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Abstract
We introduce the concept of stability of a k-step fixed point iterative method
xn+1 = T (xn, xn–1, . . . , xn–k+1), n ≥ k – 1, and study the stability of this equation for
mappings T : Xk → X satisfying some Prešić type contraction conditions. Our results
naturally extend various stability results of fixed point iterative methods in literature,
from contractive self-mappings T : X → X to Prešić type contractive mappings
T : Xk → X . Illustrative examples of both stable and unstable fixed point iterations are
also presented.
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1 Introduction
Let (X,d) be a metric space and T : X → X a self-mapping. Denote by Fix(T) := {x ∈ X :
Tx = x} the set of fixed points of T . If (X,d) is complete and T is a contraction, i.e., there
exists a constant α ∈ [, ) such that

d(Tx,Ty) ≤ ad(x, y), for all x, y ∈ X, ()

then, by thewell-knownBanach contractionmapping principle, we know that Fix(T) = {p}
and that, for any x ∈ X, the Picard iteration, that is, the sequence defined by xn+ = Txn,
n = , , . . . , converges to p, as n → ∞.
When applying contractionmapping principle for solving concrete nonlinear problems,

because of rounding errors, numerical approximations of functions, derivatives or inte-
grals, discretization etc., instead of the theoretical sequence {xn}∞n=, defined by the given
iterative method, we practically work with an approximate sequence {yn}∞n=, satisfying the
following approximation bounds:

y := x, d(y,Ty) ≤ ε, . . . , d(yn,Tyn–) ≤ εn, . . . ,

where the positive quantity εn can be interpreted as the ‘round-off error’ of xn; see [].
Under these circumstances, the problem of the numerical stability of Picard iteration is

whether the approximate sequence {yn}∞n= still converges to the fixed point p of T , pro-
vided that εn →  or

∑∞
n= εn <∞.
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This question has been answered in the positive, in the case of contraction condition (),
by Ostrowski [], who established the first stability result for a fixed point iteration proce-
dure, by using the following estimate:

d(yn,p) ≤ αn

 – α
d(x,x) +

n∑
k=

αn–kεk , n = , , , . . . , ()

from which easily follows that yn → p, provided εn → .
In , Harder and Hicks [, ] introduced the notion of stability for a general fixed

point iteration procedure and started a systematic study of this concept, thus obtaining
various stability results for Picard iteration that extended Ostrowski’s theorem to map-
pings satisfying more general contractive conditions and also established some stability
results for other fixed point iteration procedures (Mann iteration, Ishikawa iteration, Kirk
iteration) in the class of Banach contractions, Zamfirescu operators etc.
Further, some authors, see [, –], continued the study of the stability of Picard and

some other fixed point iterations for various general classes of contractive self-mappings
T . Very recently, Rus [, ] introduced some alternative concepts of stability for fixed
point iterative methods.
On the other hand, the contraction mapping principle has been extended by Prešić []

tomappingsT : Xk → X satisfying a contractive condition that include () in the particular
case k = . Some other Prešić type fixed point theorems have been obtained in [–], in
the case T satisfies more general contractive type conditions, while in [, ], and [],
some applications to nonlinear cyclic systems of equations and difference equations are
obtained.
As for the k-step fixed point iterativemethods associated to Prešić type contractive con-

ditions do not exist corresponding stability results, yet, the main aim of this paper is to
fill this gap and to introduce an appropriate concept of stability and then establish some
stability results. The relationship of our notion of stability to other existing concepts of
stability, mainly drawn from the theory of difference equations, is also discussed.
The stability results we shall obtain in this way are extremely general. They unify, extend,

generalize, enrich, and complement a multitude of related results from recent literature.
Illustrative examples of both stable and unstable fixed point iterative sequences are given.
The paper is organized as follows: in Section  we summarize some fixed point theo-

rems for mappings satisfying Prešić type contractive conditions, in Section  we present
the basic concepts and results concerning the stability of fixed point iteration procedures
associated to self-mappings that satisfy explicit contractive conditions. In Section , the
main stability results of this paper are presented. In Section , we end this paper by pre-
senting three detailed examples of stable (Examples  and ) and unstable (Example )
fixed point iterations.

