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Abstract
Let {X ,Xn,n ≥ 1} be a sequence of i.i.d. random variables which is in the domain of
attraction of the normal law with zero mean and possibly infinite variance,
Q(n) = R(n)/S(n) be the rescaled range statistic, where R(n) = max1≤k≤n{∑k

j=1(Xj – X̄n)} –
min1≤k≤n{∑k

j=1(Xj – X̄n)}, S2(n) =
∑n

j=1(Xj – X̄n)
2/n and X̄n =

∑n
j=1 Xj/n. Then two precise

asymptotics related to probability convergence for Q(n) statistic are established under
some mild conditions in this paper. Moreover, the precise asymptotics related to
almost surely convergence for Q(n) statistic is also considered under some mild
conditions.
MSC: 60F15; 60G50
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1 Introduction andmain results
Let {X,Xn,n ≥ } be a sequence of i.i.d. random variables and set Sn =

∑n
j=Xj for n ≥ ,

logx = ln(x∨e) and log logx = log(logx). Hsu and Robbins [] and Erdős [] established the
well known complete convergence result: for any ε > ,

∑∞
n= P(|Sn| ≥ εn) < ∞ if and only if

EX =  and EX < ∞. Baum andKatz [] extended this result and proved that, for  ≤ p < ,
ε >  and r ≥ p,

∑∞
n= nr–P(|Sn| ≥ εn/p) < ∞ holds if and only if EX =  and E|X|rp < ∞.

Since then, many authors considered various extensions of the results of Hsu-Robbins-
Erdős and Baum-Katz. Some of them studied the precise asymptotics of the infinite sums
as ε →  (cf. Heyde [], Chen [] and Spătaru []). We note that the above results do
not hold for p = , this is due to the fact that P(|Sn| ≥ εn/) → P(|N(, )| ≥ ε/EX) by
the central limit theorem when EX = , where N(, ) denotes a standard normal random
variable. It should be noted that P(|N(, )| ≥ ε/EX) is irrespective of n. However, if n/ is
replaced by some other functions of n, the results of precise asymptoticsmay still hold. For
example, by replacing n/ by

√
n log logn, Gut and Spătaru [] established the following

results called the precise asymptotics in the law of the iterated logarithm.

Theorem A Suppose {X,Xn,n ≥ } is a sequence of i.i.d. random variables with EX = ,
EX = σ  and EX(log log |X|)+δ < ∞ for some δ > , and let an = O(

√
n/(log logn)γ ) for

some γ > /. Then

lim
ε↘

√
ε – 

∞∑
n=


n
P
(|Sn| ≥ εσ

√
n log logn + an

)
= .
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Theorem B Suppose {X,Xn,n ≥ } is a sequence of i.i.d. random variables with EX = 
and EX = σ  < ∞. Then

lim
ε↘

ε
∞∑
n=


n logn

P
(|Sn| ≥ εσ

√
n log logn

)
= .

Of lately, by applying strong approximation method which is different from Gut and
Spătaru’s, Zhang [] gave the sufficient and necessary conditions for this kind of results to
be held. One of his results is stated as follows.

Theorem C Let a > – and b > –/ and let an(ε) be a function of ε such that

an(ε) log logn→ τ as n→ ∞ and ε ↘ √
a + .

Suppose that

EX = , EX = σ  < ∞ and EX(log |X|)a(log log |X|)b– <∞ (.)

and

EXI
{|X| ≥ t

}
= o

(
(log log t)–

)
as t → ∞. (.)

Then

lim
ε↘√

a+

(
ε – (a + )

)b+/ ∞∑
n=

(logn)a(log logn)b

n
P
(
Mn ≥ (

ε + an(ε)
)√

σ n log logn
)

= 

√


π (a + )
exp(–τ

√
a + )�(b + /) (.)

and

lim
ε↘√

a+

(
ε – (a + )

)b+/ ∞∑
n=

(logn)a(log logn)b

n
P
(|Sn| ≥ (

ε + an(ε)
)√

σ n log logn
)

=

√


π (a + )
exp(–τ

√
a + )�(b + /). (.)

Here Mn =maxk≤n |Sk|, and here and in what follows �(·) is a gamma function. Conversely,
if either (.) or (.) holds for a > –, b > –/ and some  < σ < ∞, then (.) holds and

lim inf
t→∞ (log log t)EXI

{|X| ≥ t
}
= .

It is worth mentioning that the precise asymptotics in a Chung-type law of the iterated
logarithm, law of logarithm and Chung-type law of logarithm were also considered by
Zhang [], Zhang and Lin [] and Zhang [], respectively.
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The above-mentioned results are all related to partial sums. This paper is devoted to
the study of some precise asymptotics for the rescaled range statistic (or the R/S statistic),
defined by Q(n) = R(n)/S(n), where{

R(n) =max≤k≤n{∑k
j=(Xj – X̄n)} –min≤k≤n{∑k

j=(Xj – X̄n)},
S(n) = 

n
∑n

j=(Xj – X̄n), X̄n = 
n
∑n

j=Xj.
(.)

This statistic, introduced by Hurst [] when he studied hydrology data of the Nile river
and reservoir design, plays an important role in testing statistical dependence of a se-
quence of random variables and has been used in many practical subjects such as hydrol-
ogy, geophysics and economics, etc. Because of the importance of this statistic, some peo-
ple studied some limit theorems for R/S statistic. Among them, Feller [] established the
limit distribution of R(n)/

√
n for i.i.d. case, Mandelbrot [] studied weak convergence of

Q(n) for a more general case, while Lin [–] and Lin and Lee [] established the law of
the iterated logarithm forQ(n) under various assumptions. Among Lin’s results, we notice
that Lin [] proved that

lim sup
n→∞

√


n log logn
Q(n) =  a.s. (.)

holds only if {X,Xn,n ≥ } is a sequence of i.i.d. random variables which is in the domain
of attraction of the normal law with zero mean.
Recently, based on applying a similar method to the one employed by Gut and Spătaru

[], a result related to the precise asymptotics in the law of the iterated logarithm for R/S
statistic was established by Wu and Wen [], that is, we have the following.

Theorem D Suppose {X,Xn,n ≥ } is a sequence of i.i.d. random variables with EX = ,
EX <∞. Then for b > –,

lim
ε↘

ε(b+)
∞∑
n=

(log logn)b

n logn
P
(
Q(n) ≥ ε

√
n log logn

)
=

EY (b+)

b+(b + )
. (.)

Here and in what follows,we denote Y = sup≤t≤ B(t)– inf≤t≤ B(t) and B(t) be a standard
Brownian bridge.

