RESEARCH

Open Access

On complete monotonicity of the Riemann zeta function

Ruiming Zhang*

*Correspondence: ruimingzhang@gmail.com College of Science, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China

Abstract

Under the assumption of the Riemann hypothesis for the Riemann zeta function and some Dirichlet *L*-series we demonstrate that certain products of the corresponding zeta functions are completely monotonic. This may provide a method to disprove a certain Riemann hypothesis numerically.

MSC: Primary 30E15; secondary 33D45

Keywords: Riemann zeta function; Dirichlet series; Riemann hypothesis; complete monotonic functions

1 Introduction

The Riemann zeta function ζ (*s*) can be defined by

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}, \quad \Re(s) > 1, \tag{1.1}$$

and on the rest of the complex plane by analytic continuation. It is known that the extended $\zeta(s)$ is meromorphic with infinitely many zeros at -2n for $n \in \mathbb{N}$ (a.k.a trivial zeros) and with infinitely many zeros within the vertical strip $0 < \Re(s) < 1$ (nontrivial zeros). The Riemann hypothesis for $\zeta(s)$ says that all nontrivial zeros are actually on the critical line $\Re(s) = \frac{1}{2}$.

For any complex number $z \in \mathbb{C}$, let $\Gamma(z)$ be Euler's Gamma function defined by [1–8]

$$\frac{1}{\Gamma(z)} = z \prod_{j=1}^{\infty} \left(1 + \frac{z}{j} \right) \left(1 + \frac{1}{j} \right)^{-z}.$$
(1.2)

Then, the Riemann $\Xi(z)$ function [1–7]

$$\Xi(z) = -\frac{1+4z^2}{8}\pi^{-\frac{1+2iz}{4}}\Gamma\left(\frac{1+2iz}{4}\right)\zeta\left(\frac{1+2iz}{2}\right)$$
(1.3)

is an even entire function of order 1. The celebrated Riemann hypothesis is equivalent to the statement that $\Xi(z)$ has only real zeros.

©2014 Zhang; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Let $\chi(n)$ be a real primitive character with modulus *m*; the function $L(s, \chi)$ is defined by [3, 8]

$$L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}, \quad \Re(s) > 1.$$

$$(1.4)$$

Let

$$\alpha = \begin{cases} 0, & \chi(-1) = 1, \\ 1, & \chi(-1) = -1, \end{cases}$$
(1.5)

then

$$\Xi(z,\chi) = \left(\frac{\pi}{m}\right)^{-(1+2\alpha+2iz)/4} \Gamma\left(\frac{1+2\alpha+2iz}{4}\right) L\left(\frac{1+2iz}{2},\chi\right)$$
(1.6)

is an even entire function of order 1. The Riemann hypothesis for $L(s, \chi)$ is equivalent to $\Xi(z, \chi)$ having only real zeros.

Given real numbers *a*, *b* with a < b and an indefinite differentiable real valued function f(x) on (a, b), f(x) is called completely monotonic on (a, b) if $(-1)^m f^{(m)}(x) \ge 0$ for all $x \in (a, b)$ and m = 0, 1, ... In this work, under the assumptions of the Riemann hypothesis for the Riemann zeta function and certain *L*-series, we apply the ideas from [8, 9] to prove that some products of these zeta functions are completely monotonic. This complete monotonicity may provide a method to disprove a certain Riemann hypothesis via numerical methods.

2 Main results

Lemma 1 Given a non-increasing sequence of positive numbers such that

$$\sum_{n=1}^{\infty} |\lambda_n| < \infty, \tag{2.1}$$

then, the entire function

$$f(x) = \prod_{n=1}^{\infty} (1 - x\lambda_n)$$
(2.2)

is completely monotonic on $(-\infty, \lambda_1^{-1})$ *.*

Proof It is a direct consequence of Theorem 1 of [8]. \Box

Assuming the Riemann hypothesis is true, we list all positive zeros of $\Xi(z)$ as

$$z_1 \le z_2 \le \dots \le z_n \le \dots , \tag{2.3}$$

and z_1 is approximately 14.1347. Then,

$$\Xi(z) = \Xi(0) \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{z_n^2} \right).$$
(2.4)

Thus,

$$\prod_{n=1}^{\infty} \left(1 - \frac{z}{z_n^2} \right) = \frac{\Xi(\sqrt{z})}{\Xi(0)},$$
(2.5)

$$\frac{\Xi(z^{\frac{1}{4}})\Xi(iz^{\frac{1}{4}})}{\Xi^2(0)} = \prod_{n=1}^{\infty} \left(1 - \frac{z}{z_n^4}\right),\tag{2.6}$$

and

$$\frac{\Xi(z^{\frac{1}{6}})\Xi(\rho z^{\frac{1}{6}})\Xi(\rho^2 z^{\frac{1}{6}})}{\Xi^3(0)} = \prod_{n=1}^{\infty} \left(1 - \frac{z}{z_n^6}\right)$$
(2.7)

for $0 \le \arg(z) < 2\pi$, where $\rho = e^{\frac{2\pi i}{3}}$. In fact, for any positive integer $\ell > 1$ and assume that ρ_{ℓ} is a primitive ℓ th root of unity; then we have

$$\frac{\prod_{j=1}^{\ell} \Xi(\rho_{\ell}^{j} z^{\frac{1}{2\ell}})}{\Xi^{\ell}(0)} = \prod_{n=1}^{\infty} \left(1 - \frac{z}{z_{n}^{2\ell}}\right).$$
(2.8)

Corollary 2 Under the Riemann hypothesis, let z_1 be the least positive zeros of $\Xi(z)$; then the function $\Xi(\sqrt{z})$ is completely monotonic for $z \in (-\infty, z_1^2)$, $\Xi(z^{\frac{1}{4}})\Xi(iz^{\frac{1}{4}})$ is completely monotonic for $z \in (-\infty, z_1^4)$, and $\Xi(z^{\frac{1}{6}})\Xi(\rho z^{\frac{1}{6}})\Xi(\rho^2 z^{\frac{1}{6}})$ is completely monotonic for $z \in (-\infty, z_1^6)$. Let ρ_ℓ be a primitive ℓ th root of unity for some positive integer ℓ ; then $\prod_{j=1}^{\ell} \Xi(\rho_{\ell}^j z^{\frac{1}{2\ell}})$ is completely monotonic for $z \in (-\infty, z_1^{2\ell})$.

