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Abstract
LetA denote the class of functions f that are analytic in the unit disc D and
normalized by f (0) = f ′(0) – 1 = 0. In this paper some conditions are determined for
starlikeness of the Libera integral operator F(z) = 2

z

∫ z
0 f (t)dt.
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1 Introduction
Let H be the class of functions analytic in the unit disk D = {z ∈ C : |z| < }, and let us
denote by An the class of functions f ∈H with the normalization of the form

f (z) = z + an+zn+ + an+zn+ + · · · , z ∈D,

with A =A.
Let SS∗(β) denote the class of strongly starlike functions of order β ,  < β ≤ ,

SS∗(β) =
{
f ∈A :

∣∣∣∣arg zf ′(z)
f (z)

∣∣∣∣ < βπ


, z ∈D

}
,

which was introduced in [] and [], and SS∗() ≡ S∗ is the well-known class of starlike
functions in D. Functions in the class

R(β) =
{
f ∈A :Re

{
f ′(z)

}
> β , z ∈D

}
,

where β <  are called functions with bounded turning. The Libera transform L :A→A,
L[f ] = F , where

F(z) =

z

∫ z


f (t) dt, (.)

is the Libera integral operator, which has been studied by several authors on different
counts. In [] Mocanu considered the problem of starlikeness of F and proved the follow-
ing result.

Theorem . [] If f (z) is analytic andRe{f ′(z)} >  in the unit disc D and if the function
F is given in (.), then F ∈ S∗.
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This result may be written briefly as follows:

L
[
R()

] ⊂ S∗ = SS∗(), (.)

where L[R()] = {L[f ] : f ∈R()}. In  Mocanu [] improved (.) by showing that

L
[
R()

] ⊂ SS∗(/). (.)

In  Miller and Mocanu [] showed that a subcase of this last result can be sharpened
to

L
[
R()∩A

] ⊂ SS∗(/).

The problem of strongly starlikeness of L[f ] for f ∈R() was consider also in [] where it
is shown that

L
[
R()∩A

] ⊂ SS∗(/).

The above inclusion relationship is equivalent to the following differential implication:

f ∈A and Re
{
f ′(z)

}
>  
⇒

∣∣∣∣arg
{
zF ′(z)
F(z)

}∣∣∣∣ < π


or equivalently

F ∈A and Re

{
F ′(z) +



zF ′′(z)

}
>  
⇒

∣∣∣∣arg
{
zF ′(z)
F(z)

}∣∣∣∣ < π


,

where F is given by (.).
In [] Ponnusamy improved (.) by showing that

L
[
R(–�)

] ⊂ S∗, � = . . . . . (.)

On the order of starlikeness of convex functions was considered also in the recent pa-
per [].

2 Main result
In this paper we go back to the problem of starlikeness of Libera transform. We need the
following lemmas.

Lemma . [, p.] Let n be a positive integer, λ >  and let β = β(λ,n) be the positive
root of the equation

βπ = π/ – tan–(nλβ). (.)

In addition, let

α = α(β ,λ,n) = β + (/π ) tan–(nλβ) (.)
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for  < β ≤ β. If p(z) =  + pnzn + pn+zn+ + · · · is analytic in D, then

p(z) + λzp′(z) ≺
(
 + z
 – z

)α

, z ∈D, (.)

implies the following subordination:

p(z) ≺
(
 + z
 – z

)β

, z ∈ D. (.)

If in Lemma . we put n = , λ = /, then the solution β of (.) satisfies β > , so we
may take β = , which gives πα/ = π/ + tan–(/) = . . . . .

Corollary . Assume that f (z) ∈A. If

∣∣arg{F ′(z) + (/)zF ′′(z)
}∣∣ < π/ + tan–(/) = . . . . , z ∈D,

then

Re
{
F ′(z)

}
> , z ∈D.

Note that if F(z) ∈ A, then a sufficient condition for F ∈ R() is | arg{f ′(z)}| < π/ =
. . . . ; see [, p.].