It is natural to ask whether there is a similar result for R/S statistic when ε tends to a
constant which is not equal to zero. In the present paper, the positive answer will be par-
tially given under some mild conditions with the help of strong approximation method,
and, since R/S statistic is defined in a self-normalized form, we will not restrict the finite-
ness of the second moment for {X,Xn,n ≥ }. Moreover, a more strong result than Wu
and Wen’s is established in this paper, based on which, a precise asymptotics related to
a.s. convergence for Q(n) statistic is considered under some mild conditions. Throughout
the paper, we denote C a positive constant whose value can be different in different places.
The following are our main results.

Theorem . Suppose {X,Xn,n ≥ } is a sequence of i.i.d. random variables which is in
the domain of attraction of the normal law with EX = , and the truncated second moment
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l(x) = EXI{|X| ≤ x} satisfies l(x) ≤ c exp(c(logx)β ) for some c > , c >  and  ≤ β < .
Let – < a < , b > – and an(ε) be a function of ε such that

an(ε) log logn→ τ as n→ ∞ and ε ↘ √
a + /. (.)

Then we have

lim
ε↘√

a+/

(
ε – (a + )

)b+ ∞∑
n=

(logn)a(log logn)b

n
P
(
Q(n) ≥ (

ε + an(ε)
)√

n log logn
)

= (a + )�(b + ) exp(–τ
√
a + ). (.)

Theorem . Suppose {X,Xn,n ≥ } is a sequence of i.i.d. random variables which is in
the domain of attraction of the normal law with EX = , and the truncated second moment
l(x) = EXI{|X| ≤ x} satisfies l(x) ≤ c exp(c(logx)β ) for some c > , c >  and  ≤ β < .
Then for b > –, (.) is true.

Theorem . Suppose {X,Xn,n ≥ } is a sequence of i.i.d. random variables which is
in the domain of attraction of the normal law with EX = , and l(x) satisfies l(x) ≤
c exp(c(logx)β ) for some c > , c >  and ≤ β < . Then for any b > –, we have

lim
ε↘

ε(b+)
∞∑
n=

(log logn)b

n logn
I
{
Q(n) ≥ ε

√
n log logn

}
=

EY (b+)

b+(b + )
a.s.

Remark . Note that X belonging to the domain of attraction of the normal law is equiv-
alent to l(x) being a slowly varying function at∞.We note also that l(x)≤ c exp(c(logx)β )
is a weak enough assumption, which is satisfied by a large class of slowly varying functions
such as (log logx)α and (logx)α , for some  < α < ∞.

Remark . When EX = σ  < ∞, the truncated second moment l(x) automatically sat-
isfies the condition l(x) ≤ c exp(c(logx)β) for some c > , c >  and  ≤ β < . Hence,
Theorems .-. not only hold for the random variables with finite second moments, but
they also hold for a class of random variables with infinite second moments. Especially,
Theorem . includes Theorem D as a special case.

Remark . FromTheoremC, one can see that the finiteness of the secondmoment does
not guarantee the results about precise asymptotics in LIL for partial sums when a > .
Moreover, it is clear that R/S statistic is more complicated than partial sums. Hence, it
seems that it is not possible, at least not easy, to prove (.) for a >  under the conditions
stated in Theorem . only. However, if we impose more strongmoment conditions which
are similar to (.) and (.) on {X,Xn,n ≥ }, it would be possible to prove (.) for a > ,
by following the ideas in Zhang [].

Remark . Checking the proof of Theorem ., one can find that

lim
ε↘√

a+

(
ε – (a + )

)b+ ∞∑
n=

(logn)a(log logn)b

n
P
(
Q(n) ≥ (

ε + an(ε)
)√

n log logn/
)

= (a + )�(b + ) exp
(
–τ ′√a + 

)
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holds if an(ε) log logn → τ ′ as n → ∞ and ε ↘ √
a + , which seems maybe more natural

due to (.).

The remaining of this paper is organized as follows. In Section , Theorem . will be
proved when {X,Xn,n ≥ } is a sequence of normal variables with zero mean. In Section ,
truncation method and strong approximation method will be employed to approximate
the probability related to R(n) statistic. In Section , Theorem . and Theorem . will be
proved, while in Section  the proof of Theorem . will be given, based on some prelim-
inaries.

2 Normal case
In this section, Theorem . in the case that {X,Xn,n≥ } is a sequence of normal random
variables with zero mean is proved. In order to do it, we firstly recall that B(t) is a stan-
dard Brownian bridge and Y = sup≤t≤ B(t) – inf≤t≤ B(t). The distribution of Y plays an
important role in our first result, and, fortunately, it has been given by Kennedy []:

P(Y ≤ x) =  – 
∞∑
n=

(
xn – 

)
exp

(
–xn

)
. (.)

Now, the main results in this section are stated as follows.

Proposition . Let a > –, b > – and an(ε) be a function of ε such that

an(ε) log logn→ τ as n→ ∞ and ε ↘ √
a + /. (.)

Then we have

lim
ε↘√

a+/

(
ε – (a + )

)b+ ∞∑
n=

(logn)a(log logn)b

n

· P(Y ≥ (
ε + an(ε)

)√
 log logn

)
= (a + )�(b + ) exp(–τ

√
a + ).

Proof Firstly, it follows easily from (.) that

P(Y ≥ x) ∼ x exp
(
–x

)
as x→ +∞. Then, by condition (.), one has

P
(
Y ≥ (

ε + an(ε)
)√

 log logn
)

∼ 
(
ε + an(ε)

)
log logn · exp(–(

ε + an(ε)
)
log logn

)
∼ ε log logn · exp(–ε log logn

)
exp

(
–εan(ε) log logn

)
as n → ∞ uniformly in ε ∈ (

√
a + /,

√
a + / + δ) for some δ > . Hence, for above-

mentioned δ >  and any  < θ < , there exists an integer n such that, for all n ≥ n and

http://www.journalofinequalitiesandapplications.com/content/2014/1/137
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ε ∈ (
√
a + /,

√
a + / + δ),

(a + ) log logn · exp(–ε log logn
)
exp(–τ

√
a +  – θ )

≤ P
(
Y ≥ (

ε + an(ε)
)√

 log logn
)

≤ (a + ) log logn · exp(–ε log logn
)
exp(–τ

√
a +  + θ ).

Obviously, it suffices to show

lim
ε↘√

a+/

(
ε – (a + )

)b+ ∞∑
n=

(logn)a(log logn)b+

n

· exp(–ε log logn
)
= �(b + ) (.)

for proving Proposition . by the arbitrariness of θ . To this end, by noting that the limit
in (.) does not depend on any finite terms of the infinite series, we have

lim
ε↘√

a+/

(
ε – (a + )

)b+ ∞∑
n=

(logn)a(log logn)b+

n
exp

(
–ε log logn

)
= lim

ε↘√
a+/

(
ε – (a + )

)b+ ∫ ∞

ee

(logx)a–ε (log logx)b+

x
dx

= lim
ε↘√

a+/

(
ε – (a + )

)b+ ∫ ∞


exp

(
y
(
a +  – ε

))
yb+ dy

(by letting y = log logx)

= lim
ε↘√

a+/

∫ ∞

ε–(a+)
e–uub+ du

(
by letting u = y

(
ε – (a + )

))
= �(b + ).

