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Abstract
Existence and uniqueness of fixed points of a mapping defined on partially ordered
G-metric spaces is discussed. The mapping satisfies contractive conditions based on
certain classes of functions. The results are applied to the problems involving
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1 Introduction and preliminaries
One of themost common applications of the fixed point theory is the problem of existence
and uniqueness of solutions of initial and boundary value problems for differential and
integral equations. The number of studies dealing with such problems has increased con-
siderably in the recent years. An important result in this direction has been reported by JJ
Nieto and RR Lopez in  []. They studied existence and uniqueness of fixed points on
partially ordered metric spaces and applied their results to boundary value problems for
ordinary differential equations. The research in this direction is advancing continuously
and produces many interesting results; see [–].
In ,Mustafa and Sims [] introduced the concept of aG-metric andG-metric space,

which is a generalization of metric space. After this pioneering work,G-metric spaces and
particularly fixed points of variousmaps onG-metric spaces have been intensively studied;
see [–] and also [–].
In this work, we present some fixed point theorems on G-metric spaces and investigate

the existence of solutions of an initial value problem for a partial differential equation,
more precisely, a nonlinear one dimensional heat equation.
First, we briefly introduce some basic notions of G-metric and G-metric space [].

Definition . Let X be a nonempty set, G : X ×X ×X → [,∞) be a function satisfying
the following conditions:
(G) G(x, y, z) =  if x = y = z,
(G)  <G(x,x, y) for all x, y ∈ X with x �= y,
(G) G(x,x, y)≤G(x, y, z) for all x, y, z ∈ X with z �= y,
(G) G(x, y, z) =G(x, z, y) =G(y, z,x) = · · · (symmetry in all variables),
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(G) G(x, y, z) ≤G(x,a,a) +G(a, y, z) for all x, y, z,a ∈ X (rectangle inequality).

Then the function G is called a G-metric on X and the pair (X,G) is called a G-metric
space.
Note that conditions (G) and (G) imply that

∣∣G(x, y, y) –G(x, z, z)
∣∣ ≤ G(y, z, z)

for all x, y, z ∈ X.

Definition . (see []) Let (X,G) be a G-metric space and let {xn} be a sequence in X.
. A point x ∈ X is said to be the limit of the sequence {xn} if

lim
n,m→∞G(x,xn,xm) = 

and the sequence {xn} is said to be G-convergent to x.
. A sequence {xn} is called a G-Cauchy sequence if for every ε > , there is a positive

integer N such that G(xn,xm,xl) < ε for all n,m, l ≥N ; that is, if G(xn,xm,xl)→  as
n,m, l → ∞.

. (X,G) is said to be G-complete (or a complete G-metric space) if every G-Cauchy
sequence in (X,G) is G-convergent in X .

Proposition . (see []) Let (X,G) be aG-metric space, {xn} be a sequence in X and x ∈ X.
Then the following are equivalent:
. {xn} is G-convergent to x,
. G(xn,xn,x) → , as n→ ∞,
. G(xn,x,x)→ , as n→ ∞,
. G(xn,xm,x) → , as n,m → ∞.

Proposition . (see []) The following statements are equivalent on a G-metric space
(X,G):
. The sequence {xn} is G-Cauchy.
. For every ε > , there is N ∈N such that G(xn,xm,xm) < ε, for all n,m ≥N .

Definition . (see []) Let (X,G) and (X′,G′) beG-metric spaces. A function f : (X,G) →
(X ′,G′) is said to beG-continuous at a point a ∈ X if and only if for every ε > , there exists
δ >  such that x, y ∈ X and G(a,x, y) < δ implies G′(f (a), f (x), f (y)) < ε. A function f is G-
continuous on X if and only if it is G-continuous at all points in X.

Proposition . Let (X,G) be a G-metric space. Then the function G(x, y, z) is jointly con-
tinuous in all of its three variables.

