x,} is bounded and, consequently, we deduce that {u,},
{zuhs {vihs D}, S@en) b AT ()}, {F(T (94))}, and {U ()} are bounded. U

Lemma 3.2 Let x* € F(T) N Q* N MEP(F,) and {x,} be the sequence generated by Algo-
rithm 3.1. Then we have:

() im0 %41 = %l = 0.

(b) The weak w-limit set w,(x,) C F(T), (Ww(x,) = {x:x,, — x}).

Proof From the nonexpansivity of the mapping (I — 1,A) and P¢, we have

lzw = zuall < H (tn = ApAthy) = (Up1 — 1Atk 1) ”
= H (un - Mn—l) - )Vn(Aun _Aun—l) - ()\n - )\n—l)Aun—l ”
= H (n = 1) = An(Auy — Auy_y) ” +[An = M| | Aty ||

< ”un - un—l” + |)\n - )\n—1|”Aun—1”' (34')
Next, we estimate that

1Y = Ynall = | BuSxn + (1= Bu)2n = (BuaSxus + (1 = Bu1)2ua) |
= || Bu(Sxn = Sxut) + (Bu = Bu-1)Sxu1
+ (L= Bu)(zn — Zn-1) + (But = Bu)zn-1 |
< Bullxn = xnall + 1= Bu)llzn — zn1l

+ 1B = Buat | (151 | + 1 Zua |- (3.5)
It follows from (3.4) and (3.5) that

195 = Yn-all < Bulln =21l + (1= ﬂn){ ety — v ll + |2y = Anal ”Aun—ln}

+ 1B = Bual (1%l + 121 ) (3.6)

On the other hand, u, = T}, (x, — r,Dx,) and u,_; = T}, _, (x,-1 — r4-1Dx,_1), we have

1
Fl(umy) + (Dxn)y_ un) + —O’— Uy, Uy _xn> >0, Vy eC (37)
T

n
and

1

Fi(thp-1,9) + (DXy_1,¥ — Un-1) + = tp-1sthp1 —%4-1) =0, VyeC. (3.8)

n-1
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Take y = u,_; in (3.7) and y = u, in (3.8), we get

1
Fl(unr Mn—l) + (Dxn: Up-1— Mn) + _<Mn—l — Uy, Uy _xn> > 0 (39)
n
and
1
Fl(un—l; un) + (Dxn—lr Uy — un—l) + l"_ (un —Up-1,Up-1— xn—l) > 0. (310)
n-1

Adding (3.9) and (3.10) and using the monotonicity of F;, we have

Up-1 — Xn-1 Uy —Xp
(Dxy1 — DXy thyy — 1) + <un — Up-1, - >0,

-1 T'n

which implies that

Tn-1

T
= \Up1—Up Uy —Upy + | 1= — Jup
n-1

18
+ (xn—l - rann—l) - (xn - rann) —Xp-1t r_nxn1>
n-1

1,
0 =< <un — Un-1, rn(Dxn—l - Dxn) + —n(un—l - xn—l) - (un _xn)>

T'n 'n
= <Mn—1 — Up, (1 - r—)un—l + (xn—l - rann—l) - (xn - rann) —Xp-1t r_xn—1>
n-1 n-1

2
- ”un - Z'h’t—l”

T
= <un—1 — Uy, (1 - )(un—l —%Xn-1) + K1 — 1 Dxy) — (X — rann)>

Tn-1
2
— oty — v ||
T'n
= ”un—l - Mn” 1- ’ ”un—l _xn—lll + “(xn—l - rann—l) - (xn - rann H
n-1
2
- ”un - Z'trl—l”
ry 2
< |lstp1 — unll |1 - lltn-g = %nall + o1 — Xull p = 1ot — a1l
n-1
and then
'n
Netn-1 — unll < |1 = — Nty — X1 || + 101 = 2.
Tn-1

Without loss of generality, let us assume that there exists a real number u such that r,, >
1 > 0 for all positive integers n. Then we get