Lemma . [] Let p(z) be of the form

p(z) =  +
∞∑

n=m≥

anzn, am �=  (z ∈D), (.)

with p(z) �=  in D. If there exists a point z, |z| < , such that

∣∣arg{p(z)}∣∣ < πα/ in |z| < |z| and
∣∣arg{p(z)}∣∣ = πα/

for some α > , then we have

zp′(z)
p(z)

= ikα,

where

k ≥m
(
a + 

)
/(a), when arg

{
p(z)

}
= πα/ (.)

and

k ≤ –m
(
a + 

)
/(a), when arg

{
p(z)

}
= –πα/, (.)

where

{
p(z)

}/α =±ia, a > .
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Lemma . [, p.], [] Let p(z) =  +
∑∞

n= anzn be analytic in the unit disc D. If

p(z) + zp′(z) ≺  + z
 – z

, z ∈ D,

then

p(z) ≺ q(z) =

z
log


 – z

– 

and

∣∣arg{p(z)}∣∣ < θ =max
|z|=

∣∣arg{q(z)}∣∣ = . . . . , z ∈ D, (.)

where θ lies between . and ..

Theorem . Let q(z) be analytic in D and suppose that

∣∣arg{q(z)}∣∣ < βπ


, z ∈D

for some β ∈ (, ]. If p(z) is analytic and p(z) �=  in D with p() =  and such that

∣∣arg{q(z)(zp′(z) + p(z) + p(z)
)}∣∣ < tan– β , z ∈D, (.)

then we have

∣∣arg{p(z)}∣∣ < βπ


, z ∈D.

Proof If there exists a point z, |z| < , for which

∣∣arg{p(z)}∣∣ < πβ/
(|z| < |z|

)

and

∣∣arg{p(z)}∣∣ = πβ/, p(z) = (±ia)β ,

then from Nunokawa’s Lemma ., we have

zp′(z)
p(z)

= ikβ ,

where

k ≥ a + 
a

≥ , when arg
{
p(z)

}
= πβ/

and

k ≤ –
a + 
a

≤ –, when arg
{
p(z)

}
= –πβ/.
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For the case arg{p(z)} = βπ/, we have

∣∣arg{q(z)[zp′(z) + p(z) + p(z)
]}∣∣

=
∣∣arg{q(z)p(z)[ + p(z) + zp′(z)/p(z)

]}∣∣
=

∣∣∣∣πβ


+ arg

{
q(z)

}
+ arg

{
 + p(z) + zp′(z)/p(z)

}∣∣∣∣
=

∣∣∣∣πβ


+ arg

{
q(z)

}
+ tan–

{
βk + aβ sin(πβ/)
 + aβ cos(πβ/)

}∣∣∣∣, (.)

where p(z) = (ia)β ,  < a and

k ≥ a + 
a

≥ .

Let us put

g(a) =
kβ + aβ sin(πβ/)
 + aβ cos(πβ/)

,  < a,

then it is easy to see that

g(a) ≥ β + aβ sin(πβ/)
 + aβ cos(πβ/)

,  < a. (.)

Putting

h(x) =
β + x sin(πβ/)
 + x cos(πβ/)

,  ≤ x,

we have

h′(x) =
sin(πβ/) – β cos(πβ/)

( + x cos(πβ/))
> , ≤ x,

because tan(πβ/) > β . Therefore, for x >  we get h(x) > h() = β , so from (.) we have

g(a) > β ,

and so

tan–
{
kβ + aβ sin(πβ/)
 + aβ cos(πβ/)

}
> tan– β ,  < a.

Therefore, we have the following inequality from (.):

∣∣arg{q(z)[zp′(z) + p(z) + p(z)
]}∣∣

≥ πβ


+ tan–

k + aβ sin(πβ/)
 + aβ cos(πβ/)

–
∣∣arg{q(z)}∣∣ (.)

> tan– β . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/135
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This contradicts the hypothesis and for the case arg{p(z)} = –βπ/, applying the same
method as above, we also have (.). This is also a contradiction and it completes the
proof. �

Corollary . Assume that

∣∣arg{f ′(z)
}∣∣ < tan– β , z ∈D (.)

and

∣∣arg{F(z)/z}∣∣ < βπ


, z ∈D (.)

for some β ∈ (, ], where F(z) is given in (.). Then we have

∣∣∣∣arg
{
zF ′(z)
F(z)

}∣∣∣∣ < βπ


, z ∈D,

hence F(z) is strongly starlike of order β .