Definition . A G-metric space (X,G) is said to be symmetric if

G(x,x, y) =G(x, y, y)

holds for arbitrary x, y ∈ X. Otherwise, the space is called asymmetric.
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It is obvious that for every G-metric on the set X, the expression

dG(x, y) =G(x,x, y) +G(x, y, y)

is a standard metric on X.
Note that on a symmetric G-metric space dG(x, y) = G(x, y, y), but on an asymmetric

G-metric space, the inequality



G(x, y, y) ≤ dG(x, y) ≤ G(x, y, y)

holds for all x, y ∈ X.
Some examples of G-metric spaces are presented below.

Example .
() Let (X,d) be a metric space. Define Gs by

Gs(x, y, z) = d(x, y) + d(y, z) + d(x, z)

for all x, y, z ∈ X . Then clearly, (X,Gs) is a symmetric G-metric space. Note that if
X =R

 and d is the Euclidean metric on X , then Gsmay be interpreted as the
perimeter of the triangle with vertices x, y, z.

() Let X = {a,b}. Define

G(a,a,a) =G(b,b,b) = ,

G(a,a,b) = , G(a,b,b) = ,

and extend G to X ×X ×X by using the symmetry in the variables. Then (X,G) is
an asymmetric G-metric space.

2 Themain results
The attempts to generalize the contractive conditions on the maps resulted in defini-
tions of various classes of functions. Altering distance functions defined in [], weak
ψ-contraction presented in [] are some of these classes. In this study we employ con-
tractive conditions based on the following classes of functions.
Let � denote the class of the functions ψ : [, +∞) → [, +∞) satisfying the following

conditions:
. ψ is nondecreasing,
. ψ is sub-additive, that is, ψ(s + t)≤ ψ(s) +ψ(t),
. ψ is continuous,
. ψ(t) =  ⇐⇒ t = .
Let S denote the class of the functions β : [, +∞) → [, ] such that for any bounded

sequence {tn} of positive real numbers, β(tn) → �⇒ tn → .
Before stating our main results, we give the following auxiliary lemma which is going to

be needed in the sequel.
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Lemma . Let (X,G) be a G-metric space and let {xn} be a sequence in X such that the
sequence {G(xn+,xn+,xn)} of nonnegative real numbers is decreasing and

lim
n→∞G(xn+,xn+,xn) = . ()

When the subsequence {xn} is not G-Cauchy, then there exist ε >  and two sequences {mk}
and {nk} of positive integers such that the sequences

G(xmk ,xnk ,xmk+), G(xmk ,xnk+,xmk+),

G(xmk–,xnk ,xmk ), G(xmk–,xnk+,xmk )
()

converge to ε as k → ∞.

Proof From the Proposition ., if {xn} is not G-Cauchy, then there exist ε >  and two
sequences {mk} and {nk} of N satisfying nk >mk > k for which

G(xmk ,xnk ,xmk+) ≥ ε, ()

where nk is chosen as the smallest integer satisfying (). In other words,

G(xmk ,xnk–,xmk+) < ε. ()

By (), (), and using the symmetry (G) and the rectangle inequality (G), we easily derive

ε ≤G(xmk ,xnk ,xmk+) =G(xmk ,xmk+,xnk )

≤G(xmk ,xmk+,xnk–) +G(xnk–,xnk–,xnk–)

+G(xnk–,xnk–,xnk )

< ε +G(xnk–,xnk–,xnk–) +G(xnk–,xnk–,xnk ). ()

Taking the limit k → ∞ in () and using (), we obtain

lim
n→∞G(xmk ,xnk ,xmk+) = ε. ()

In addition, from the inequalities

G(xmk ,xnk ,xmk+) ≤G(xmk ,xmk+,xnk+) +G(xnk+,xnk+,xnk )

and

G(xmk ,xmk+,xnk+) ≤G(xmk ,xmk+,xnk ) +G(xnk ,xnk ,xnk+)

we deduce

lim
n→∞G(xmk ,xnk+,xmk+) = ε

http://www.journalofinequalitiesandapplications.com/content/2014/1/138
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upon taking the limit k → ∞ and using () and (). In a similar way it can be shown that
the remaining two sequences in () also tend to ε. �

We state next our first main theorem about the existence of fixed points on partially
ordered G-metric spaces.