The proposition is proved now. �

Proposition . For any b > –,

lim
ε↘

ε(b+)
∞∑
n=

(log logn)b

n logn
P(Y ≥ ε

√
 log logn) =

EY (b+)

b+(b + )
.

Proof The proof can be found in Wu and Wen []. �

3 Truncation and approximation
In this section, we will use the truncation method and strong approximation method to
show that the probability related to R(n) with suitable normalization can be approximated
by that for Y . To do this, we first give some notations. Put c = inf{x ≥  : l(x) > } and

ηn = inf

{
s : s≥ c + ,

l(s)
s

≤ (log logn)

n

}
. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/137
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For each n and  ≤ i≤ n, we let{
X ′
ni = XiI{|Xi| ≤ ηn}, X∗

ni = X ′
ni – EX ′

ni,
S′
ni =

∑i
j=X ′

nj, S∗
ni =

∑i
j=X∗

nj, X̄∗
n =


nS

∗
nn, D

n =
∑n

j= Var(X ′
nj).

(.)

It follows easily that

D
n ∼

n∑
j=

EX ′
nj ∼ nl(ηn) ∼ η

n(log logn)
.

Furthermore, we denote R∗(n) be the truncated R statistic which is defined by the first
expression of (.) with every Xi being replaced by X∗

ni, i = , . . . ,n. In addition, for any
 ≤ β < , all j ≥ k and k large enough, following the lines of the proof of (.) in Pang,
Zhang and Wang [], we easily have

C
l(ηk)(logk)β (log logk)

≤ exp(c(logk)β )
l(ηk)

∞∑
j=k


j exp(c(log j)β ) log j(log log j)

≤
∞∑
j=k


jl(ηj) log j(log log j)

, (.)

despite a little difference for the definitions of ηn, which are from Pang, Zhang and Wang
[] and this paper, respectively.
Next, we will give the main result in this section as follows.

Proposition . For any a < , b ∈ R and / < p < , there exists a sequence of positive
numbers {pn,n≥ } such that, for any x > ,

P
(
Y ≥ x + /(log logn)p

)
– pn

≤ P
(
R(n)≥ xDn

)
≤ P

(
Y ≥ x – /(log logn)p

)
+ pn,

where pn ≥  satisfies

∞∑
n=

(logn)a(log logn)b

n
pn < ∞. (.)

To show this proposition, the following lemmas are useful for the proof.

Lemma . For any sequence of independent random variables {ξn,n≥ } with zero mean
and finite variance, there exists a sequence of independent normal variables {Yn,n ≥ }
with EYn =  and EY 

n = Eξ 
n such that, for all q >  and y > ,

P

(
max
k≤n

∣∣∣∣∣
k∑
i=

ξi –
k∑
i=

Yi

∣∣∣∣∣ ≥ y

)
≤ (Aq)qy–q

n∑
i=

E|ξi|q,

whenever E|ξi|q < ∞, i = , . . . ,n. Here, A is an universal constant.
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Proof See Sakhanenko [, ]. �

Lemma . Let {W (t); t ≥ } be a standard Wiener process. For any ε >  there exists a
constant C = C(ε) >  such that

P
(

sup
≤s≤–h

sup
<t≤h

∣∣W (s + t) –W (s)
∣∣ ≥ x

√
h
)

≤ C
h
e–

x
+ε

for every positive x and  < h < .

Proof It is Lemma .. of Csörgő and Révész []. �

Lemma. For any a < , b ∈ R and / < p < , there exists a sequence of positive numbers
{qn,n≥ } such that, for any x > ,

P
(
Y ≥ x + /(log logn)p

)
– qn ≤ P

(
R∗(n) ≥ xDn

)
≤ P

(
Y ≥ x – /(log logn)p

)
+ qn, (.)

where qn ≥  satisfies

∞∑
n=

(logn)a(log logn)b

n
qn < ∞. (.)

Proof Let qn = P(|R∗(n)/Dn –Y | > /(log logn)p), then obviously, qn satisfies (.). For each
n, let {Wn(t), t ≥ } be a standard Wiener process, then we have {Wn(tD

n)/Dn, t ≥ } D=
{Wn(t), t ≥ } and

qn ≤ P
(
sup
≤s≤

∣∣∣∣
∑[ns]

j= (X∗
nj – X̄∗

n)
Dn

–
Wn(sD

n) – sDnWn()
Dn

∣∣∣∣ ≥ 
(log logn)p

)

≤ P

(
max
k≤n

∣∣∣∣∣
k∑
j=

(
X∗
nj – X̄∗

n
)
–

(
Wn

(
k
n
D

n

)
–
k
n
DnWn()

)∣∣∣∣∣ ≥ Dn

(log logn)p

)

+ P
(
sup
≤s≤

∣∣∣∣(Wn

(
[ns]
n

D
n

)
–
[ns]
n

DnWn()
)
–

(
Wn

(
sD

n
)
– sDnWn()

)∣∣∣∣
≥ Dn

(log logn)p

)
:= In + IIn. (.)

We consider In first. Clearly,

In ≤ P

(
max
k≤n

∣∣∣∣∣
k∑
j=

X∗
nj –Wn

(
k
n
D

n

)∣∣∣∣∣ ≥ Dn

(log logn)p

)

+ P
(
max
k≤n

∣∣∣∣kX̄∗
n –

k
n
DnWn()

∣∣∣∣ ≥ Dn

(log logn)p

)

≤ P

(
max
k≤n

∣∣∣∣∣
k∑
j=

X∗
nj –Wn

(
k
n
D

n

)∣∣∣∣∣ ≥ Dn

(log logn)p

)
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/137
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It follows from Lemma . and (.) that, for all q > ,

∞∑
n=

(logn)a(log logn)b

n
In

≤ C
∞∑
n=

(logn)a(log logn)b

n

(
(log logn)p

Dn

)q n∑
j=

E
∣∣X∗

nj
∣∣q

≤ C
∞∑
n=

(logn)a(log logn)b+pq

(nl(ηn))q/
E|X|qI{|X| ≤ ηn

}
≤ C

∞∑
n=

(logn)a(log logn)b+pq

(nl(ηn))q/

n∑
k=

E|X|qI{ηk– < |X| ≤ ηk
}

≤ C
∞∑
k=

E|X|qI{ηk– < |X| ≤ ηk
} ∞∑

n=k

(logn)a(log logn)b+pq

(nl(ηn))q/

≤ C
∞∑
k=

η
q–
k EXI

{
ηk– < |X| ≤ ηk

} (logk)a(log logk)b+pq
kq/–(l(ηk))q/

≤ C
∞∑
k=

(logk)a(log logk)b+pq–q+

l(ηk)
EXI

{
ηk– < |X| ≤ ηk

}
≤ C

∞∑
k=

∞∑
j=k


jl(ηj) log j(log log j)

EXI
{
ηk– < |X| ≤ ηk

}

≤ C
∞∑
j=


jl(ηj) log j(log log j)

j∑
k=

EXI
{
ηk– < |X| ≤ ηk

}

≤ C
∞∑
j=


j log j(log log j)

< ∞. (.)