1
”un—l - un” = ”xn—l _xn” + ; |rn—1 - rn| ”un—l _xn—IH- (311)
It follows from (3.6) and (3.11) that

1
lyn = ynall < Bullxn —xnall + (1- ﬂn){ o — %1 Il + ;|rn = Pl lltn-1 = Xua |
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+ A = A || Aty | } +1Bn = Buca | (1811l + [l 251 l)

1
= [y — %l + (1 - ,Bn){ ;lrn = Pt ttym1 = Xpa | + 1Ay = )"nl|”Aun1”}

+1Bn = Bucal (1551 | + 1201 1) (3.12)
Next, we estimate that

%1 = %]l = | PclVi] = Pc[Via
< |letnp (U (xn) = U®y1)) + (0t — atn1) pU (0-1) + (I = b F) (T (y))
— (I = autt )T () + (I = bF)(T(51)) = (I = aua uF) (T (5n0)) |
< anptlay — 21l + 1 = V)llyn = Yl

+ |Ol,,, _an—1|(”pu(xn—1)” + ”/‘LF(T(yn—l))

) (3.13)
where the second inequality follows from Lemma 2.6. From (3.12) and (3.13), we have

%01 = %ull < npTll%n =211l + (1 = atyv)
x <|Ixn ~ Xl + ilm = Pty = Xl + (A = A IIAun_1II>
+1Bn = Bual (IS%1 1| + N1 251 1l)
+lay = el ([oU@ | + [E(TGn)])
< (1- (= p0)an) % = Xa |

1
+ ;lrn - rn—1| ”un—l _xn—IH + |)‘n - )"n—1|”Aun—1”

+ 181 = Buca| (11521 1| + 11201l
+ lot = apa (| oU ) | + | F(TGa0) )

= (1 -(v- ,O'[)Oln) e, — %1 |l

1
+M<;|rn =Tl + Ay = Al + 1B = Bu1| + |y —an1|>~ (3.14)

Here

M = max{sup 1,1 = %1 59p At 1, sup(I1Sx,11 + 1z ),

n>1 n>1 n>1

sup(| ot enn)| + |HE(TOm) )|
It follows by conditions (a)-(e) of Algorithm 3.1 and Lemma 2.7 that

lim (%, —x,( = 0.
n— 00
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Next, we show that lim,,_, « ||z, — %, || = 0. Since x* € F(T) N Q* N MEP(F)), by using (3.2)
and (3.3), we obtain

o1 = 5| * = (Pe(Vi) = &, 21 — 2)
= (Pc(Vi) = Vi, Pc(Via) = &%) + (Vi — &%, 001 — 27
< {an(pUxn) = wF (")) + (I = autF) (T (yn))
— (I = auuF)(T(x%)), %001 — &7)
- fanp (U0 — L))t =) + U ) — E ()5 =)
+ (I = auptF)(T(yn)) = (I = autF)(T (%)), %001 — %)
< e = = | + anlpU () = W)

+ (=) =2 J0mn -7

< B (=" [t =2 17) + el ol () = (), s )
1_
028 s =)
- 1 —an(zv - p7)) - “2 | Pt [ Hz
+ oz,,(pL[(x*) - ;LF(x*),x,Hl - x*)
1-
P L S
< 1 —Ol,,,(;) - p7)) Hxn+1 e H2 + anpf Hxn 2 HZ
U () - (), g )+ P e

1- n 1- n * *
SO 1P (26 = 1) [ Dty - D[

2
— (2 —A,»”Aun — Ax* “2}’ (3.15)
which implies that
a,pT
o = < 22—
20,

T pn PUE) — HEE) 500 =)

(1-oa,v)B, P
o CE OB P (00— [P D
1+a,(v-p1)

— (e = ) | Aty - Ax |}

v e
~1l+a,0—pr)""

20[,,, * * *
+ m(pl,[(x )—MF(?C )»anrl —X )