2 Fixed point theorems for Prešić typemappings
All the stability results mentioned in the previous section were basically established in
connection with a corresponding fixed point theorem: Banach, Kannan, Chatterjea, Zam-
firescu etc.; see for example [] for more details.
We start by presenting one of the most interesting generalizations of Banach’s contrac-

tion mapping principle for mappings T : Xk → X, obtained in  by Prešić [], which
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will be fundamental in establishing our stability results for k-step fixed point iterative
methods in the present paper.

Theorem  (Prešić [], ) Let (X,d) be a complete metric space, k a positive integer,

α,α, . . . ,αk ∈R+,
k∑
i=

αi = α <  and T : Xk → X a mapping satisfying

d
(
T(x, . . . ,xk–),T(x, . . . ,xk)

) ≤ αd(x,x) + · · · + αkd(xk–,xk), ()

for all x, . . . ,xk ∈ X.
Then:
() T has a unique fixed point x∗, that is, there exists a unique x∗ ∈ X such that

f (x∗, . . . ,x∗) = x∗;
() the sequence {xn}n≥ defined by

xn+ = T(xn, . . . ,xn–k+), n = k – ,k,k + , . . . ()

converges to x∗, for any x, . . . ,xk– ∈ X .

It is easy to see that, in the particular case k = , from Theorem  we get exactly the
well-known Banach contraction mapping principle, while the k-step iterative method ()
reduces to Picard iteration:

xn+ = T(xn), n = , , , , . . . . ()

Theorem  and other similar results, like the ones in [, , , ], have important
applications in the iterative solution of nonlinear equations, see [] and [, , ], as
well as in the study of global asymptotic stability of the equilibrium for nonlinear difference
equations; see the very recent paper [].
An important generalization of Theorem  was proved by Rus [], for operators T ful-

filling the more general condition

d
(
T(x, . . . ,xk–),T(x, . . . ,xk)

) ≤ ϕ
(
d(x,x), . . . ,d(xk–,xk)

)
, ()

for any x, . . . ,xk ∈ X, where ϕ :Rk
+ →R+ satisfies certain appropriate conditions.

Another important generalization of Prešić’s result was recently obtained by Cirić and
Prešić in [], where, instead of () and its generalization (), the following contraction
condition is considered:

d
(
T(x, . . . ,xk–),T(x, . . . ,xk)

) ≤ λmax
{
d(x,x), . . . ,d(xk–,xk)

}
, ()

for any x, . . . ,xk ∈ X, where λ ∈ (, ).
Other general Prešić type fixed point results have been very recently obtained by the

second author in [, , , ] based on the contractive condition (), studied in [],
which is more general than (), () and ().
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3 Some useful lemmas
In order to obtain simple and short proofs for our main results in this paper we shall need
some auxiliary lemmas. A proof of the following lemma can be found in []; see also [].

Lemma  (Cauchy) Let {an}∞n=, {bn}∞n= be sequences of nonnegative numbers satisfying

(i) lim
n→∞an = ; (ii)

∞∑
k=

bk < ∞.

Then

lim
n→∞

n∑
k=

akbn–k = .

We note that by Lemma  we find that the second term in () converges to zero:

n∑
k=

αn–kεk →  as n→ ∞.

Lemma  Let k be a positive integer and {an}∞n=, {bn}∞n= two sequences of nonnegative real
numbers satisfying the inequality

an+ ≤ αan + αan– + · · · + αkan–k+ + bn, n≥ k – , ()

where α, . . . ,αk ∈ [, ) and α + · · · + αk < . If limn→∞ bn = , then limn→∞ an = .