Next, we treat with IIn. Clearly, one has

IIn ≤ P
(
sup
≤s≤

∣∣∣∣Wn

(
[ns]
n

D
n

)
–Wn

(
sD

n
)∣∣∣∣ ≥ Dn

(log logn)p

)
+ P

(
sup
≤s≤

∣∣∣∣ [ns]n DnWn() – sDnWn()
∣∣∣∣ ≥ Dn

(log logn)p

)
:= IIn() + IIn(). (.)

It follows from Lemma . that

IIn() = P
(
sup
≤s≤

∣∣∣∣Wn

(
[ns]
n

)
–Wn(s)

∣∣∣∣ ≥ 
(log logn)p

)

= P
(
sup
≤s≤

∣∣∣∣Wn

(
[ns]
n

)
–Wn(s)

∣∣∣∣ ≥
√


n

·
√
n

(log logn)p

)
≤ Cn exp

(
–

n
(log logn)p

)
,
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which obviously leads to

∞∑
n=

(logn)a(log logn)b

n
IIn() < ∞. (.)

On the other hand,

IIn() = P
(
sup
≤s≤

∣∣∣∣ [ns]n – s
∣∣∣∣ · ∣∣Wn()

∣∣ ≥ 
(log logn)p

)
≤ P

(∣∣Wn()
∣∣ ≥ n

(log logn)p

)
≤ C(log logn)p

n
√
( + o())l(ηn)

exp

(
–

n

( + o())l(ηn)(log logn)p

)
,

which also obviously leads to

∞∑
n=

(logn)a(log logn)b

n
IIn() < ∞. (.)

Equations (.)-(.) yield (.). The proposition is proved now. �

Lemma . For any a <  and b ∈ R, one has

∞∑
n=

(logn)a(log logn)bP
(|X| > ηn

)
< ∞.

Proof It follows from (.) that

∞∑
n=

(logn)a(log logn)bP
(|X| > ηn

)
≤ C

∞∑
n=

(logn)a(log logn)b
∞∑
k=n

P
(
ηk < |X| ≤ ηk+

)

≤ C
∞∑
k=


η
k
EXI

{
ηk < |X| ≤ ηk+

} k∑
n=

(logn)a(log logn)b

≤ C
∞∑
k=

(logk)a(log logk)b+

l(ηk)
EXI

{
ηk < |X| ≤ ηk+

}
≤ C

∞∑
k=

∞∑
j=k


jl(ηj) log j(log log j)

EXI
{
ηk < |X| ≤ ηk+

}

≤ C
∞∑
j=


j log j(log log j)

< ∞.
�

Lemma . Let X be a random variable. Then the following statements are equivalent:
(a) X is in the domain of attraction of the normal law,
(b) xP(|X| > x) = o(l(x)),
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(c) xE(|X|I{|X| > x}) = o(l(x)),
(d) E(|X|nI{|X| ≤ x}) = o(xn–l(x)) for n > .

Proof It is Lemma  in Csörgő, Szyszkowicz and Wang []. �

Lemma . For any a <  and b ∈ R, one has, for δ(n) = /(log logn · log log logn),

∞∑
n=

(logn)a(log logn)b

n
P
(∣∣S(n) – l(ηn)

∣∣ > δ(n)l(ηn)
)
<∞.

Proof It is easy to see that, for large n,

P
(∣∣S(n) – l(ηn)

∣∣ > δ(n)l(ηn)
)

≤ P

(∣∣∣∣∣ n
n∑
i=

X
i – l(ηn)

∣∣∣∣∣ > δ(n)l(ηn)/

)
+ P

(
X̄
n > δ(n)l(ηn)/

)
≤ P

( n∑
i=

X
i >

(
 + δ(n)/

)
nl(ηn)

)
+ P

( n∑
i=

X
i <

(
 – δ(n)/

)
nl(ηn)

)

+ nP
(|X| > ηn

)
+ P

( n∑
i=

X ′
ni > n

√
δ(n)l(ηn)/

)

≤ P

( n∑
i=

X ′
ni >

(
 + δ(n)/

)
nl(ηn)

)
+ P

( n∑
i=

X ′
ni <

(
 – δ(n)/

)
nl(ηn)

)

+ nP
(|X| > ηn

)
+ P

( n∑
i=

X∗
ni > n

√
δ(n)l(ηn)/

)
, (.)

since∣∣∣∣∣E
( n∑

i=

X ′
ni

)∣∣∣∣∣ ≤ nE|X|I{|X| > ηn
}
= o

(
nl(ηn)/ηn

)
= o

(
n
√

δ(n)l(ηn)
)

by Lemma .. Applying Lemma ., we only need to show

⎧⎪⎪⎨⎪⎪⎩
∑∞

n=
(logn)a(log logn)b

n P(
∑n

i=X ′
ni > ( + δ(n)/)nl(ηn)) <∞,∑∞

n=
(logn)a(log logn)b

n P(
∑n

i=X ′
ni < ( – δ(n)/)nl(ηn)) <∞,∑∞

n=
(logn)a(log logn)b

n P(
∑n

i=X∗
ni > n

√
δ(n)l(ηn)/) < ∞

(.)

for proving Lemma .. Consider the first part of (.) first. By employing Lemma . and
Bernstein’s inequality (cf. Lin and Bai []), we have for any fixed ν > 

∞∑
n=

(logn)a(log logn)b

n
P

( n∑
i=

X ′
ni >

(
 + δ(n)/

)
nl(ηn)

)

=
∞∑
n=

(logn)a(log logn)b

n
P

( n∑
i=

X ′
ni – nl(ηn) > δ(n)nl(ηn)/

)
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≤ C
∞∑
n=

(logn)a(log logn)b

n
exp

(
–

δ(n)nl(ηn)/
(nEXI{|X| ≤ ηn} + δ(n)η

nnl(ηn)/)

)

≤ C
∞∑
n=

(logn)a(log logn)b

n
exp

(
–

δ(n)nl(ηn)/
o() · η

nnl(ηn)

)

≤ C
∞∑
n=

(logn)a(log logn)b

n
exp(–ν log logn)

< ∞. (.)

The second part of (.) can be proved by similar arguments. Now, let us consider the
third part of (.). It follows fromMarkov’s inequality that

∞∑
n=

(logn)a(log logn)b

n
P

( n∑
i=

X∗
ni > n

√
δ(n)l(ηn)/

)

≤ C
∞∑
n=

(logn)a(log logn)b+

n
· nl(ηn)
nδ(n)l(ηn)

< ∞.