Theorem . (Existence theorem) Let (X,�) be a partially ordered set, (X,G) be a G-
complete metric space and f : X → X be a nondecreasing function. Suppose that there exist
functions β ∈ S and ψ ∈ � such that

ψ
(
G

(
fx, fy, f x

)) ≤ β
(
ψ

(
G(x, y, fx)

))
ψ

(
G(x, y, fx)

)
()

for all x, y ∈ X with x� y.Assume also that for any increasing sequence {xn} in X converging
to x,

xn � x for each n ≥ . ()

If there exists x ∈ X such that x � fx, then f has a fixed point.

Proof By the assumption, there exists x ∈ X such that x � fx. We construct a sequence
{xn} in the following way:

fxn = xn+ for all n ∈N∪ {}. ()

Since f is nondecreasing, we have fxn � fxn+ for each n ∈ N ∪ {}. Hence, {xn} is a non-
decreasing sequence. If xn = xn+ for some n ∈ N ∪ {}, then xn is the fixed point
of f . Assume that xn �= xn+ for all n ∈ N ∪ {}. Then, by the definition of ψ , we have
ψ(G(fxn, fxn+, f xn)) >  for all n ∈N∪ {}. Taking x = xn and y = xn+ in () we get

ψ
(
G(xn+,xn+,xn+)

)
=ψ

(
G

(
fxn, fxn+, f xn

))
≤ β

(
ψ

(
G(xn,xn+,xn+)

))
ψ

(
G(xn,xn+,xn+)

)
≤ ψ

(
G(xn,xn+,xn+)

)
.

Thus, the sequence {ψ(G(xn,xn+,xn+))} is nonincreasing and bounded below by . Con-
sequently, limn→∞ ψ(G(xn,xn+,xn+)) = L ≥ . We will show that L = . Assume to the
contrary that L > . Due to (), we have

ψ(G(fxn, fxn+, f xn))
ψ(G(fxn–, fxn, f xn–))

≤ β
(
ψ

(
G(xn,xn+,xn+)

)) ≤ 

for each n≥ , which yields

lim
n→∞β

(
ψ

(
G(xn,xn+,xn+)

))
= .

However, since β ∈ S, we have limn→∞ ψ(G(fxn, fxn+, f xn)) =  and hence, L = .

http://www.journalofinequalitiesandapplications.com/content/2014/1/138
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We show next that {fxn} is a G-Cauchy sequence. Suppose that {fxn} is not G-Cauchy.
By Lemma ., there exist ε >  and two sequences {mk} and {nk} of positive integers such
that the four sequences

G
(
fxmk , fxnk , f

xmk

)
, G

(
fxmk , fxnk+, f

xmk

)
,

G
(
fxmk–, fxnk , f

xmk–
)
, G

(
fxmk–, fxnk+, f

xmk–
)

approach ε as k goes to infinity. Setting x = xmk and y = xnk+ in () and regarding (), we
get

ψ
(
G

(
fxmk , fxnk+, f

xmk

))
≤ β

(
ψ

(
G(xmk ,xnk+, fxmk )

))
ψ

(
G(xmk ,xnk+, fxmk )

)
= β

(
ψ

(
G

(
fxmk–, fxnk , f

xmk–
)))

ψ
(
G

(
fxmk–, fxnk , f

xmk–
))

≤ ψ
(
G

(
fxmk–, fxnk , f

xmk–
))
,

and thus

ψ(G(fxmk , fxnk+, f
xmk ))

ψ(G(fxmk–, fxnk , f xmk–))
≤ β

(
ψ

(
G

(
fxmk–, fxnk , f

xmk–
))) ≤ .

This inequality implies limk→∞ β(ψ(G(fxmk–, fxnk , f
xmk–))) = . Since β ∈ S, we con-

clude that

lim
k→∞

ψ
(
G

(
fxmk–, fxnk , f

xmk–
))

= .