Proof Notice that $\Xi(0)$ is a positive constant, and the claims are obtained by applying Corollary 1 to equations (2.5)-(2.8).

Assuming the Riemann hypothesis for $L(s, \chi)$, we list all the positive zeros for $\Xi(z, \chi)$ as [8]

$$z_1(\chi) \le z_2(\chi) \le \dots \le z_n(\chi) \le \dots .$$
(2.9)

Then

$$\Xi(z,\chi) = \Xi(0,\chi) \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{z_n(\chi)^2} \right).$$
(2.10)

Evidently,

$$\Xi(0,\chi) \neq 0, \tag{2.11}$$

otherwise $\Xi(z, \chi) \equiv 0$, which is clearly false. Thus,

$$\prod_{n=1}^{\infty} \left(1 - \frac{z}{z_n(\chi)^2} \right) = \frac{\Xi(\sqrt{z}, \chi)}{\Xi(0, \chi)}$$
(2.12)

for $0 \leq \arg(z) < 2\pi$. Furthermore,

$$\frac{\Xi(z^{\frac{1}{4}},\chi)\Xi(iz^{\frac{1}{4}},\chi)}{\Xi^{2}(0)} = \prod_{n=1}^{\infty} \left(1 - \frac{z}{z_{n}^{4}(\chi)}\right)$$
(2.13)

and

$$\frac{\Xi(z^{\frac{1}{6}},\chi)\Xi(\rho z^{\frac{1}{6}},\chi)\Xi(\rho^2 z^{\frac{1}{6}},\chi)}{\Xi^3(0)} = \prod_{n=1}^{\infty} \left(1 - \frac{z}{z_n^6(\chi)}\right)$$
(2.14)

for $0 \le \arg(z) < 2\pi$, where $\rho = e^{\frac{2\pi i}{3}}$. Let ρ_{ℓ} be a primitive ℓ th root of unity for some positive integer ℓ ; then we have

$$\frac{\prod_{j=1}^{\ell} \Xi(\rho_{\ell}^{j} z^{\frac{1}{2\ell}}, \chi)}{\Xi^{\ell}(0, \chi)} = \prod_{n=1}^{\infty} \left(1 - \frac{z}{z_{n}^{2\ell}(\chi)} \right).$$
(2.15)

Corollary 3 Assume that the Riemann hypothesis is true for $L(s, \chi)$ and $z_1(\chi)$ is the least positive zero of $\Xi(z, \chi)$; then the function $\frac{\Xi(\sqrt{z}, \chi)}{\Xi(0, \chi)}$ is completely monotonic for $z \in (-\infty, z_1^2(\chi))$, $\frac{\Xi(z^{\frac{1}{4}}, \chi)\Xi(iz^{\frac{1}{4}}, \chi)}{\Xi^2(0)}$ is completely monotonic for $z \in (-\infty, z_1^4(\chi))$, and $\frac{\Xi(z^{\frac{1}{6}}, \chi)\Xi(\rho^2 z^{\frac{1}{6}}, \chi)}{\Xi^3(0)}$ is completely monotonic for $z \in (-\infty, z_1^6(\chi))$. Let ρ_ℓ be a primitive ℓ th root of unity for some positive integer ℓ , then $\prod_{j=1}^{\ell} \Xi(\rho_\ell^j z^{\frac{1}{2\ell}}, \chi)$ is completely monotonic for $z \in (-\infty, z_1^{2\ell}(\chi))$.

Proof These are consequences of Lemma 1 and equations (2.12)-(2.15).

Competing interests

The author declares that they have no competing interests.

Acknowledgements

This research is partially supported by National Natural Science Foundation of China, grant No. 11371294.

Received: 29 September 2013 Accepted: 13 December 2013 Published: 09 Jan 2014

References

- 1. Abramowitz, M, Stegun, IA (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Tenth printing with corrections. Natl. Bur. of Standards, New York (1972)
- 2. Andrews, GE, Askey, R, Roy, R: Special Functions. Cambridge University Press, Cambridge (1999)
- 3. Davenport, H: Multiplicative Number Theory. Springer, New York (2000)
- 4. Erdélyi, A: Higher Transcendental Functions, Vol. I. Krieger, Malabar (1985)
- 5. Erdélyi, A: Higher Transcendental Functions, Vol. II. Krieger, Malabar (1985)
- 6. Erdélyi, A: Higher Transcendental Functions, Vol. III. Krieger, Malabar (1985)
- 7. Titchmarsh, EC: The Theory of Riemann Zeta Function, 2nd edn. Clarendon Press, New York (1987)
- 8. Zhang, R: Sums of zeros for certain special functions. Integral Transforms Spec. Funct. 21(5), 351-365 (2010)
- 9. Ismail, MEH, Zhang, R: Completely monotonic Fredholm determinants. J. Approx. Theory (submitted)

10.1186/1029-242X-2014-15

Cite this article as: Zhang: On complete monotonicity of the Riemann zeta function. Journal of Inequalities and Applications 2014, 2014:15