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1 Introduction
In , Phillips [] introduced and studied q analogue of Bernstein polynomials. During
the last decade, the applications of q-calculus in the approximation theory have become
one of the main area of research, q-calculus has been extensively used for constructing
various generalizations of many classical approximation processes. It is well known that
many q-extensions of the classical objects arising in the approximation theory have been
recently introduced and studied (e.g., see [–]). Recently the statistical approximation
properties have also been investigated for q-analogue polynomials. For instance, in []
Kantorovich-type q-Bernstein operators; in [] q-Baskakov-Kantorovich operators; in
[] Kantorovich-type q-Szász-Mirakjan operators; in [] q-Bleimann, Butzer and Hahn
operators; in [] q-analogue of MKZ operators were introduced and their statistical ap-
proximation properties were studied.
The goal of this paper is to introduce two kinds of new Kantorovich-type q-Bernstein-

Stancu operators and to study the statistical approximation properties of these operators
with the help of the Korovkin-type approximation theorem. We also estimate the rate of
statistical convergence of the mentioned sequences of operators to the appropriate func-
tion f , respectively.
Before proceeding further, let us give some basic definitions and notations from

q-calculus. Details on q-integers can be found in [, ].
Let q > , for each nonnegative integer k, the q-integer [k]q and the q-factorial [k]q! are

defined by

[k]q :=

{
( – qk)/( – q), q �= ,
k, q = 

©2014 Ren and Zeng; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://www.journalofinequalitiesandapplications.com/content/2014/1/10
mailto:npmeiyingr@163.com
http://creativecommons.org/licenses/by/2.0


Ren and Zeng Journal of Inequalities and Applications 2014, 2014:10 Page 2 of 12
http://www.journalofinequalitiesandapplications.com/content/2014/1/10

and

[k]q! :=

{
[k]q[k – ]q · · · []q, k ≥ ,
, k = ,

respectively.
Then for q >  and integers n, k, n≥ k ≥ , we have

[k + ]q =  + q[k]q and [k]q + qk[n – k]q = [n]q.

For the integers n, k, n≥ k ≥ , the q-binomial coefficient is defined by

[
n
k

]
q

:=
[n]q!

[k]q![n – k]q!
.

For an arbitrary function f (x), the q-differential is given by

dqf (x) = f (qx) – f (x).

The q-Jackson integral in the interval [,b] is defined as

∫ b


f (t)dqt = ( – q)b

∞∑
j=

f
(
qjb

)
qj,  < q < ,

provided that sums converge absolutely.
Suppose  < a < b. The q-Jackson integral in a generic interval [a,b] is defined as

∫ b

a
f (t)dqt =

∫ b


f (t)dqt –

∫ a


f (t)dqt,  < q < .

2 Construction of the operators
In this part, we first construct the Kantorovich-type q-Bernstein-Stancu operators as fol-
lows.

Definition  Let f be a q-integrable function on [, ], for  ≤ α ≤ β , x ∈ [, ], n ∈ N,
 < q < , we define the Kantorovich-type q-Bernstein-Stancu operators by

S(α,β)n,q (f ;x) =
(
[n + ]q + β

) n∑
k=

q–kpn,k(q;x)
∫ [k+]q+α

[n+]q+β

[k]q+α

[n+]q+β

f (t)dqt, ()

where

pn,k(q;x) =

[
n
k

]
q

xk
n–k–∏
s=

(
 – qsx

)
=

[
n
k

]
q

xk( – x)n–kq .

In the following we give some lemmas.
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Lemma  For S(α,β)n,q (ti;x), i = , , ,  < q < , we have

S(α,β)n,q (;x) = , ()

S(α,β)n,q (t;x) =
[n]q

[n + ]q + β
x +

 + α
[]q([n + ]q + β)

, ()

S(α,β)n,q
(
t;x

)
=

q[n]q[n – ]q
([n + ]q + β)

x +
( + q + q + α + αq)[n]q

[]q([n + ]q + β)
x

+
 + α + α

[]q([n + ]q + β)
. ()

Proof For i = , since
∑n

k= pn,k(q;x) = ,
∫ [k+]q+α

[n+]q+β

[k]q+α

[n+]q+β

dqt = qk
[n+]q+β

, so Eq. () holds.