Proof For simplicity, we prove lemma for k = , when we denote α := α and α := β . All
arguments used below work unchanged in the general case, too.
We first show that if the sequence {un}∞n= is given by u = , u = α and

un+ = αun + βun–, n≥ , ()

then the series
∑∞

n= un converges.
Indeed, the characteristic equation corresponding to the linear difference equation ()

has two distinct real roots, r, r ∈ (–, ), since, if we denote f (r) := r – αr – β , we have
f (–) > , f () > .
Hence, un = crn +crn , where c, c are two constants, and so the convergence of

∑∞
n= un

follows by the convergence of the geometric progression series
∑∞

n= qn, with – < q < .
Note that in the general case, the characteristic equation

rk – αrk– – · · · – αk–r – αk = 

has all its roots (not always real) in absolute value in the interval [, ), by virtue of a con-
sequence of the Rouché theorem, see [], which reads as follows.
Let p(x) = a + ax + · · · + anxn be a polynomial with complex coefficients a,a, . . . ,an

such that an �= . Then there are exactly n (counted with multiplicity) roots of absolute
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Berinde and Păcurar Journal of Inequalities and Applications 2014, 2014:149 Page 5 of 12
http://www.journalofinequalitiesandapplications.com/content/2014/1/149

value less than R, where

R =max

{
,

|a| + |a| + · · · + |an–|
|an|

}
.

Now, let’s come back to the inequality () with k = , α := α and α := β . Take formally
n := i in () to obtain

ai+ ≤ αai + βai– + bi,

then multiply both sides of this inequality by un–i and sum up all the inequalities obtained
for i = , , . . . ,n to get

 ≤ an+ ≤ aun + βaun– +
n–∑
k=

ukbn–k , n≥ .

Now apply Lemma  to get the desired conclusion. �

Remark  Note that for k = , by Lemma  we obtain Theorem . in [], a result which
is fundamental for obtaining short proofs of stability theorems for one step fixed point
iterative methods that has been used in [, , ], and [].

4 Stability of k-step fixed point iteration procedures
Wefirst recall some concepts of stability for -step fixed point iteration procedures, before
we consider the stability of a k-step fixed point iteration procedure.
Let (X,d) be a metric space, T : X → X a self-operator with Fix(T) �= ∅ and let {xn}∞n=

be a fixed point iteration procedure of the general form

xn+ = f (T ,xn), n = , , , . . . , ()

where f (T ,xn) is given, which converges to a fixed point p of T (for example, in the case
of Picard iteration we have f (T ,xn) := Txn).

Definition  (Harder and Hicks, []) Let {yn}∞n= be an arbitrary sequence in X and set

εn = d
(
yn+, f (T , yn)

)
, for n = , , , . . . . ()

We shall say that the fixed point iteration procedure () is T-stable or stable with respect
to T if

lim
n→∞ εn =  ⇒ lim

n→∞ yn = p. ()

As Picard iteration and other fixed point iteration procedures are not stable with respect
to some classes of contractive operators, various weak stability concepts have also been
introduced; see [, , , ]. For example Osilike [] introduced the concept of almost
stability, while Berinde [] introduced the concept of summable almost stability, two
notions which are presented in the following.
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Berinde and Păcurar Journal of Inequalities and Applications 2014, 2014:149 Page 6 of 12
http://www.journalofinequalitiesandapplications.com/content/2014/1/149

Definition  (Osilike, []) Let (X,d) be a metric space, T : X → X a self-operator with
Fix(T) �= ∅ and let {xn}∞n= be a fixed point iteration procedure given by (), supposed to
converge to a fixed point p of T . Let {yn}∞n= be an arbitrary sequence in X and let {εn} be
defined by ().We shall say that the fixed point iteration procedure () is almost T-stable
or almost stable with respect to T if

∞∑
n=

εn < ∞ ⇒ lim
n→∞ yn = p. ()