The proof is completed now. �

Lemma . Define �n = |R∗(n) – R(n)|. Then for any a <  and b ∈ R, one has

∞∑
n=

(logn)a(log logn)b

n
P
(

�n >
Dn

(log logn)

)
< ∞.

Proof Firstly, notice that R(n) statistic has an equivalent expression

R(n) = max
≤i<j≤n

∣∣∣∣Sj – Si –
j – i
n

Sn
∣∣∣∣ (.)

and so does R∗(n) with Xi being replaced by X∗
ni in (.), i = , . . . ,n. That is,

R∗(n) = max
≤i<j≤n

∣∣∣∣(S′
nj – S′

ni –
j – i
n

S′
nn

)
–

(
ES′

nj – ES′
ni –

j – i
n

ES′
nn

)∣∣∣∣.
Let βn = nE|X|I{|X| > ηn}, then

max
≤i<j≤n

∣∣∣∣ES′
nj – ES′

ni –
j – i
n

ES′
nn

∣∣∣∣ ≤ βn.

Setting

L =
{
n : βn ≤ ηn

(log logn)

}
,

then it is easily seen that, for n ∈L,

{
�n ≥ Dn

(log logn)

}
⊂

n⋃
j=

{
Xj �= X ′

nj
}
,
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since Dn ∼ ηn(log logn). Hence, it follows from Lemma . that

∑
n∈L

(logn)a(log logn)b

n
P
(

�n >
Dn

(log logn)

)

≤
∞∑
n=

(logn)a(log logn)bP
(|X| > ηn

)
< ∞.

When n /∈L, applying (.) yields

∑
n /∈L

(logn)a(log logn)b

n
P
(

�n >
Dn

(log logn)

)

≤
∑
n /∈L

(logn)a(log logn)b

n

≤
∑
n /∈L

(logn)a(log logn)b

n
· βn(log logn)

ηn

≤ C
∞∑
n=

(logn)a(log logn)b+√
nl(ηn)

E|X|I{|X| > ηn
}

≤ C
∞∑
n=

(logn)a(log logn)b+√
nl(ηn)

∞∑
k=n

E|X|I{ηk < |X| ≤ ηk+
}

≤ C
∞∑
k=

√
k(logk)a(log logk)b+√

l(ηk)
· EX

I{ηk < |X| ≤ ηk+}
ηk

≤ C
∞∑
k=

(logk)a(log logk)b+

l(ηk)
EXI

{
ηk < |X| ≤ ηk+

}
≤ C

∞∑
j=


j log j(log log j)

< ∞. �

Now, we turn to the proof of Proposition ..

Proof of Proposition . Applying Lemma ., one easily has

P
(
R(n) ≥ xDn

)
≤ P

(
R(n)≥ xDn,�n ≤ Dn

(log logn)

)
+ P

(
�n >

Dn

(log logn)

)
≤ P

(
R∗(n) ≥ xDn –

Dn

(log logn)

)
+ P

(
�n >

Dn

(log logn)

)
≤ P

(
Y ≥ x –


(log logn)

–


(log logn)p

)
+ qn + P

(
�n >

Dn

(log logn)

)
≤ P

(
Y ≥ x –


(log logn)p

)
+ qn + P

(
�n >

Dn

(log logn)

)
.
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Also, one has

P
(
R(n) ≥ xDn

)
≥ P

(
R(n)≥ xDn,�n ≤ Dn

(log logn)

)
≥ P

(
R∗(n) ≥ xDn +

Dn

(log logn)

)
– P

(
�n >

Dn

(log logn)

)
≥ P

(
Y ≥ x +


(log logn)

+


(log logn)p

)
– qn – P

(
�n >

Dn

(log logn)

)
≥ P

(
Y ≥ x +


(log logn)p

)
– qn – P

(
�n >

Dn

(log logn)

)
.

Letting pn = qn + P(�n >Dn/(log logn)) completes the proof by Lemmas . and .. �

4 Proofs of Theorems 1.1 and 1.2
Proof of Theorem . For any  < δ <

√
a + / and

√
a + /– δ < ε <

√
a + /+ δ, we have

P
(
Y ≥ (

ε + a′′
n(ε)

)√
 log logn

)
– pn – P

(∣∣S(n) – l(ηn)
∣∣ > δ(n)l(ηn)

)
= P

(
Y ≥ (

ε + a′
n(ε)

)√
 log logn + /(log logn)p

)
– pn

– P
(∣∣S(n) – l(ηn)

∣∣ > δ(n)l(ηn)
)

≤ P
(
R(n)≥ (

ε + a′
n(ε)

)√
 log lognDn

)
– P

(∣∣S(n) – l(ηn)
∣∣ > δ(n)l(ηn)

)
≤ P

(
R(n)≥ (

ε + an(ε)
)√


(
 + δ(n)

)
nl(ηn) log logn

)
– P

(∣∣S(n) – l(ηn)
∣∣ > δ(n)l(ηn)

)
≤ P

(
Q(n)≥ (

ε + an(ε)
)√

n log logn
)

≤ P
(
R(n)≥ (

ε + an(ε)
)√


(
 – δ(n)

)
nl(ηn) log logn

)
+ P

(∣∣S(n) – l(ηn)
∣∣ > δ(n)l(ηn)

)
≤ P

(
R(n)≥ (

ε + a′′′
n (ε)

)√
 log lognDn

)
+ P

(∣∣S(n) – l(ηn)
∣∣ > δ(n)l(ηn)

)
≤ P

(
Y ≥ (

ε + a′′′
n (ε)

)√
 log logn – /(log logn)p

)
+ pn

+ P
(∣∣S(n) – l(ηn)

∣∣ > δ(n)l(ηn)
)

= P
(
Y ≥ (

ε + a′′′′
n (ε)

)√
 log logn

)
+ pn + P

(∣∣S(n) – l(ηn)
∣∣ > δ(n)l(ηn)

)
, (.)

where

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a′
n(ε) =

√
nl(ηn)
Dn

(ε + an(ε))
√
 + δ(n) – ε,

a′′
n(ε) =

√
nl(ηn)
Dn

(ε + an(ε))
√
 + δ(n) – ε +

√


(log logn)p+/ ,

a′′′
n (ε) =

√
nl(ηn)
Dn

(ε + an(ε))
√
 – δ(n) – ε,

a′′′′
n (ε) =

√
nl(ηn)
Dn

(ε + an(ε))
√
 – δ(n) – ε –

√


(log logn)p+/ .
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Noting that nl(ηn)≥D
n ∼ nl(ηn), one easily has

(√
nl(ηn)
Dn

(
ε + an(ε)