For i = ,

S(α,β)n,q (t;x) =
(
[n + ]q + β

) n∑
k=

q–kpn,k(q;x)
∫ [k+]q+α

[n+]q+β

[k]q+α

[n+]q+β

t dqt

=
n∑

k=

pn,k(q;x)
 + α + []q[k]q
[]q([n + ]q + β)

=
[n]q

[n + ]q + β
x +

 + α
[]q([n + ]q + β)

.

For i = ,

S(α,β)n,q
(
t;x

)
=

(
[n + ]q + β

) n∑
k=

q–kpn,k(q;x)
∫ [k+]q+α

[n+]q+β

[k]q+α

[n+]q+β

t dqt

=
[n]q

[]q([n + ]q + β)

×
n∑

k=

pn,k(q;x)
 + α + α + ( + q + α[]q)[k]q + []q[k]q

[n]q

=
q[n]q[n – ]q
([n + ]q + β)

x +
( + q + q + α + αq)[n]q

[]q([n + ]q + β)
x

+
 + α + α

[]q([n + ]q + β)
. �

Lemma  For n ∈N, x ∈ [, ],  < q < , ≤ α ≤ β , we have

S(α,β)n,q
(
(t – x);x

) ≤ ( + β)

[n + ]q + β

(


+


[n + ]q + β

)
.

Proof In view of Lemma  and maxx∈[,] x( – x) = 
 , by a simple computation, we have

S(α,β)n,q
(
(t – x);x

)
= S(α,β)n,q

(
t;x

)
– xS(α,β)n,q (t;x) + xS(α,β)n,q (;x)
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=
 + α + α

[]q([n + ]q + β)
+

x
[]q[]q([n + ]q + β)

× [
[]q

(
 + q + q + α + αq

)
[n]q – ( + α)[]q

(
[n + ]q + β

)]
+
q[n]q[n – ]q – [n]q([n + ]q + β) + ([n + ]q + β)

([n + ]q + β)
x

≤ ( + β)

[n + ]q + β

(
x( – x) +


[n + ]q + β

)

≤ ( + β)

[n + ]q + β

(


+


[n + ]q + β

)
. �

Lemma  ([]) Let  ≤ a < b,  < q < , and let f be a positive function defined on the
interval [,b]. If f is monotone increasing on [,b], then

∫ b
a f (t)dqt ≥  in this interval.

It is clear that the operator S(α,β)n,q (f ;x) is a linear and positive operator for any monotone
increasing function f ∈ [, ].

Remark  Toguarantee the positivity of S(α,β)n,q (f ;x), f must be amonotone increasing func-
tion on the interval [, ]. But for the function f this condition is strong. In order to solve
the problems, a special type of q-integral, which is the Riemann-type q-integral, is defined
by Marinković et al. [].

Definition  ([]) Let  < a < b,  < q < . The Riemann-type q-integral is defined as

Rq(f ;a,b) =
∫ b

a
f (t)dR

q t = ( – q)(b – a)
∞∑
j=

f
(
a + (b – a)qj

)
qj, ()

provided the sums converge absolutely.

We now redefine S(α,β)n,q (f ;x) by putting the Riemann-type q-integral into the operators
instead of the general q-integral as

S̃(α,β)n,q (f ;x) =
(
[n + ]q + β

) n∑
k=

q–kpn,k(q;x)
∫ [k+]q+α

[n+]q+β

[k]q+α

[n+]q+β

f (t)dR
q t, ()

where f is a Riemann-type q-integrable function on [, ].
Let us give some lemmas as follows.

Lemma  Let  < q < ,  ≤ α ≤ β , then {̃S(α,β)n,q (f ;x)} is a linear and positive operator.