Definition  (Berinde, []) Let (X,d) be a metric space, T : X → X a self-operator with
Fix(T) �= ∅ and let {xn}∞n= be a fixed point iteration procedure given by (), supposed to
converge to a fixed point p of T . Let {yn}∞n= be an arbitrary sequence in X and let {εn}
be defined by (). We shall say that the fixed point iteration procedure () is summable
almost T-stable or summable almost stable with respect to T if

∞∑
n=

εn < ∞ ⇒
∞∑
n=

d(yn,p) < ∞. ()

It is clear from Definitions - that:
() any stable iteration procedure is almost stable;
() any summable almost stable procedure is almost stable,

but the reverses of these assertions are not generally true; see Example  in []. Moreover,
in general, the class of stable iteration procedures is independent of the class of summable
almost stable procedures.
We introduce now the concept of stability for a k-step fixed point iteration procedure.

Definition  Let (X,d) be a metric space, k a positive integer, T : Xk → X a mapping
with Fix(T) = {x ∈ X : T(x, . . . ,x) = x} �= ∅ and let {xn}∞n= be a k-step fixed point iteration
procedure of the general form

xn+ = f (T ,xn,xn–, . . . ,xn–k+), n = k – ,k,k + , . . . , ()

which converges to a fixed point p of T . Let {yn}∞n= be an arbitrary sequence in X and set

εn = d
(
yn+, f (T , yn, yn–, . . . , yn–k+)

)
, for n = k – ,k,k + , . . . . ()

We shall say that the fixed point iteration procedure () is T-stable or stable with respect
to T if

lim
n→∞ εn =  ⇒ lim

n→∞ yn = p. ()

Remark  For k = , by Definition  we get exactly Definition .

The main result of this paper is the following theorem, which establish a stability result
that corresponds to the fixed point theorem for Prešić-Kannan contractivemappings ([],
Theorem ).

http://www.journalofinequalitiesandapplications.com/content/2014/1/149
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Theorem  Let (X,d) be a complete metric space, k a positive integer, a ∈ R a constant
such that  < ak(k + ) <  and T : Xk → X a mapping satisfying the following contractive
type condition:

d
(
T(x, . . . ,xk–),T(x, . . . ,xk)

) ≤ a
k∑
i=

d
(
xi,T(xi, . . . ,xi)

)
, ()

for any x,x, . . . ,xk ∈ X.
Then:
() T has a unique fixed point x∗, that is, there exists a unique x∗ ∈ X such that

T(x∗, . . . ,x∗) = x∗;
() The sequence {xn}n≥ with x, . . . ,xk– ∈ X and

xn = T(xn–k ,xn–k+, . . . ,xn–), n≥ k, ()

converges to x∗;
() The k-step iteration {xn}n≥ given by () is T-stable.

Proof Items () and () follow by Theorem  in []. Now let {yn}∞n= be an arbitrary se-
quence in X and denote

εn = d
(
yn+,T(yn, yn–, . . . , yn–k+)

)
, for n = k – ,k,k + , . . . . ()

First, by triangle inequality, we have

d
(
yn+,x∗) ≤ d

(
yn+,T(yn, yn–, . . . , yn–k+)

)
+ d

(
T(yn, yn–, . . . , yn–k+),x∗). ()

In view of the contractive condition (), we have

d
(
T(yn, yn–, . . . , yn–k+),x∗)
= d

(
T(yn, . . . , yn–k+),T

(
x∗, . . . ,x∗))

≤ d
(
T(yn, . . . , yn–k+),T

(
yn–, . . . , yn–k+,x∗))

+ d
(
T

(
yn–, . . . , yn–k+,x∗),T(

yn–, . . . , yn–k+,x∗,x∗))
+ · · · + d

(
T

(
yn–k+, . . . ,x∗,x∗,x∗),T(

x∗, . . . ,x∗,x∗,x∗)).
If we denote F(x) := T(x,x, . . . ,x), then by the above inequality we get

d
(
T(yn, yn–, . . . , yn–k+),x∗)
≤ a

[
d
(
yn,T(yn)

)
+ · · · + d

(
yn–k+,x∗) + d

(
x∗,x∗)]