By the fact that ψ is a continuous function, ψ(ε) =  and hence ε = , which contradicts
the assumption ε > . Therefore, {fxn} is a G-Cauchy sequence in (X,G). Since (X,G) is a
complete G-metric space, there exists z ∈ X such that

lim
n→∞ fxn = z = lim

n→∞xn+. ()

Next, we show that z is a fixed point of f . Substituting x = xn+ and y = z in (), by the virtue
of (), we get

ψ
(
G(xn+, fz,xn+)

)
=ψ

(
G

(
fxn+, fz, f xn+

))
≤ β

(
ψ

(
G(xn+, z, fxn+)

))
ψ

(
G(xn+, z, fxn+)

)
≤ ψ

(
G(xn+, z, fxn+)

)
=ψ

(
G(xn+, z,xn+)

)

for each n ≥ . Passing to the limit n→ ∞ in the above inequality and regarding () and
the continuity of ψ , we end up with

G(z, fz, z) = ,

http://www.journalofinequalitiesandapplications.com/content/2014/1/138
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that is

fz = z. ()

This completes the proof of the theorem. �

Next, we discuss the uniqueness conditions for the fixed point of the map in Theo-
rem .. A condition for the uniqueness can be stated as follows:
(i) Every pair of elements in X has a lower bound or an upper bound.
On the other hand, it can be proved that condition (i) is equivalent to condition
(ii) For every x, y ∈ X , there exists z ∈ X which is comparable to both x and y.
Accordingly, we prove the following uniqueness theorem.

Theorem . (Uniqueness theorem) Let X satisfies condition (ii) and the hypotheses of
Theorem . hold. If β ∈ S is continuous, then the fixed point of f is unique.

Proof Existence of a fixed point is provided by Theorem .. Assume that y and z are two
different fixed points of f . From condition (ii), there exists x ∈ X which is comparable to y
and z. The monotonicity of f implies that f n(x) is comparable to f n(y) = y and f n(z) = z for
n≥ .Moreover, using the fact that z is a fixed point of f and condition () of Theorem .
we get

ψ
(
G

(
z, z, f n(x)

))
=ψ

(
G

(
f n(z), f n(z), f n(x)

))
=ψ

(
G

(
f
(
f n–(z)

)
, f

(
f n–(z)

)
, f 

(
f n–(x)

)))
, ()

and thus

ψ
(
G

(
z, z, f n(x)

))
≤ β

(
ψ

(
G

(
f n–(z), f n–(z), f

(
f n–(x)

))))
ψ

(
G

(
f n–(z), f n–(z), f

(
f n–(x)

)))
≤ ψ

(
G

(
f n–(z), f n–(z), f n–(x)

))
=ψ

(
G

(
z, z, f n–(x)

))
. ()

Therefore, the sequence {αn} defined by αn = ψ(G(z, z, f n(x))) is nonnegative and nonin-
creasing and hence,

lim
n→∞ψ

(
G

(
z, z, f n(x)

))
= α ≥ .

To show that α = , we assume the contrary, that is, α > . Since β is continuous,
limn→∞ β(αn) = β(α) = λ ≥ . Letting n→ ∞ in (), we get

α ≤ λα ≤ α,

which results in λ = . Since β ∈ S, we deduce

α = lim
n→∞αn = lim

n→∞ψ
(
G

(
z, z, f n(x)

))
= .

http://www.journalofinequalitiesandapplications.com/content/2014/1/138
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By similar arguments, we obtain

lim
n→∞ψ

(
G

(
y, y, f n(x)

))
= .

Employing the rectangle inequality (G), we have

G(z, z, y) ≤G
(
z, z, f n(x)

)
+G

(
f n(x), f n(x), y

)
.

Since the inequality G(x,x, y) ≤ G(x, y, y) holds for any x, y ∈ X in both symmetric and
asymmetric G-metric spaces, we have

G(z, z, y) ≤G
(
z, z, f n(x)

)
+ G

(
f n(x), y, y

)
.

From the fact that ψ is nondecreasing and sub-additive, we conclude

ψ
(
G(z, z, y)

) ≤ ψ
(
G

(
z, z, f n(x)

))
+ ψ

(
G

(
f n(x), y, y

))
.

Letting n → ∞ in the above inequality we obtain ψ(G(z, z, y)) = , which implies
G(z, z, y) =  and hence, z = y. This completes the proof. �

If in Theorem ., we take ψ as the identity function on X we deduce the following
particular result.