Proof If we set

p(z) =
zF ′(z)
F(z)

,

then

f ′(z) = F ′(z) +


zF ′′(z) =




(
F(z)
z

)(
zp′(z) + p(z) + p(z)

)
.

If we let q(z) = F(z)/z, then by (.) and (.) the assumptions of Theorem . are satis-
fied. Therefore,

∣∣arg{p(z)}∣∣ < βπ


, z ∈D. �

Theorem . Let q(z) be analytic in D, with q() =  and satisfy

Re
{
zq′(z) + q(z)

}
> , z ∈D.

If p(z) is analytic in D, with p() =  and if

∣∣arg{q(z)(zp′(z) + p(z) + p(z)
)}∣∣ < π


– θ = . . . . , z ∈D,

where θ is given in (.), then we have

Re
{
p(z)

}
> , z ∈D.

Proof By Lemma ., we have

∣∣arg{q(z)}∣∣ < θ = . . . . , z ∈D. (.)
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If there exists a point z, |z| < , such that

∣∣arg{p(z)}∣∣ < π/
(|z| < |z|

)

and

∣∣arg{p(z)}∣∣ = π/, p(z) = ±ia,  < a,

then from Nunokawa’s Lemma ., we have

zp′(z)
p(z)

= ik,

where

k ≥ a + 
a

≥ , when arg
{
p(z)

}
= π/

and

k ≤ –
a + 
a

≤ –, when arg
{
p(z)

}
= –π/.

For the case arg{p(z)} = π/, we have

arg{ + ia + ik} ≥ arg

{
 + ia + i

a + 
a

}

= tan–
Im{ + ia + i a+a }
Re{ + ia + i a+a }

= tan–
{
a + 
a

}

≥ tan–{√}
=

π


.

Therefore, for the case arg{p(z)} = π/, we have

π


≤ arg{ + ia + ik} < π


.

Moreover, by (.)

arg
{
q(z)

}
< θ.

Therefore, we can write

∣∣arg{q(z)(zp′(z) + p(z) + p(z)
)}∣∣

=
∣∣arg{p(z)[ + p(z) + zp′(z)/p(z)

]
q(z)

}∣∣
≥ ∣∣arg{p(z)( + ia + ik)

}∣∣ – ∣∣arg{q(z)}∣∣

http://www.journalofinequalitiesandapplications.com/content/2014/1/135
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≥ π


+

π


–

∣∣arg{q(z)}∣∣

≥ π


– θ. (.)

This contradicts the hypothesis and for the case arg{p(z)} = –π/, applying the same
method as above, we have

∣∣arg{q(z)(zp′(z) + p(z) + p(z)
)}∣∣ ≥ π


– θ.

This is also a contradiction and it completes the proof. �

Corollary . Assume that

∣∣arg{f ′(z)
}∣∣ < π


– θ = . . . . , z ∈D, (.)

then we have

Re

{
zF ′(z)
F(z)

}
> , z ∈ D, (.)

where F(z) is Libera integral given in (.).

Proof Because

f ′(z) = F ′(z) +


zF ′′(z),

by Corollary . and by (.) we obtain

Re
{
F ′(z)

}
> , z ∈D.

Therefore, if we let q(z) = F(z)/z, then

Re
{
zq′(z) + q(z)

}
=Re

{
F ′(z)

}
> , z ∈D.

If we set

p(z) =
zF ′(z)
F(z)

,

then

f ′(z) = F ′(z) +


zF ′′(z) =




(
F(z)
z

)(
zp′(z) + p(z) + p(z)

)
.

The assumptions of Theorem . are satisfied. Therefore, (.) holds. �

Corollary . is an extension of Mocanu’s result (.) from the paper [] because in
(.) we have | arg{f ′(z)}| < . . . . , while in (.) we have the stronger assumption that
| arg{f ′(z)}| < π/ = . . . . .
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