)√
± δ(n) – ε

)
log logn

=
√
nl(ηn)
Dn

√
± δ(n)an(ε) log logn +

(√
nl(ηn)
Dn

√
± δ(n) – 

)
ε log logn (.)

and for large n,

∣∣∣∣(
√
nl(ηn)
Dn

√
± δ(n) – 

)
ε log logn

∣∣∣∣
≤ ∣∣(√± δ(n) – 

)
ε log logn

∣∣
≤ εδ(n) log logn

= ε/ log log logn, (.)

which tends to zero as n→ ∞ and ε ↘ √
a + /. Hence, we have

a′′
n(ε) log logn→ τ and a′′′′

n (ε) log logn→ τ as n→ ∞ and ε ↘ √
a + /,

since p > / and an(ε) satisfies (.). Now, it follows from Proposition ., (.) and
Lemma . that Theorem . is true. �

Proof of Theorem . For any  < γ < , applying similar arguments to those used in (.),
we have for large n,

P
(
Y ≥ ε′√( + γ ) log logn

)
– pn – P

(∣∣S(n) – l(ηn)
∣∣ > δ(n)l(ηn)

)
= P

(
Y ≥ ε

√
( + γ ) log logn + /(log logn)p

)
– pn – P

(∣∣S(n) – l(ηn)
∣∣ > δ(n)l(ηn)

)
≤ P

(
R(n)≥ ε

√
( + γ ) log lognDn

)
– P

(∣∣S(n) – l(ηn)
∣∣ > δ(n)l(ηn)

)
≤ P

(
R(n)≥ ε

√

(
 + δ(n)

)
nl(ηn) log logn

)
– P

(∣∣S(n) – l(ηn)
∣∣ > δ(n)l(ηn)

)
≤ P

(
Q(n)≥ ε

√
n log logn

)
≤ P

(
R(n)≥ ε

√

(
 – δ(n)

)
nl(ηn) log logn

)
+ P

(∣∣S(n) – l(ηn)
∣∣ > δ(n)l(ηn)

)
≤ P

(
R(n)≥ ε

√
( – γ ) log lognDn

)
+ P

(∣∣S(n) – l(ηn)
∣∣ > δ(n)l(ηn)

)
≤ P

(
Y ≥ ε

√
( – γ ) log logn – /(log logn)p

)
+ pn + P

(∣∣S(n) – l(ηn)
∣∣ > δ(n)l(ηn)

)
= P

(
Y ≥ ε′′√( – γ ) log logn

)
+ pn + P

(∣∣S(n) – l(ηn)
∣∣ > δ(n)l(ηn)

)
,

where

{
ε′ = ε +

√
√

+γ (log logn)p+/ ∼ ε,
ε′′ = ε –

√
√

–γ (log logn)p+/ ∼ ε
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as n→ ∞. Hence, Proposition ., (.) and Lemma . guarantee that

( + γ )b+
EY (b+)

b+(b + )

≤ lim inf
ε↘

ε(b+)
∞∑
n=

(log logn)b

n logn
P
(
Q(n)≥ ε

√
n log logn

)
≤ lim sup

ε↘
ε(b+)

∞∑
n=

(log logn)b

n logn
P
(
Q(n)≥ ε

√
n log logn

)
≤ ( – γ )b+

EY (b+)

b+(b + )
.

Letting γ →  completes the proof. �

5 Proof of Theorem 1.3
In this section, we first modify the definition in (.) as follows:

η̃n = inf

{
s : s≥ c + ,

l(s)
s

≤ log logn
n

}
. (.)

Then one easily has nl(η̃n) ∼ η̃
n log logn. Moreover, we define for each n and  ≤ i≤ n,{

X̃ni = XiI{|Xi| ≤ η̃n}, X̃∗
ni = X̃ni – EX̃ni,

S̃ni =
∑i

j= X̃nj, S̃∗
ni =

∑i
j= X̃∗

nj, D∗
n = Var(S̃∗

nn).

Secondly, we give two notations related to the truncated R(n) statistic. That is,

R̃(n) := max
≤k≤n

{ k∑
j=

(
X̃nj –


n

n∑
j=

X̃nj

)}
– min

≤k≤n

{ k∑
j=

(
X̃nj –


n

n∑
j=

X̃nj

)}

and

R̃∗(n) := max
≤k≤n

{ k∑
j=

(
X̃∗
nj –


n

n∑
j=

X̃∗
nj

)}
– min

≤k≤n

{ k∑
j=

(
X̃∗
nj –


n

n∑
j=

X̃∗
nj

)}
.

Then two lemmas which play key roles in the proof of Theorem . will be given, after
which, we will finish the proof of Theorem ..

Lemma . Suppose {X,Xn,n ≥ } is a sequence of i.i.d. random variables which is
in the domain of attraction of the normal law with EX = , and l(x) satisfies l(x) ≤
c exp(c(logx)β ) for some c > , c >  and  ≤ β < . Then, for any b ∈ R and / < p < ,
there exists a sequence of positive numbers {q′

n,n≥ } such that, for any x > ,

P
(
Y ≥ x + /(log logn)p

)
– q′

n ≤ P
(̃
R∗(n) ≥ xD∗

n
) ≤ P

(
Y ≥ x – /(log logn)p

)
+ q′

n,

where q′
n ≥  satisfies

∞∑
n=

(log logn)b

n logn
q′
n < ∞.
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Proof The essential difference between this lemma and Lemma . is the different trun-
cation levels are imposed on the random variables {Xn,n ≥ } in two lemmas. However,
by checking the proof of Lemma . carefully, one can find that the proof of Lemma .
is not sensitive to the powers of log logn. Hence, one can easily finish the proof by similar
arguments to those used in Lemma .. We omit the details here. �

Lemma . Suppose {X,Xn,n ≥ } is a sequence of i.i.d. random variables which is in the
domain of attraction of the normal law with EX = , and let f (·) be a real function such
that supx∈R |f (x)| ≤ C and supx∈R |f ′(x)| ≤ C. Then for any b ∈ R,  < ε < / and l >m ≥ ,
we have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Var(
∑l

n=m
(log logn)b
n logn f ( R̃

∗(n)
ρ(n,ε) )) =O( (log logm)b–/

ε logm ),

Var(
∑l

n=m
(log logn)b
n logn f (

∑n
i= X̃


ni

(±γ /)nl(η̃n) ) =O( (log logm)b
logm ),

Var(
∑l

n=m
(log logn)b
n logn f ( S̃∗

nn
n
√

γ l(η̃n)/
) =O( (log logm)b√

m(logm) ),

Var(
∑l

n=m
(log logn)b
n logn

∑n
i= I{|Xi| > η̃n}) =O( (log logm)b+

logm ),

(.)

where ρ(n, ε) = ε
√
nl(η̃n) log logn.