Corollary . Let (X,�) be a partially ordered set (X,G) be a G-complete metric space.
Let f : X → X be a nondecreasing map. Suppose that there exists β ∈ S such that

G
(
fx, fy, f x

) ≤ β
(
G(x, y, fx)

)
G(x, y, fx)

holds for all x, y ∈ X with x � y. Assume that either f is continuous or that X satisfies the
following condition: if an increasing sequence xn in X converges to x, then xn � x for each
n≥ . If in addition, there exists x ∈ X such that x � fx then f has a fixed point.

Remark . In a recent paper by Karapınar and Samet [] it has been proven that if d
is a metric on X and ψ ∈ � , then the function dψ = ψ(d(x, y)) is also a metric on X. In
a similar way, it can be shown that the function Gψ = ψ(G(x, y, z)), where ψ ∈ � is also
a G-metric. Employing this definition, the contractive condition in Theorem . can be
simplified considerably. More precisely, it becomes

Gψ

(
fx, fy, f x

) ≤ β
(
Gψ (x, y, fx)

)
Gψ (x, y, fx) ()

for all x, y ∈ X with x� y.

As a common application of fixed point theorems one can give integral type contractive
conditions. In many articles authors apply their results to maps which are defined by inte-
grals [, ]. In what follows, we apply our results to maps defined by Lebesgue integrals.
Let Y be a set of functions χ :R+ →R

+ satisfying the following conditions:
() χ is Lebesgue integrable;

http://www.journalofinequalitiesandapplications.com/content/2014/1/138
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() χ is summable on each compact of subset of R+;
() χ is sub-additive;
()

∫ ε

 χ (t)dt >  for each ε > .
A sub-additive integrable function is defined as follows:

Definition . The function χ : R+ → R
+ is called a sub-additive integrable function if,

for any a,b ∈R
+, we have

∫ a+b


χ (t)dt ≤

∫ a


χ (t)dt +

∫ b


χ (t)dt.

For the class of functions in Y , we state the following fixed point theorem.

Theorem . Let (X,�) be a partially ordered set and let (X,G) be a complete G-metric
space. Let f : X → X be a nondecreasing function. Suppose that there exist functions β ∈ S
and ψ ∈ � such that for χ ∈ Y

∫ ψ(G(fx,fy,f x))


χ (t)dt ≤ β

(∫ ψ(G(x,y,fx))


χ (t)dt

)∫ ψ(G(x,y,fx))


χ (t)dt ()

holds for all x, y ∈ X with x � y. Assume that either f is continuous or X satisfies the condi-
tion: if an increasing sequence {xn} converges to x, then xn � x for each n ≥ . If there exists
x ∈ X such that x � fx then f has a fixed point.

Proof For χ ∈ Y , define the function � : R+ → R
+ by �(x) =

∫ x
 χ (t)dt. Observe that

� ∈ � . The inequality () can be written as

�
(
ψ

(
G

(
fx, fy, f x

))) ≤ β
(
�

(
ψ

(
G(x, y, fx)

)))(
�

(
ψ

(
G(x, y, fx)

)))
. ()

Let � ◦ ψ =ψ, where clearly ψ ∈ � . Then we have

ψ
(
G

(
fx, fy, f x

)) ≤ β
(
ψ

(
G(x, y, fx)

))
ψ

(
G(x, y, fx)

)
.

Then the conditions of Theorem . are satisfied and thus f has a fixed point, which com-
pletes the proof. �

The particular case in which the function ψ is the identity function on X can be stated
as a corollary.

Corollary . Let (X,�) be a partially ordered set and, (X,G) be a complete G-metric
space. Let f : X → X be a nondecreasing map. Suppose that there exists β ∈ S such that for
χ ∈ Y the inequality

∫ G(fx,fy,f x)


χ (t)dt ≤ β

(∫ G(x,y,fx)


χ (t)dt

)∫ G(x,y,fx)


χ (t)dt,

holds for all x, y ∈ X with x � y. Assume that if an increasing sequence {xn} in X converges
to x then xn � x for each n ≥ . If there exists x ∈ X such that x � fx then f has a fixed
point.

http://www.journalofinequalitiesandapplications.com/content/2014/1/138
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3 Application
As an application of the existence and uniqueness Theorems . and ., we consider the
problem of existence and uniqueness of an initial value problem defined by a nonlinear
heat equation in one dimension. Such an initial value problem is defined as follows:

⎧⎨
⎩
ut(x, t) = uxx(x, t) + F(x, t,u,ux), –∞ < x < ∞,  < t < T ,

u(x, ) = ϕ(x), –∞ < x < ∞,
()

where ϕ is assumed to be continuously differentiable, ϕ and ϕ′ bounded, and F(x, t,u,ux)
a continuous function.