Page 11 of 24
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(1 - an”)ﬂn

2
1+a,(v-p1) ”

+ “xn—x*nz+ ||Sxy,—x*

(1—0[,,\))(1—,3,,) * |2
- m{m@@ —rn)”Dx,, —Dx ||

+ 12 = Ay) ||Aun —Ax* ||2}
Then, from the inequality above, we get

1-a,v)1-38) " »
Trawpo @0 =)Dy = Dt [*4 2,2 = ) | Au, - Ax |}

_MpT g g2, 20 N i
§1+Oln(\)—,0‘f)|| n—X || +l+an(v_pr)(pl,1(x) /LF(?C )’xn+l x)
+,3nHan —x*||2 + ”xn—x*HZ_ ||xn+1 _x*HZ
2a,

1+a,(v-p1)

Pt

= Tranv—p7) (PU(x) = F ("), 21— 2*)

A
B[S = x|+ (o0 = 2| + 1 =% ) 16s1 = 2l

Since liminf,_, oo A, < limsup,_, . Ay < 20, {r,} C (0,20), lim,—, oo [|¥141 — %x |l =0, &y — O,
and 8, — 0, we obtain lim,_, » [|Dx,, — Dx*|| = 0 and lim,,_, » [|Au,, — Ax*|| = 0.

Since T, is firmly nonexpansive, we have

”u,, —x* ||2 = H T,, (% — ruDx,) = T, (x* - r,,Dx*) ||2

<ty — &%, (% — ruDx) — (x* — r,Dx*))

1
- 31l

- Hun —x* - [(xn - ruDixy) — (x* _r”Dx*)]Hz}’

|u,, —x* ||2 + ” (%, — rnDx,) — (x* - r,,Dx*) Hz

Hence,

||un —x* ||2 < ||(x,, - raDx,) — (x* = r,Dx") ||2 - ||u,, — % + rn (D2, — Dx*) H2
< [xn —x* ||2 = ||t = % + 7 (D — Dx¥) ||2

< [t =2 = et = 2al1? + 2728 = 21| Dy — D" .

From (3.15), (3.3), and the inequality above, we have

R A P
F ol pU () — HE (), st — 2*)
- B g v =+ - e
- 1 —an(; - p7)) [er - " Hz . an;f [ Hz
+ o, (pU (x*) = F (x*), 041 — %)
0 s, 4 (- ) =)

2
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< ¢! _an(; - pT)) ”xnﬂ e ||2 + o, PT ”xn e ||2
+ o, (pU (x*) = F (x*), 2041 — %)
1-ayv)

+ {Bu|Sxn =% | + (1= Bu) ([0 = 2| * = Nt — 21

2
+2r,||lu, _xn””Dle - Dx"* ”)}’

which implies that

aupPT
o = = el |

20, . . )

" m(pl,[(x ) = W (x*), %1 — &%)
(-a)b o,
1+a,(v-p7) "
, A-an)A-F4)

1+a,(v-p1)

+ 27|ty — %4 | Dot — Dx* ||}

I°

{0 =2 ||* = Nl = 2112

LH _x*H2
1+a,(v—pt)""

20, i . »
* T o PUE) ~ HF @) 5 )
B L
1+a,(v-p7) "

1-a,v)1-B,)

(
+Hx,,—x*H2+ 1+a,(v-p1) I”

{_”un —Xn

+ 27y ||ty — x| | D — D™ }.