Proof Firstly, we consider the first part of (.). For j > i, since R̃∗(i) is independent of

R̃∗(i + , j) :=max
i<k≤j

{ k∑
l=i+

(
X̃∗
jl –


j

j∑
l=i+

X̃∗
jl

)}
– min

i<k≤j

{ k∑
l=i+

(
X̃∗
jl –


j

j∑
l=i+

X̃∗
jl

)}
.

It follows that

Cov
(
f
(

R̃∗(i)
ρ(i, ε)

)
, f

(
R̃∗(j)
ρ(j, ε)

))
= Cov

(
f
(

R̃∗(i)
ρ(i, ε)

)
, f

(
R̃∗(j)
ρ(j, ε)

)
– f

(
R̃∗(i + , j)

ρ(j, ε)

))
≤ CE

∣∣∣∣f( R̃∗(j)
ρ(j, ε)

)
– f

(
R̃∗(i + , j)

ρ(j, ε)

)∣∣∣∣
≤ C

E|∑i
l= X̃∗

jl |
ε
√
jl(η̃j) log log j

≤ C
√
il(η̃j)

ε
√
jl(η̃j) log log j

=O
( √

i
ε
√
j log log j

)
. (.)

Hence, for any  < ε < / and l ≥m ≥ , we have

Var

( l∑
n=m

(log logn)b

n logn
f
(

R̃∗(n)
ρ(n, ε)

))

≤ C
l∑

n=m

(log logn)b

n(logn)
+ 

l∑
j=m+

j–∑
i=m

(log log i)b

i log i
(log log j)b

j log j
·O

( √
i

ε
√
j log log j

)
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≤ C
(log logm)b

m(logm)
+O() ·

l∑
j=m+

(log log j)b–/

j(log j)ε

=O
(
(log logm)b–/

ε logm

)
.

Consider the second part of (.). Similar arguments used in (.) leads easily to

Cov
(
f
( ∑i

k= X̃
ik

(± γ /)il(η̃i)

)
, f

( ∑j
k= X̃


jk

(± γ /)jl(η̃j)

))

≤ Cov
(
f
( ∑i

k= X̃
ik

(± γ /)il(η̃i)

)
, f

( ∑j
k= X̃


jk

(± γ /)jl(η̃j)

)
– f

( ∑j
k=i+ X̃


jk

(± γ /)jl(η̃j)

))
≤ C · i

j
.

It follows that

Var

( l∑
n=m

(log logn)b

n logn
f
( ∑n

i= X̃
ni

(± γ /)nl(η̃n)

))

≤ C
(log logm)b

m(logm)
+ 

l∑
j=m+

j–∑
i=m

(log log i)b

i log i
(log log j)b

j log j
· i
j

=O
(
(log logm)b

logm

)
.

Consider the third part of (.). The similar arguments used in (.) also lead easily to

Cov
(
f
(

S̃∗
ii

i
√

γ l(η̃i)/

)
, f

( S̃∗
jj

j
√

γ l(η̃j)/

))
=O

(√
i
j

)
,

which implies that

Var

( l∑
n=m

(log logn)b

n logn
f
(

S∗
nn

n
√

γ l(η̃n)/

))

≤ C
(log logm)b

m(logm)
+ 

l∑
j=m+

j–∑
i=m

(log log i)b

i log i
(log log j)b

j log j
·O

(√
i
j

)

=O
(
(log logm)b√
m(logm)

)
.

Finally, we turn to handling the fourth part of (.). By employing Lemma . one has

Var

( l∑
n=m

(log logn)b

n logn

n∑
i=

I
{|Xi| > η̃n

})

≤ C
l∑

n=m

(log logn)b

n(logn)
· nP(|X| > η̃n

)
+ 

l∑
j=m+

j–∑
i=m

(log log i)b

i log i
(log log j)b

j log j
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· Cov
( i∑

k=

I
{|Xk| > η̃i

}
,

j∑
k=

I
{|Xk| > η̃j

})

≤ o() ·
l∑

n=m

(log logn)b+

n(logn)
+ 

l∑
j=m+

j–∑
i=m

(log log i)b

i log i
(log log j)b

j log j
· iP(|X| > η̃j

)

= o() · (log logm)b+

m(logm)
+C

l∑
j=m+

(log log j)b+

j(log j)
=O

(
(log logm)b+

logm

)
.

The proof is completed. �

Proof of Theorem . At the beginning of the proof, we first give an upper bound and
a lower bound for the indicator function of R/S statistic. For any x ≥ λ

√
n log logn with

λ > ,  < γ < / and large n, one has the following fact:

I
{
R(n)
S(n)

≥ x
}

≤ I
{

R(n)√
( – γ )l(η̃n)

≥ x
}
+ I

{∣∣S(n) – l(η̃n)
∣∣ > γ l(η̃n)

}
≤ I

{
R̃(n)√

( – γ )l(η̃n)
≥ x

}
+ I

{ n⋃
i=

|Xi| > η̃n

}

+ I

{ n∑
i=

X
i > ( + γ /)nl(η̃n)

}
+ I

{ n∑
i=

X
i < ( – γ /)nl(η̃n)

}

+ I
{|Sn| > n

√
γ l(η̃n)/

}
≤ I

{
R̃∗(n)√

( – γ )l(η̃n)
≥ x + o()

}
+ I

{ n⋃
i=

|Xi| > η̃n

}

+ I

{ n∑
i=

X̃
ni > ( + γ /)nl(η̃n)

}
+ I

{ n∑
i=

X̃
ni < ( – γ /)nl(η̃n)

}

+ I
{∣∣S̃∗

nn
∣∣ > n

√
γ l(η̃n)/

}
≤ I

{
R̃∗(n)√

( – γ )l(η̃n)
≥ x

}
+ I

{ n⋃
i=

|Xi| > η̃n

}

+ I

{ n∑
i=

X̃
ni > ( + γ /)nl(η̃n)

}
+ I

{ n∑
i=

X̃
ni < ( – γ /)nl(η̃n)

}

+ I
{∣∣S̃∗

nn
∣∣ > n

√
γ l(η̃n)/

}
, (.)

since one easily has∣∣ER̃(n)∣∣ = o
(√

nl(η̃n) log logn
)
.

Also, one has, for any x≥ λ
√
n log logn with λ > ,  < γ < / and large n,

I
{
R(n)
S(n)

≥ x
}

≥ I
{

R(n)√
( + γ )l(η̃n)

≥ x
}
– I

{∣∣S(n) – l(η̃n)
∣∣ > γ l(η̃n)

}
≥ I

{
R̃∗(n)√

( + γ )l(η̃n)
≥ x

}
– I

{ n⋃
i=

|Xi| > η̃n

}
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– I

{ n∑
i=

X̃
ni > ( + γ /)nl(η̃n)

}
– I

{ n∑
i=

X̃
ni < ( – γ /)nl(η̃n)

}

– I
{∣∣S̃∗

nn
∣∣ > n

√
γ l(η̃n)/

}
.