Proof The proof is clear, so we omit it. �

Lemma  For S̃(α,β)n,q (ti;x), i = , , ,  < q < ,  ≤ α ≤ β , we have

S̃(α,β)n,q (;x) = , ()

S̃(α,β)n,q (t;x) =
q[n]q

[]q([n + ]q + β)
x +

 + []qα
[]q([n + ]q + β)

, ()
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S̃(α,β)n,q
(
t;x

)
=

q[n]q[n – ]q
([n + ]q + β)

(
 +

(q – )
[]q

+
(q – )

[]q

)
x

+
[n]q

([n + ]q + β)

(
 + α +

(q – )( + α)
[]q

+


[]q

+
(q – )
[]q

+
(q – )

[]q

)
x +


([n + ]q + β)

(


[]q
+

α
[]q

+ α
)
. ()

Proof By Definition , we have

∫ [k+]q+α

[n+]q+β

[k]q+α

[n+]q+β

dR
q t =

qk

[n + ]q + β
, ()

∫ [k+]q+α

[n+]q+β

[k]q+α

[n+]q+β

t dR
q t =


([n + ]q + β)

{
qk

(
[k]q + α

)
+

qk

[]q

}
, ()

∫ [k+]q+α

[n+]q+β

[k]q+α

[n+]q+β

t dR
q t =


([n + ]q + β)

{
qk

(
[k]q + α

) + qk

[]q
(
[k]q + α

)
+

qk

[]q

}
. ()

Hence, by using the equality
∑n

k= pn,k(q;x) =  and Eq. (), we get

S̃(α,β)n,q (;x) = .

By using Eq. () and the equality qk = (q – )[k]q + , we have

S̃(α,β)n,q (t;x) =


[n + ]q + β

n∑
k=

pn,k(q;x)
{
[k]q + α +

(q – )[k]q + 
[]q

}

=
q[n]q

[]q([n + ]q + β)
x +

 + []qα
[]q([n + ]q + β)

.

By using Eq. () and the equality qk = (q – )[k]q + , we have

S̃(α,β)n,q
(
t;x

)
=


([n + ]q + β)

n∑
k=

pn,k(q;x)
{(

[k]q + α
) + qk

[]q
(
[k]q + α

)
+

qk

[]q

}

=
[n]q

([n + ]q + β)

n∑
k=

pn,k(q;x)
[n]q

{


[]q
+

α
[]q

+ α +
(
α +

(q – )α
[]q

+


[]q
+
(q – )
[]q

)
[k]q +

(
 +

(q – )
[]q

+
(q – )

[]q

)
[k]q

}

=
q[n]q[n – ]q
([n + ]q + β)

(
 +

(q – )
[]q

+
(q – )

[]q

)
x

+
[n]q

([n + ]q + β)

(
 + α +

(q – )( + α)
[]q

+


[]q
+
(q – )
[]q

+
(q – )

[]q

)
x +


([n + ]q + β)

(


[]q
+

α
[]q

+ α
)
. �
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Lemma  For n ∈N, x ∈ [, ],  < q < ,  ≤ α ≤ β , we have

S̃(α,β)n,q
(
(t – x);x

) ≤ ( – q) +


[n + ]q + β

(
 +

( + α) + ( + β)

[n + ]q + β

)
.

Proof In view of Lemma , by a simple computation, we have

S̃(α,β)n,q
(
(t – x);x

)
= S̃(α,β)n,q

(
t;x

)
– x̃S(α,β)n,q (t;x) + x̃S(α,β)n,q (;x)

=
[
q[n]q[n – ]q
([n + ]q + β)

(
 +

(q – )
[]q

+
(q – )

[]q

)
–

q[n]q
[]q([n + ]q + β)

+ 
]
x

+
[n]q

([n + ]q + β)

(
 + α +

(q – )( + α)
[]q

+


[]q
+
(q – )
[]q

+
(q – )

[]q

)
x –

( + []qα)
[]q([n + ]q + β)

x

+


([n + ]q + β)