Hence,
%nun—xnn2 e Sy o] L
¥ %Wi (x7) = HE(x"), 21 = %)
P st -
P P, | D, - |

# o= = o = 2|
] I |
1+a,v-pt)""
20{”1 *\ _ * X
+ 71+a,,(v—pr)(pu(x ) ,uF(x ),xnﬂ x >

(1 - anv);Bn
1+a,(v-p1)

Page 13 of 24
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2(1- Oan)(l - ,Bn)rn
+
1+a,(v-p1)

it =l D, = D" |
+ (J|oon =& || + {21 = 2%]|) i1 = 2l
Since lim, — oo a1 — %]l = 0, &y — 0, B, — 0, and lim,,_, o [ D, — Dx*|| = 0, we obtain
Him fla, — 2 = 0. (3.16)

From (2.2), we get

||zn —x* ||2 = ||Pc[u,, — AuAuy) —Pc[x* - A,,Ax*] ||2

<(zn =", (y — AnAuy) — (x* = 1yAx™))

1

= E{Hzn —x*”2 + ||y = = A (A, —Aac*)”2

= ot =" = (At~ Ax%) = (2 = 27) )

1
< Sl =2 =2 = = 2 = (A — A7) )
1
< E{Hzn —x*”2 + ||u,, —x*Hz — ety — zaI? +2kn(un — Zn, Ay, —Ax*)}
1
< E{Hzn —x*”2 + ||u,, —x*“2 — ety = za || + 20028 —z,,||||Aun —Ax*”}.

Hence,

||Zn -x* ||2 = ”un -x* “2 = llttn _Zn”z + 20| Uy — 24| ”Aun - Ax* ”

= ”xn -x* ”2 — lluy _Zn||2 + 204ty — 2| ”Aun - Ax* ”

From (3.15) and the inequality above, we have

O R A P
+ap(pU (%) = WF (%), %001 — &)
1-
A 5 s, 4 - e )
R e L e P
= 2 n+l n
Pl () < ()t
1-
0= s P+ 0= -

— ety = 2all* + 21ty — 2ol | Aty — Ax*[ )},
which implies that

ouPT

R e L
20[,,, *) _ * X

+ —1+an(v_pt)<pL[(x ) uF(x ),xml x )
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(1—0[,,1))/3,, w112
1+a,(v-p1) ||Sx,,—x ”

(1 - O‘nv)(l - ,Bn)
+ -
1+a,(v-p1)

+ 20 [l - 2z | Aty — Ax* | }.

{10 = 2> = Nt = 2

Hence,

1-a,v)1-B,)

2
L+ ay(v-p7) =2
Dot e
= 1+a,,(v—,0f) ”xn X ” 1+an(v_pr)(/0U(x ) [,LF(x ),xn+1 X >
1-
e LY (R S L PR |

+ 20nlltty = zull | Aty — Ax*

_L —x* 2 L *) _ * ok
_1+a,,,(1)—,0":)” n ” +1+an(u_pl_)(,0U(x) /LF(x )’xn+1 x)
1-—
Lo (g = Dl
N

+ 2hn | thn = za |l | Aty — Ax*||.
Since lim,, oo %041 — %1 =0, @, = 0, B, — 0, and lim,,_, , [|[Au, — Ax*| = 0, we obtain
lim ||u, —z,|| = 0. (3.17)
n—0o0

It follows from (3.16) and (3.17) that

lim ||x, —z,| = 0. (3.18)
n—00
Since T'(x,) € C, we have

%0 = T || < 1120 = Zaa | + %1 = T
= 1% = Xnarll + | Pc[Val = Pc[ T ()] |
< 1% = %[l + [l (0U ) = WE(T())) + T () = T(oxs) |
< Nl = %warll + | pU @) = WE(T)) || + lyn = 2
< %0 = Xl + || pU @) = WE (T W) || + || BaSn + (L= B)zn — x|
< %0 = Fnar | + || pU ) = wE (T () |
+ BullSx = 2l + (1= Bu)ll 2 — -

Since lim,_, oo |41 — %41l = 0, &, = 0, B, — 0, and loU(x,) - I’LF(T())}’I))” and ||Sx,, — x|
are bounded, and lim,,_, o ||%, — 2, || = 0, we obtain

lim ”x,, - T(x,,)” =0.

n—00

Page 15 of 24
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Since {x,} is bounded, without loss of generality we can assume that x,, — x* € C. It follows
from Lemma 2.4 that x* € F(T). Therefore, w,,(x,) C F(T). O