Definition . A solution of the initial value problem () is any function u = u(x, t) de-
fined in R× I , where I = (,T], satisfying the equation and the condition in () and also
the conditions:
(a) u ∈ C(R× I),
(b) ut , ux and uxx ∈ C(R× I),
(c) u and ux are bounded in R× I .

Consider the space  defined as

 =
{
v(x, t) : v, vx ∈ C(R× I) and ‖v‖ <∞}

,

where the norm on this space is defined as

‖v‖ = sup
x∈R,t∈I

∣∣v(x, t)∣∣ + sup
x∈R,t∈I

∣∣vx(x, t)∣∣. ()

The set endowedwith the norm ‖ ·‖ defined in () is a Banach space. Define aG-metric
on  as follows:

G(u, v,w) = sup
x∈R,t∈I

∣∣u(x, t) – v(x, t)
∣∣ + sup

x∈R,t∈I

∣∣ux(x, t) – vx(x, t)
∣∣

+ sup
x∈R,t∈I

∣∣v(x, t) –w(x, t)
∣∣ + sup

x∈R,t∈I

∣∣vx(x, t) –wx(x, t)
∣∣

+ sup
x∈R,t∈I

∣∣u(x, t) –w(x, t)
∣∣ + sup

x∈R,t∈I

∣∣ux(x, t) –wx(x, t)
∣∣.

Then (,G) is a complete G-metric space. Define also a partial order � on  as

u, v ∈ , u � v ⇐⇒ u(x, t) ≤ v(x, t), ux(x, t)≤ vx(x, t)

for any x ∈R and t ∈ I . It can easily be observed that (,�) satisfies condition (i) of unique-
ness, that is, every pair of elements in  has a lower bound or an upper bound. Indeed, for
any u, v ∈ , max{u, v} and min{u, v} are the lower and upper bounds for u and v, respec-
tively. Let {vn} ⊆  be a monotone nondecreasing sequence which converges to v in .
Then, for any x ∈R and t ∈ I , we have

v(x, t)≤ v(x, t)≤ · · · ≤ vn(x, t) ≤ · · ·

http://www.journalofinequalitiesandapplications.com/content/2014/1/138
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and

vx(x, t)≤ vx(x, t) ≤ · · · ≤ vnx(x, t)≤ · · · .

Moreover, since the sequences {vn(x, t)} and {vnx(x, t)} of real numbers converge to v(x, t)
and vx(x, t), respectively, we have for all x ∈ R, t ∈ I and n ≥  the inequalities vn(x, t) ≤
v(x, t) and vnx(x, t)≤ vx(x, t) hold. Therefore, vn ≤ v for all n≥  and hence, (,�) with the
G-metric defined above satisfies condition ().
We next define a lower solution for the initial value problem, which is needed in the

existence-uniqueness proof.

Definition . A lower solution of the initial value problem () is a function u ∈  such
that

⎧⎨
⎩
ut(x, t)≤ uxx(x, t) + F(x, t,u,ux), –∞ < x < ∞,  < t < T ,

u(x, )≤ ϕ(x), –∞ < x < ∞,

where the function ϕ is continuously differentiable and both ϕ and ϕ′ are bounded, the set
 is the set defined above and F(x, t,u,ux) is a continuous function.

We state the following existence-uniqueness theorem for the solution of the initial value
problem ().