Denote K (ε) = exp(exp(/(εM))) for any  < ε < / and fixedM > . Let {fi(·), i = , . . . , }
be real functions such that supx |f ′

i (x)| < ∞ for i = , . . . ,  and

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

I{|x| ≥ √
 – γ } ≤ fn,(x) := f(x)≤ I{|x| ≥  – γ },

I{|x| ≥  + γ /} ≤ fn,(x) := f(x)≤ I{|x| ≥  + γ /},
I{|x| ≤  – γ /} ≤ fn,(x) := f(x)≤ I{|x| ≤  – γ /},
I{|x| > } ≤ fn,(x) := f(x)≤ I{|x| > /},
I{|x| ≥ √

γ } ≤ fn,(x) := f(x)≤ I{|x| ≥ √
γ /}.

(.)

Define εk = /k, k ≥M. Then it follows from Lemma . that

Var
( ∑
n>B(εk )

(log logn)b

n logn
f
(

R̃∗(n)
ρ(n, εk)

))
=O

(
k(k/M)b–/

exp(k/M)

)
,

which together with the Borel-Cantelli lemma easily yield

∑
n>B(εk )

(log logn)b

n logn

(
f
(

R̃∗(n)
ρ(n, εk)

)
– Ef

(
R̃∗(n)

ρ(n, εk)

))
→  a.s. (.)

as k → ∞. Similar arguments also yield⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

n>B(εk )
(log logn)b
n logn (f (

∑n
i= X̃


ni

(±γ /)nl(η̃n) ) – Ef (
∑n

i= X̃

ni

(±γ /)nl(η̃n) )) →  a.s.,∑
n>B(εk )

(log logn)b
n logn f (( S̃∗

nn
n
√

γ l(η̃n)/)
) – Ef ( S̃∗

nn
n
√

γ l(η̃n)/)
)) →  a.s.,∑

n>B(εk )
(log logn)b
n logn (

∑n
i= I{|Xi| > η̃n} – nP(|X| > η̃n)) →  a.s.

(.)

as k → ∞. Denote β(n, ε) = ε
√
n log logn. Using the inequality (.), one has

lim sup
ε↘

ε(b+)
∑
n>K (ε)

(log logn)b

n logn
I
{
Q(n)≥ ε

√
n log logn

}
≤ lim sup

k→∞
ε
(b+)
k–

∑
n>B(εk–)

(log logn)b

n logn
I
{
Q(n)≥ β(n, εk)

}

≤ lim sup
k→∞

ε
(b+)
k–

∑
n>B(εk–)

(log logn)b

n logn

(
I
{

R̃∗(n)√
( – γ )l(η̃n)

≥ β(n, εk)
}

+ I

{ n∑
i=

X̃
ni > ( + γ /)nl(η̃n)

}
+ I

{ n∑
i=

X̃
ni < ( – γ /)nl(η̃n)

}

+ I

{ n⋃
i=

|Xi| > η̃n

}
+ I

{∣∣S̃∗
nn

∣∣ > n
√

γ l(η̃n)/
})

:= III + IV +V +VI +VII. (.)
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We are going to treat the above terms, respectively. In view of (.), (.), Lemma . and
Proposition ., one has

III ≤ lim sup
k→∞

ε
(b+)
k–

∑
n>B(εk–)

(log logn)b

n logn
f
(

R̃∗(n)√
l(η̃n)β(n, εk)

)

≤ lim sup
k→∞

ε
(b+)
k–

∑
n>B(εk–)

(log logn)b

n logn
Ef

(
R̃∗(n)√

l(η̃n)β(n, εk)

)

≤ lim sup
k→∞

ε
(b+)
k–

∑
n>B(εk–)

(log logn)b

n logn
· P

(
R̃∗(n)√

l(η̃n)β(n, εk)
≥  – γ

)

≤ lim sup
k→∞

ε
(b+)
k

∞∑
n=

(log logn)b

n logn

· P(Y ≥ εk( – γ )
√
 log logn – /(log logn)p

)
≤ EY (b+)

b+(b + )( – γ )(b+)
, a.s. (.)

since

εk –
√

( – γ )(log logn)p+/
∼ εk as n→ ∞.

Applying (.), (.), and Bernstein’s inequality, one has, for any ν ′ > ,

 ≤ IV ≤ lim sup
k→∞

ε
(b+)
k–

∑
n>B(εk–)

(log logn)b

n logn

· P
( n∑

i=

X̃
ni > ( + γ /)nl(η̃n)

)

≤ lim sup
k→∞

ε
(b+)
k–

∞∑
n=

(log logn)b

n logn
· P

( n∑
i=

X̃
ni > ( + γ /)nl(η̃n)

)

≤ lim sup
k→∞

ε
(b+)
k–

∞∑
n=

C
n logn(log logn)+ν′

= , a.s. (.)

Similarly, one can prove

V = , a.s. (.)

For the fourth part of (.), by similar arguments to those used in (.) and Lemma .,
we have

 ≤ VI ≤  lim sup
k→∞

ε
(b+)
k–

∞∑
n=

(log logn)b

logn
P
(|X| > η̃n/

)
= , a.s.,
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and the details are omitted here. As for the fifth part of (.), one can easily show that, for
any fixed γ > ,

 ≤ VII ≤ lim sup
k→∞

ε
(b+)
k–

∞∑
n=

(log logn)b

n logn
P
(
S̃∗
nn > n

√
γ l(η̃n)/

)
≤ C lim sup

k→∞
ε
(b+)
k–

∞∑
n=

(log logn)b

n logn
· nl(η̃n)
nl(η̃n)

= , a.s. (.)

Hence, it follows from (.)-(.) that

lim sup
ε↘

ε(b+)
∑
n>K (ε)

(log logn)b

n logn
I
{
Q(n)≥ ε

√
n log logn

}
≤ EY (b+)

b+(b + )( – γ )(b+)
, a.s. (.)

On the other hand,

lim sup
ε↘

ε(b+)
∑

n≤K (ε)

(log logn)b

n logn
I
{
Q(n) ≥ ε

√
n log logn

}
≤ lim sup

ε↘
ε(b+)

∑
n≤K (ε)

(log logn)b

n logn

≤ 
Mb+ . (.)

By (.), (.) and the arbitrarinesses ofM and γ , one has

lim sup
ε↘

ε(b+)
∞∑
n=

(log logn)b

n logn
I
{
Q(n) ≥ ε

√
n log logn

} ≤ EY (b+)

b+(b + )
, a.s.

Similarly, one has

lim inf
ε↘

ε(b+)
∞∑
n=

(log logn)b

n logn
I
{
Q(n)≥ ε

√
n log logn

} ≥ EY (b+)

b+(b + )
, a.s.

The proof is completed now. �
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