(


[]q
+

α
[]q

+ α
)

≤
(
( – q) +

( + β)

([n + ]q + β)

)
x +


[n + ]q + β

x +
( + α)

([n + ]q + β)

≤ ( – q) +


[n + ]q + β

(
 +

( + α) + ( + β)

[n + ]q + β

)
. �

3 Statistical approximation of Korovkin type
Now, let us recall the concept of statistical convergence which was introduced by Fast [].
Let set K ⊆ N and Kn = {k ≤ n : k ∈ K}, the natural density of K is defined by δ(K ) :=

limn→∞ 
n |Kn| if the limit exists (see []), where |Kn| denotes the cardinality of the set Kn.

A sequence x = {xk} is called statistically convergent to a number L if for every ε > ,
δ{k ∈ N : |xk – L| ≥ ε} = . This convergence is denoted as st-limk xk = L.
Note that any convergent sequence is statistically convergent, but not conversely. Details

can be found in [].
In approximation theory, the concept of statistical convergence was used by Gadjiev and

Orhan []. They proved the following Bohman-Korovkin type approximation theorem
for statistical convergence.

Theorem ([]) If the sequence of linear positive operators An : C[a,b] → C[a,b] satisfies
the conditions

st-lim
n

∥∥An(eυ ; ·) – eυ

∥∥
C[a,b] = 

for eυ (t) = tυ , υ = , , . Then, for any f ∈ C[a,b],

st-lim
n

∥∥An(f ; ·) – f
∥∥
C[a,b] = .

Theorem  Let q = {qn},  < qn < , be a sequence satisfying the following condition

st-lim
n
qn = , st-lim

n
qnn = a (a < ) and st-lim

n


[n]qn

= , ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/10
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then for any monotone increasing function f ∈ C[, ], we have

st-lim
n

∥∥S(α,β)n,qn (f ; ·) – f
∥∥
C[,] = .

Proof From Theorem , it is enough to prove that st-limn ‖S(α,β)n,qn (eυ ; ·) – eυ‖C[,] =  for
eυ (t) = tυ , υ = , , .
From Eq. (), we can easily get

st-lim
n

∥∥S(α,β)n,qn (e; ·) – e
∥∥
C[,] = . ()

From Eq. (), we have

S(α,β)n,qn (e;x) – e(x) =
(

[n]qn
[n + ]qn + β

– 
)
x +

 + α
[]qn ([n + ]qn + β)

.

In view of [n + ]qn =  + qn[n]qn , for β >  we have

∥∥S(α,β)n,qn (e; ·) – e
∥∥
C[,] ≤ ( – qn) +

(
 + β +

 + α
[]qn

)


[n]qn
. ()

Now, for every given ε > , let us define the following sets:

U =
{
k :

∥∥S(α,β)n,qk (e; ·) – e
∥∥
C[,] ≥ ε

}
,

U =
{
k :  – qk ≥ ε



}
,

U =
{
k :

(
 + β +

 + α
[]qk

)


[k]qk
≥ ε



}
.

From inequality (), one can see that U ⊆U ∪U, so we have

δ
{
k ≤ n :

∥∥S(α,β)n,qk (e; ·) – e
∥∥
C[,] ≥ ε

}
≤ δ

{
k ≤ n :  – qk ≥ ε



}
+ δ

{
k ≤ n :

(
 + β +

 + α
[]qk

)


[k]qk
≥ ε



}
.

By condition (), it is clear that st-limn( – qn) = , st-limn( + β + +α
[]qn

) 
[n]qn

= .
So we have

st-lim
n

∥∥S(α,β)n,qn (e; ·) – e
∥∥
C[,] = . ()

In view of Eq. () and the equality [n + ]qn =  + qn[n]qn , by a simple computation, for
β >  we have

∥∥S(α,β)n,qn (e; ·) – e
∥∥
C[,] ≤

 + α + α + β + β

[n]qn
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/10
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Now, for every given ε > , let us define the following sets:

T =
{
k :

∥∥S(α,β)n,qk (e; ·) – e
∥∥
C[,] ≥ ε

}
,

T =
{
k :

 + α + α + β + β

[k]qk
≥ ε

}
.