Theorem . Consider the problem () and, assume that F : R × I × R × R → R is a
continuous function. Suppose that the following conditions hold:
() For any c > , the function F(x, t, s,p), where |s| < c and |p| < c is uniformly Hölder

continuous in x and t, for each compact subset of R× I .
() There exists a constant cF ≤ 

 (T + π– 
T 

 )– such that

 ≤ F(x, t, s,p) – F(x, t, s,p) ≤ cF ln(s – s + p – p + ),

for all (s,p) and (s,p) in R×R with s ≤ s and p ≤ p.
() F is bounded for bounded s and p.

Then the existence of a lower solution for the initial value problem () provides the exis-
tence of the unique solution of the problem ().

Proof Observe that the problem () is equivalent to the integral equation

u(x, t) =
∫ ∞

–∞
k(x – ξ , t)ϕ(ξ )dξ

+
∫ t



∫ ∞

–∞
k(x – ξ , t – τ )F

(
ξ , τ ,u(ξ , τ ),uξ (ξ , τ )

)
dξ dτ ,

for all x ∈R and  < t ≤ T , where the function k(x, t) is theGreen’s function of the problem
defined as

k(x, t) =
√
π t

exp

{
–x

t

}

http://www.journalofinequalitiesandapplications.com/content/2014/1/138


Gülyaz and Erhan Journal of Inequalities and Applications 2014, 2014:138 Page 12 of 15
http://www.journalofinequalitiesandapplications.com/content/2014/1/138

for all x ∈ R and  < t. The initial value problem () has a unique solution if and only if
the above integral equation has unique solution u such that u and ux are continuous and
bounded for all x ∈R and  < t ≤ T . Define a mapping f : →  by

(fu)(x, t) =
∫ ∞

–∞
k(x – ξ , t)ϕ(ξ )dξ

+
∫ t



∫ ∞

–∞
k(x – ξ , t – τ )F

(
ξ , τ ,u(ξ , τ ),uξ (ξ , τ )

)
dξ dτ

for all x ∈ R and t ∈ I . Clearly, the fixed point u ∈  of f is a solution of the problem
(). We will show that the conditions of Theorems . and . are satisfied. Note that the
mapping f is nondecreasing since, by condition () in the statement of the theorem, for
u� v, that is, u≥ v and ux ≥ vx, we have

F
(
x, t,u(x, t),ux(x, t)

) ≥ F
(
x, t, v(x, t), vx(x, t)

)
.

Since k(x, t) >  for all (x, t) ∈R× I ,

(fu)(x, t) =
∫ ∞

–∞
k(x – ξ , t)ϕ(ξ )dξ

+
∫ t



∫ ∞

–∞
k(x – ξ , t – τ )F

(
ξ , τ ,u(ξ , τ ),uξ (ξ , τ )

)
dξ dτ

≥
∫ ∞

–∞
k(x – ξ , t)ϕ(ξ )dξ

+
∫ t



∫ ∞

–∞
k(x – ξ , t – τ )F

(
ξ , τ , v(ξ , τ ), vξ (ξ , τ )

)
dξ dτ

= (fv)(x, t)

for all x ∈R and t ∈ I . In addition, we have

∣∣(fu)(x, t) – (fv)(x, t)
∣∣

≤
∫ t



∫ ∞

–∞
k(x – ξ , t – τ )

∣∣F(
ξ , τ ,u(ξ , τ ),uξ (ξ , τ )

)
– F

(
ξ , τ , v(ξ , τ ), vξ (ξ , τ )

)∣∣dξ dτ

≤
∫ t



∫ ∞

–∞
k(x – ξ , t – τ )cF ln

(
u(ξ , τ ) – v(ξ , τ ) + uξ (ξ , τ ) – vξ (ξ , τ ) + 

)
dξ dτ

≤ cF ln
(
G(u, v, fu) + 

)∫ t



∫ ∞

–∞
k(x – ξ , t – τ )dξ dτ

≤ cF ln
(
G(u, v, fu) + 

)
T , ()

where we have used the facts that

ln
(
u(ξ , τ ) – v(ξ , τ ) + uξ (ξ , τ ) – vξ (ξ , τ ) + 

)

≤ ln
(
 sup

ξ∈R,τ∈I

∣∣u(ξ , τ ) – v(ξ , τ )
∣∣ +  sup

ξ∈R,τ∈I

∣∣uξ (ξ , τ ) – vξ (ξ , τ )
∣∣ + 

)