Theorem 3.1 The sequence {x,} generated by Algorithm 3.1 converges strongly to z, which
is the unique solution of the variational inequality

(pU(z) - uF(2),x—2) <0, Vxe Q*NMEP(F)NF(T). (3.19)

Proof Since {x,} is bounded x, — w and from Lemma 3.2, we have w € F(T). Next, we
show that w € MEP(F)). Since u,, = T, (x, — r,Dx,), we have

1
Fi(up,y) + (Dxp,y — tty) + —(y — thy ttyy — %) >0, VyeC.
T,

n

It follows from the monotonicity of F; that

1
(DX, y — thy) + — Y — Uy, Uy — X)) > Pl(yr Un),s VyeC

T'n

and
Upy — Xy
(Dxnkry_ unk> +\y— unk; ri > Fl(y: unk)r V)/ eC. (3-20)
ng

Since lim,,_, |, — %4l = 0, and x,, — w, it is easy to observe that u,, — w. For any 0 <
t<landye C,lety, =ty +(1-t)w, and we have y; € C. Then from (3.20), we obtain

My,k —xnk
Dy, ye = Uny) = Dy, yr = ) = DXy, Y — Uy ) =\ e — Uy — |t Fi(ys, thny)
ni

= (Dy; — Dy, e — thy ) + Dty — Doy, ¥ — thyy )

u — X
- <yt — Uy, %> + FL (91, thy)- (3.21)
103

Since D is Lipschitz continuous and lim,,_, ||#, — %,|| = 0, we obtain limy_, [|Du,, —
Dx,, || = 0. From the monotonicity of D and u,, — w, it follows from (3.21) that

(Dy,ye —w) = Fi(ys, w). (3.22)
Hence, from assumptions (i)-(iv) of Lemma 2.2 and (3.22), we have

0 = Fi(yuye) <tFi(yny) + 1 = O)F1(ye, w)
S tFl(yt:y) + (1 - t)<Dyt>yt - W)
<tFisy) + (1 - )t(Dy,y — w), (3.23)

which implies that F;(y;,y) + (1 — £)(Dy;, y — w) > 0. Letting £t — 0., we have
Fi(w,y) + (Dw,y—w) >0, VyeC,

which implies that w € MEP(F}).
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Furthermore, we show that w € Q*. Let

_ Av+Ncv, VveC(C,

@, otherwise,

Tv

where Ncv:={we H: (w,v—u) > 0,Yu € C} is the normal cone to C at ve C. Then T is
maximal monotone and 0 € 7v if and only if v € Q* (see [28]). Let G(T') denote the graph
of T, and let (v, u) € G(T); since u — Av € Ncv and z, € C, we have

(v—z,,u—Av) > 0. (3.24)
On the other hand, it follows from z, = Pc[u, — A,Au,] and v € C that

(v =z 20 = (y = 2yAuy)) > 0
and

<v - Zy, Zn +Au,,> >0.

An

Therefore, from (3.24) and the inverse strong monotonicity of A, we have

(V=2 ) = {V =2y, Av)

Zy, — Uy
> (V= 2y, AV) = (V = 2, I SRS + Aty
A
Zpy — Uny,
> (V= 2p, AV = Az ) + (V= 2y, Az — Aty ) —(V = 24y, S
i
Zpy — Uny,
= (V_ZrlktAan _Aunk) - <V_an7 I
A

Since lim,,_, o |44 — 24|l = 0 and u,, — w, it is easy to observe that z,, — w. Hence, we
obtain (v —w,u) > 0. Since T is maximal monotone, we have w € T~10, and hence w € Q*.
Thus we have

w e Q* N MEP(F,) N E(T).
Observe that the constants satisfy 0 < pt < v and

k=n SEL
1-2pun + w2k* = 1-2un + u*n’
1-u(2n-pk?) =1-pun

un >1—/1-pu(2n - pk?)

rr oot

unzv,
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therefore, from Lemma 2.5, the operator uF — pU is un — pt strongly monotone, and
we get the uniqueness of the solution of the variational inequality (3.19) and denote it by
z € Q*NMEP(F;) N F(T).