+ a
[
d
(
yn–,T(yn–)

)
+ · · · + d

(
yn–k+,x∗) + d

(
x∗,x∗) + d

(
x∗,x∗)]

+ · · · + a
[
d
(
yn–k+,T(yn–k+)

)
+ d

(
x∗,x∗) + · · · + d

(
x∗,x∗)]

= a
[
d
(
yn,T(yn)

)
+ d

(
yn–,T(yn–)

)
+ · · · + kd

(
yn–k+,T(yn–k+)

)]
. ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/149
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On the other hand, for any j we have, by the triangle inequality,

d
(
xj,F(xj)

) ≤ d
(
xj,x∗) + d

(
x∗,F(xj)

)
. ()

Similarly to the way we obtained (), we get for any x, y ∈ X,

d
(
F(x),F(y)

)
= d

(
T(x,x, . . . ,x),T(y, y, . . . , y)

) ≤ A
[
d
(
x,F(x)

)
+ d

(
y,F(y)

)]
, ()

where, by hypothesis, A = ak(k+)
 < 

 .
Since x∗ is a fixed point of T , by taking x := x∗ and y := xj in () we have

d
(
x∗,F(xj)

)
= d

(
T

(
x∗,x∗, . . . ,x∗),T(xj,xj, . . . ,xj)) ≤ Ad

(
xj,F(xj)

)
.

Now, by () we get

d
(
xj,F(xj)

) ≤ d
(
xj,x∗) +Ad

(
xj,F(xj)

)
,

that is,

d
(
xj,F(xj)

) ≤ 
 –A

d
(
xj,x∗). ()

Now, by (), (), and () we find that the sequence of non-negative real numbers
{d(yn,x∗)} satisfies the recurrence inequality

d
(
yn+,x∗) ≤ αd

(
yn,x∗) + · · · + αkd

(
yn–k+,x∗) + εn, n≥ k – , ()

where αj = ja
–A . It is a simple task to show that

α + · · · + αk =
a( +  + · · · + k)

 –A
=

A
 –A

< ,

since A = ak(k+)
 < 

 , by hypothesis.
Now, assume limn→∞ εn = . By applying Lemma  with an := d(yn,x∗) and bn := εn, by

virtue of (), we conclude that d(yn+,x∗) →  as n → ∞, that is, the k-step iteration
{xn}n≥ defined by () is T-stable. �

A similar stability result can be obtained for mappings T satisfying a more general con-
tractive condition than ().
Denote Fix(T) = {x ∈ X : T(x,x, . . . ,x) = x}.

Theorem  Let (X,d) be a metric space, k a positive integer and T : Xk → X a mapping
with the property that Fix(T) �= ∅ for which there exist α,α, . . . ,αk ∈ R+,

∑k
i= αi = α < 

satisfying

d
(
T(x, . . . ,xk–),x∗) ≤ αd

(
x,x∗) + · · · + αkd

(
xk–,x∗), ()

for all x, . . . ,xk– ∈ X and some x∗ ∈ Fix(T). Then the k-step iteration {xn}n≥ defined by
() is T-stable.

http://www.journalofinequalitiesandapplications.com/content/2014/1/149
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Proof Let {yn}∞n= be an arbitrary sequence in X and denote

εn = d
(
yn+,T(yn, yn–, . . . , yn–k+)

)
, for n = k – ,k,k + , . . . .

By triangle inequality, we have

d
(
yn+,x∗) ≤ d

(
yn+,T(yn, yn–, . . . , yn–k+)

)
+ d

(
T(yn, yn–, . . . , yn–k+),x∗) ()

and by () we obtain

d
(
T(yn, yn–, . . . , yn–k+),x∗) ≤ αd

(
yn,x∗) + · · · + αkd

(
yn–k+,x∗)

which together with () yields

d
(
yn+,x∗) ≤ αd

(
yn,x∗) + · · · + αkd

(
yn–k+,x∗) + εn, n≥ k – , ()

and the rest of the proof is similar to that of Theorem . �

Remark  It is clear by the proof of Theorem  that if T satisfies () then T also satisfies
(), but the reverse is not true, as shown by Example .