= ln
(
G(u, v, fu) + 

)
()

http://www.journalofinequalitiesandapplications.com/content/2014/1/138
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and

∫ t



∫ ∞

–∞
k(x – ξ , t – τ )dξ dτ = T . ()

On the other hand, since (,�) satisfies condition (i), it also satisfies condition (ii), as they
are equivalent. Therefore, either v and fu are comparable or there exists w ∈  which is
comparable to both v and fu. In either case, by means of similar calculations, it can be
shown that

∣∣(fv)(x, t) – (
f u

)
(x, t)

∣∣ ≤ cF ln
(
G(u, v, fu) + 

)
T ()

and, similarly,

∣∣(fu)(x, t) – (
f u

)
(x, t)

∣∣ ≤ cF ln
(
G(u, v, fu) + 

)
T , ()

for all u � v. Moreover, by using differentiation under integral sign and employing again
condition () of the theorem, we compute

∣∣∣∣∂fu∂x
(x, t) –

∂fv
∂x

(x, t)
∣∣∣∣ ≤ cF ln

(
G(u, v, fu) + 

)∫ t



∫ ∞

–∞

∣∣∣∣∂k∂x (x – ξ , t – τ )
∣∣∣∣dξ dτ

≤ cF ln
(
G(u, v, fu) + 

)
π– 

T

 , ()

∣∣∣∣∂fv∂x
(x, t) –

∂f u
∂x

(x, t)
∣∣∣∣ ≤ cF ln

(
G(u, v, fu) + 

)∫ t



∫ ∞

–∞

∣∣∣∣∂k∂x (x – ξ , t – τ )
∣∣∣∣dξ dτ

≤ cF ln
(
G(u, v, fu) + 

)
π– 

T

 , ()

and

∣∣∣∣∂fu∂x
(x, t) –

∂f u
∂x

(x, t)
∣∣∣∣ ≤ cF ln

(
G(u, v, fu) + 

)∫ t



∫ ∞

–∞

∣∣∣∣∂k∂x (x – ξ , t – τ )
∣∣∣∣dξ dτ

≤ cF ln
(
G(u, v, fu) + 

)
π– 

T

 ()

are satisfied. Combining (), (), and () with (), (), and (), we deduce

G
(
fu, fv, f u

) ≤ cF
(
T + π– 

T


)
ln

(
G(u, v, fu) + 

)
≤ ln

(
G(u, v, fu) + 

)
,

which implies

ln
(
G

(
fu, fv, f u

)
+ 

) ≤ ln
(
ln

(
G(u, v, fu) + 

))

=
ln(ln(G(u, v, fu) + ))
ln(G(u, v, fu) + )

ln
(
G(u, v, fu) + 

)
.

Define ψ(x) = ln(x + ) and β(x) = ψ(x)
x . Obviously, ψ : [,∞) → [,∞) is continuous,

sub-additive, nondecreasing, and positive in (,∞). Furthermore,ψ() =  and alsoψ(x) <
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x and hence, β ∈ S. Finally, let α(x, t) be a lower solution for (). We show that α ≤ f α.
Upon integrating

(
α(ξ , τ )k(x – ξ , t – τ )

)
τ
–

(
αξ (ξ , τ )k(x – ξ , t – τ )

)
ξ
+

(
α(ξ , τ )kξ (x – ξ , t – τ )

)
ξ

≤ F
(
ξ , τ ,α(ξ , τ ),αξ (ξ , τ )

)
k(x – ξ , t – τ )

over –∞ < ξ < ∞ and  < τ < t, we obtain

α(x, t)≤
∫ ∞

–∞
k(x – ξ , t)ϕ(ξ )dξ

+
∫ t



∫ ∞

–∞
k(x – ξ , t – τ )F

(
ξ , τ ,α(ξ , τ ),αξ (ξ , τ )

)
dξ dτ

= (f α)(x, t)

for all x ∈R and t ∈ (,T]. Therefore, by Theorems . and ., f has a unique fixed point.
This completes the proof. �
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