Next, we claim that limsup,_, . (oU(z) — uF(2),x, —z) < 0. Since {x,} is bounded, there
exists a subsequence {x,, } of {x,} such that

lim sup(,ol,l(z) — uwF(z),x, — z) = lim sup(pl,[(z) - WF(2), %y, — z)

n—>00 k— 00

= (pU(z) - uF(z),w—2) < 0.
Next, we show that x,, — z. We have

%1 = 2I1* = (Pc(Vi) = 2, %01 — 2)
= (Pc(Vy) = Vi Pe(Vy) = 2) + (Vi = 2,1 — 2)
<(an(pU(xn) = uF (@) + (I = 0ubF)(T(yn)) — I — 0utF)(T(2)), %041 — 2)
= (anp(U(xn) — U(2)), %ni1 — 2) + otu(pU(2) — WF(2), %11 — 2)
+(U - anMF)(T(yn)) — (I = auutF)(T(2)), %041 — 2)
<y 0T ||%n — 2|l %01 — 2l| + (o U (2) — LF(2), X1 — 2)
+ (1 = V) 1yn =zl |%ne1 — 2]l
< @y 0T [|%y = 2|l %01 — 2l| + @u{pU(2) = WF(2), %11 — 2)
+ (1= o) {Bull S — Szll + Bull Sz — 2l + (1 = Bu)l|2w — 2ll }|%ns1 — 2
< au0T[|%, = 2|l %01 — 2l| + (o U (2) = LF(2), X1 — 2)

+ (L= ) Bullxn = 2l + Bull Sz =2l + (1 = B)lIxn — 2 } %01 — 2l

(1= au(v = 1)) 10 — 2l %001 — 2l| + (P U (2) = LF (2), X1 — 2)

+ (1= a,v)BullSz = zll %1 — 2|l
1-a,(v-p1)
= nf(”xn _Z||2 + %1 _Z||2) + Oln(,OU(Z) — WF(2), %11 _Z)

+ (1 - anV)IBVIHSZ - Z” ||xn+1 - Z”x

which implies that

%1 —2)1* < % % — 2I* %(,{)U(z) — WF(2), %1 — 2)
2O~z -2
< (1= (v = p1)) s —2l1* + %
x { ; _lpf (pU(2) — WF(2), %ps1 — 2) + % 1Sz = 2|l 16,21 — 2| }

Let v = (v — p7) and 8, = 2228LU(L_(pU(z) — puF(2), 2001 — 2) + S22 |57 —
zllllxn — zl1}-
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We have

and

(0U(z) — (@) s — 2 + 2P
e a,(v - p7)

limsup{ 15z = z|| |41 —ZII} =0.

n—00

It follows that

oo (Sn
Z yp=00 and limsup— <O0.
n=1

n—oo Vn

Thus all the conditions of Lemma 2.7 are satisfied. Hence we deduce that x,, — z. This

completes the proof. O

4 Applications
In this section, we obtain the following results by using a special case of the proposed
method for example.

Putting A = 0 in Algorithm 3.1, we obtain the following result which can be viewed as
an extension and improvement of the method of Wang and Xu [24] for finding the ap-
proximate element of the common set of solutions of a mixed equilibrium problem and a
hierarchical fixed-point problem in a real Hilbert space.

