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Abstract
Under the assumption of the Riemann hypothesis for the Riemann zeta function and
some Dirichlet L-series we demonstrate that certain products of the corresponding
zeta functions are completely monotonic. This may provide a method to disprove a
certain Riemann hypothesis numerically.
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1 Introduction
The Riemann zeta function ζ (s) can be defined by

ζ (s) =
∞∑
n=


ns
, �(s) > , (.)

and on the rest of the complex plane by analytic continuation. It is known that the ex-
tended ζ (s) is meromorphic with infinitely many zeros at –n for n ∈N (a.k.a trivial zeros)
and with infinitely many zeros within the vertical strip  < �(s) <  (nontrivial zeros). The
Riemann hypothesis for ζ (s) says that all nontrivial zeros are actually on the critical line
�(s) = 

 .
For any complex number z ∈C, let �(z) be Euler’s Gamma function defined by [–]
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Then, the Riemann �(z) function [–]

�(z) = –
 + z


π– +iz
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 + iz
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)
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is an even entire function of order . The celebrated Riemann hypothesis is equivalent to
the statement that �(z) has only real zeros.
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Let χ (n) be a real primitive character with modulusm; the function L(s,χ ) is defined by
[, ]

L(s,χ ) =
∞∑
n=

χ (n)
ns

, �(s) > . (.)

Let

α =

⎧⎨
⎩
, χ (–) = ,

, χ (–) = –,
(.)

then

�(z,χ ) =
(

π

m

)–(+α+iz)/

�

(
 + α + iz



)
L
(
 + iz


,χ

)
(.)

is an even entire function of order . The Riemann hypothesis for L(s,χ ) is equivalent to
�(z,χ ) having only real zeros.
Given real numbers a, b with a < b and an indefinite differentiable real valued func-

tion f (x) on (a,b), f (x) is called completely monotonic on (a,b) if (–)mf (m)(x) ≥  for all
x ∈ (a,b) and m = , , . . . . In this work, under the assumptions of the Riemann hypothe-
sis for the Riemann zeta function and certain L-series, we apply the ideas from [, ] to
prove that some products of these zeta functions are completely monotonic. This com-
plete monotonicity may provide a method to disprove a certain Riemann hypothesis via
numerical methods.

2 Main results
Lemma  Given a non-increasing sequence of positive numbers such that

∞∑
n=

|λn| < ∞, (.)

then, the entire function

f (x) =
∞∏
n=

( – xλn) (.)

is completely monotonic on (–∞,λ–
 ).

Proof It is a direct consequence of Theorem  of []. �

Assuming the Riemann hypothesis is true, we list all positive zeros of �(z) as

z ≤ z ≤ · · · ≤ zn ≤ · · · , (.)

and z is approximately .. Then,
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Thus,

∞∏
n=

(
 –

z
zn

)
=

�(
√
z)

�()
, (.)

�(z 
 )�(iz 

 )
�()

=
∞∏
n=

(
 –

z
zn

)
, (.)

and

�(z

 )�(ρz


 )�(ρz


 )

�()
=

∞∏
n=

(
 –

z
zn

)
(.)

for  ≤ arg(z) < π , where ρ = e π i
 . In fact, for any positive integer 
 >  and assume that

ρ
 is a primitive 
th root of unity; then we have
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Corollary  Under the Riemann hypothesis, let z be the least positive zeros of �(z);
then the function �(

√
z) is completely monotonic for z ∈ (–∞, z ), �(z 

 )�(iz 
 ) is com-

pletely monotonic for z ∈ (–∞, z ), and �(z

 )�(ρz


 )�(ρz


 ) is completely monotonic

for z ∈ (–∞, z ). Let ρ
 be a primitive 
th root of unity for some positive integer 
; then∏

j= �(ρ j


z


 ) is completely monotonic for z ∈ (–∞, z
 ).

Proof Notice that �() is a positive constant, and the claims are obtained by applying
Corollary  to equations (.)-(.). �

Assuming the Riemann hypothesis for L(s,χ ), we list all the positive zeros for �(z,χ ) as
[]

z(χ ) ≤ z(χ ) ≤ · · · ≤ zn(χ )≤ · · · . (.)

Then
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Evidently,

�(,χ ) �= , (.)

otherwise �(z,χ ) ≡ , which is clearly false. Thus,

∞∏
n=

(
 –

z
zn(χ )

)
=

�(
√
z,χ )

�(,χ )
(.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/15


Zhang Journal of Inequalities and Applications 2014, 2014:15 Page 4 of 4
http://www.journalofinequalitiesandapplications.com/content/2014/1/15

for  ≤ arg(z) < π . Furthermore,
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for  ≤ arg(z) < π , where ρ = e π i
 . Let ρ
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Corollary  Assume that the Riemann hypothesis is true for L(s,χ ) and z(χ )
is the least positive zero of �(z,χ ); then the function �(

√
z,χ )

�(,χ ) is completely monotonic

for z ∈ (–∞, z (χ )),
�(z


 ,χ )�(iz


 ,χ )
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�() is completely monotonic for z ∈ (–∞, z (χ )). Let ρ
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th root of unity for some positive integer 
, then
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 ,χ ) is completely monotonic

for z ∈ (–∞, z
 (χ )).

Proof These are consequences of Lemma  and equations (.)-(.). �
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