Another general stability result is given by the next theorem.

Theorem  Let (X,d) be a metric space, k a positive integer and T : Xk → X a mapping
with the property that Fix(T) �= ∅ and for which there exist α,α, . . . ,αk ∈R+,

∑k
i= αi = α <

 and a constant L >  such that

d
(
T(x, . . . ,xk–),T(x, . . . ,x)

)
≤ αd(x,x) + · · · + αkd(xk–,x) + Ld

(
x,T(x, . . . ,x)

)
, ()

for all x, . . . ,xk ,x ∈ X. Then the k-step iteration {xn}n≥ defined by () is T-stable.

Proof Let {yn}∞n= be an arbitrary sequence in X and denote

εn = d
(
yn+,T(yn, yn–, . . . , yn–k+)

)
, for n = k – ,k,k + , . . . .

If x := x∗ ∈ Fix(T) then by triangle inequality we get () and by taking x := yn, . . . , xk– :=
yn–k+ and x := x∗ ∈ Fix(T) in () we obtain

d
(
T(yn, yn–, . . . , yn–k+),x∗) ≤ αd

(
yn,x∗) + · · · + αkd

(
yn–k+,x∗),

since x∗ = T(x∗, . . . ,x∗). The rest of the proof follows similarly to the proof of Theorem .
�
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5 Examples and concluding remarks
Example  ([], Example ) Let X = [, ] with the usual metric and T : X → X be de-
fined by

T(x, y) =


, (x, y) ∈

[
,




)
× [, ]; T(x, y) =




, (x, y) ∈
[


, 

]
× [, ].

Then, see the detailed proof in [], T satisfies () but does not satisfy (), () and ().
Hence by Theorem  it follows that the k-step fixed point iteration () is T-stable.
To show that () holds, while (), (), () do not hold; see the detailed proof in [].

Example  Let X =R with the usual metric and T : X → X be defined by

T(x, y) =
x + y


, ∀(x, y) ∈ X.

It is easy to check that T satisfies condition () (with α = 
 , α = 

 ), condition () (with
ϕ(t, t) = 

 t +

 t), condition () (with λ = 

 ) and condition () (with α = 
 , α = 

 ) but
does not satisfy ().
Assume condition () does hold and take x := 

 , x :=

 and x := . We get




≤ a


⇔ ≤ a,

a contradiction, since, by hypothesis, a < 
 . Hence by Theorem  or Theorem  (but not

by Theorem ) it follows that the k-step fixed point iteration () is T-stable.

The next example illustrates unstable fixed point iterations, in the case neither () nor
() is satisfied.

Example  Consider the case k =  (in order to graph the orbits), X = [–
 ,


 ] with the

Euclidean norm and let T : X → X be given by Tx = x + x – , for all x ∈ X.
Then T does not satisfy (), (), (), and (), Fix(T) = {–,  } and the orbits of x =

. under T behave chaotic; see Figure .
Indeed, assume that () holds, i.e.,

|Tx – Ty| ≤ α|x – y|, ∀x, y ∈ X,

and take x = –
 , y = – to get the contradiction ≤ α < . For the same values of x and y,

() and () are not satisfied. Now, assume that () holds for x∗ = –, i.e.,

|Tx + | ≤ α|x + |, ∀x ∈ X,

and take x = , to get the contradiction ≤ α < .
Note that for x = . we obtain a convergent (and constant) sequence, xn = ., n ≥ ,

while for x as close as possible to . but different of . we have always unstable orbits
{xn}.
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Figure 1 Unstable orbits of x0 = 0.49 under T in Example 3.

Similar approaches to those in the present paper can be done for mappings defined on
product spaces but adapted from the ones in the usual case; see the recent related fixed
point results [–], and [].
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