Corollary 4.1 Let C be a nonempty closed convex subset of a real Hilbert space H. Let
D : C — H be 0-inverse strongly monotone mappings. Let F, : C x C — R be a bifunction
satisfying assumptions (i)-(iv) of Lemma 2.2 and S, T : C — C be a nonexpansive mappings
suchthat F(T)NMEP(F,) # 9. Let F : C — C be a k-Lipschitzian mapping and be n-strongly
monotone, and let U : C — C be a t-Lipschitzian mapping. For an arbitrary given x € C,
let the iterative sequences {uy}, {x,}, {yn}, and {z,} be generated by

1
Fy (4, y) + (D, y = thy) + — (Y = thy, Uy — %) 20, VyeC;

n

Yn = ﬂnsxn + (1 - ﬁn)un;

%ni1 = PclanpU(x,) + (I - auF)(T(y,))], Vn>0,

where {r,} C (0,20), {a,,} C (0,1), {B,} C (0,1). Suppose that the parameters satisfy 0 < 1 <

i—;’, 0<pt<v, wherev=1-./1-u2n-uk?). Also, {a,,}, {B.}, and {r,} are sequences
satisfying conditions (a)-(d) of Algorithm 3.1. The sequence {x,} converges strongly to z,
which is the unique solution of the variational inequality

(pU(z) - uF(2),x—2) <0, Vxe€ MEP(F))NF(T).

PuttingU =f,F=1,p=pu=1,and A = 0, we obtain an extension and improvement of the
method of Yao et al. [12] for finding the approximate element of the common set of solutions
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of a mixed equilibrium problem and a hierarchical fixed-point problem in a real Hilbert
space.

Corollary 4.2 Let C be a nonempty closed convex subset of a real Hilbert space H. Let
D : C — H be 6-inverse strongly monotone mappings. Let F; : C x C — R be a bifunction
satisfying assumptions (i)-(iv) of Lemma 2.2 and S, T : C — C be a nonexpansive mappings
such that F(T)NMEP(F,) #9. Letf : C — C be a t-Lipschitzian mapping. For an arbitrary
given xg € C, let the iterative sequences {u,}, {x,}, {yn}, and {z,} be generated by

1
Fl(umy) + <Dxn’y_ Up) + _O’_ Upy Uy — %) > 0, Vye G

n

Vn = BuSxn + (1= Bu)utn;
%1 = Pefanf (%) + A=) T()],  ¥r =0,

where {r,} C (0,20), {a,}, {B.} are sequences in (0,1) satisfying conditions (a)-(d) of Al-
gorithm 3.1. The sequence {x,} converges strongly to z, which is the unique solution of the
variational inequality

(f(z) —z4-2) <0, VxeMEP(F)NF(T).

Remark 4.1 Some existing methods (e.g., [12,14, 16,17, 25]) can be viewed as special cases
of Algorithm 3.1. Therefore, the new algorithm is expected to be widely applicable.

To verify the theoretical assertions, we consider the following example.

Example 4.1 Leta, = 3;, s = 5, hn = m, and r, = -2
We have
1
Iim @, == lim — =0
n—00 3 n—-con
and
oo o0
1 1
)RR SLEN
n=1 n=1

The sequence {«,,} satisfies condition (a).

. Ba .
lim — = lim — =0.
n—>00 oy n—00 n2

Condition (b) is satisfied. We compute

1 1 1 1
Oyl — 0Oy = = —— )=
(R P R 3n(n—-1)

It is easy to show Y 2, |1 — | < 00. Similarly, we can show Y o2 |81 — Bl < 00. The
sequences {«,} and {B,} satisfy condition (c). We have

1

liminfr, = liminf
n—00 n—oo p+1
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and

Then, the sequence {r,} satisfies condition (d). We compute

o]

n+1)‘

o0
D e = hl =
n=1

1
2
< 00

Then, the sequence {A,} satisfies condition (e).
Let R be the set of real numbers, D = 0, and let the mapping A : R — R be defined by

Ax = f, Vx e R,
2
let the mapping 7' : R — R be defined by
T(x) = g VxR,

let the mapping F : R — R be defined by

2x+5
F(x) = o Vx eR,

let the mapping S : R — R be defined by
S(x) = f, Vx € R,
2
let the mapping U : R — R be defined by
Ux) ==, VxeR,
14
and let the mapping F; : R x R — R be defined by
Fi(x,y) = -3x> +xy + 2y?, V(x,9) e R xR.

It is easy to show that A is a 1-inverse strongly monotone mapping, 7 and S are non-
expansive mappings, F is a 1-Lipschitzian mapping and %—strongly monotone and U is
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Table 1 The values of {up}, {zn}, {yn}, and {x,} with initial values x; =30 and x; =-30

X1 =30 X1 =-30

Un Zn Yn Xn un Zn Yn Xn
8571429 4285714 15.000000 30.000000 -8571429 -4.285714 -15.000000 -30.0000000
1710361 0427590 0837364 7411565 -1.726060 -0.431515  -0.845050  -7.479592
0.085202 0.000000  0.007495 0404709 -0.093178  0.000000 -0.008196  —-0.442594

-0.001479 0.000370  0.000306 -0.007393 -0.003130  0.000783 0.000648  -0.015652

-0.001617 0.000808  0.000769 -0.008354 —-0.001585 0.000792 0.000753  -0.008187

-0.001215  0.000911 0.000892 -0.006422 -0.001216  0.000912 0.000893  -0.006430

—-0.000972 0.000972  0.000962 -0.005226 -0.000972  0.000972 0.000962  -0.005225

-0.000805 0.001006  0.000999 -0.004380 -0.000805 0.001006 0.000999  -0.004380

-0.000682 0.001024  0.001020 -0.003754 -0.000682  0.001024 0.001020  -0.003754

-0.000590 0.001032 0001030 -0.003271 -0.000590  0.001032 0.001030  -0.003271

o

3333333 3 3> 3> >
Il
— O 00 NO U1 A~ WN —

%—Lipschitzian. It is clear that
Q*NMEP(F,) N F(T) = {0}.
By the definition of F;, we have

1
0 S Fl(umy) + _<y_umun _xn>
T'n

1
= —314% + Uy + 2y2 + r—(y — )ty — Xp).
n
Then

0<r, (—3ufl + Uy + 2y2) + (yu,, — YXy — ufl + u,,xn)

= 21,97 + (Fpthy + Uy — X,)y — Br,,ui - ufl + UpXy.

Let B(y) = 2ry? + (rutty + ty — %)y — 3r,u> — u> + u,x,. B(y) is a quadratic function of

2

o + Uyx,. We determine the

. . _ _ _ 2
y with coefficient a = 2r,, b = ryu, + 4, — x,, ¢ = =3r,u;, — u

discriminant A of B as follows:

A =b? - dac

= (Pytty + Uy — %,)* — 87 (—Brnuf, - ufl + u,,x,,)

2 2 2.2 2
u,, +10r,u;, + 25u; r;, — 2x,u, — 10x,u,1, + X,

(u, + 5u,1r,1)2 —2x,(uy, + 5u,r,) + xfl
= (thy + 5uyty — %)%
We have B(y) > 0, Vy € R. If it has at most one solution in R, then A = 0, we obtain

Xn
U, = .
1+5r,

(4.1)
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Figure 1 The convergence of {u,}, {z»}, {yn}, and {x,} with initial values x; =30 and x; =-30.

For every n > 1, from (4.1), we rewrite (3.1) as follows:

Z, = Xn Xn .
n 1451y, 4(n+1)(1+5ry,)’
X 1 .
Yn = ﬁ + (1_ n_3)zm

Yn+5
21n *

— X ¥
xn+1—pﬁ+7’1_ﬂ

In all the tests we take p = % and u = % In our example, n = %, k=11t= % It is easy to

show that the parameters satisfy 0 < 1 < 22

2,0 =<pt<v,wherev=1- 1— 2y — uk?).

All codes were written in Matlab, the values of {u,}, {z,}, {y»}, and {x,} with different n
are reported in Table 1.

Remark 4.2 Table 1 and Figure 1 show that the sequences {u,}, {z,}, {y.}, and {x,} con-
verge to 0, where {0} = Q* N MEP(Fy) N F(T).
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