It is clear that T ⊆ T, so we get

δ
{
k ≤ n :

∥∥S(α,β)n,qk (e; ·) – e
∥∥
C[,] ≥ ε

} ≤ δ

{
k ≤ n :

 + α + α + β + β

[k]qk
≥ ε

}
.

By condition (), we have

st-lim
n

 + α + α + β + β

[n]qn
= ,

so, we can get

st-lim
n

∥∥S(α,β)n,qn (e; ·) – e
∥∥
C[,] = . ()

In view of Eqs. (), () and (), the proof is complete. �

Theorem  Let q = {qn},  < qn < , be a sequence satisfying condition (), then for all
f ∈ C[, ], we have st-limn ‖̃S(α,β)n,qn (f ; ·) – f ‖C[,] = .

Proof From Theorem , it is enough to prove that st-limn ‖̃S(α,β)n,qn (eυ ; ·) – eυ‖C[,] = , for
eυ (t) = tυ , υ = , , .
From Eq. (), we can easily get

st-lim
n

∥∥̃S(α,β)n,qn (e; ·) – e
∥∥
C[,] = . ()

From Eq. (), we have

S̃(α,β)n,qn (e;x) – e(x) =
(

qn[n]qn
[]qn ([n + ]qn + β)

– 
)
x +

 + []qnα
[]qn ([n + ]qn + β)

.

In view of [n + ]qn =  + qn[n]qn , for β >  we have

∥∥̃S(α,β)n,qn (e; ·) – e
∥∥
C[,] ≤ ( – qn) +

[
( + qn)( + β) +  + []qnα

] 
[n]qn

. ()

Now, for every given ε > , let us define the following sets:

Ũ =
{
k :

∥∥̃S(α,β)n,qk (e; ·) – e
∥∥
C[,] ≥ ε

}
,

Ũ =
{
k :  – qk ≥ ε



}
,

Ũ =
{
k :

[
( + qk)( + β) +  + []qkα

] 
[k]qk

≥ ε



}
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/10
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From inequality (), one can see that Ũ ⊆ Ũ ∪ Ũ, so we have

δ
{
k ≤ n :

∥∥̃S(α,β)n,qk (e; ·) – e
∥∥
C[,] ≥ ε

}
≤ δ

{
k ≤ n :  – qk ≥ ε



}
+ δ

{
k ≤ n :

[
( + qk)( + β) +  + []qkα

] 
[k]qk

≥ ε



}
.

By condition (), it is clear that

st-lim
n
( – qn) = , st-lim

n

[
( + qn)( + β) +  + []qnα

] 
[n]qn

= .

So we have

st-lim
n

∥∥̃S(α,β)n,qn (e; ·) – e
∥∥
C[,] = . ()

In view of Eq. () and the equality [n + ]qn =  + qn[n]qn , for β >  and  < qn < , by a
simple computation, we have

∥∥̃S(α,β)n,qn (e; ·) – e
∥∥
C[,] ≤ ( – qn) +

 + α + α + ( + β)( + β)
[n]qn

.

Now, for every given ε > , let us define the following sets:

T̃ =
{
k :

∥∥̃S(α,β)n,qk (e; ·) – e
∥∥
C[,] ≥ ε

}
,

T̃ =
{
k : ( – qk)≥ ε



}
,

T̃ =
{
k :

 + α + α + ( + β)( + β)
[k]qk

≥ ε



}
.

It is clear that T̃ ⊆ T̃ ∪ T̃, so we get

δ
{
k ≤ n :

∥∥̃S(α,β)n,qk (e; ·) – e
∥∥
C[,] ≥ ε

}
≤ δ

{
k ≤ n : ( – qk) ≥ ε



}
+ δ

{
k ≤ n :

 + α + α + ( + β)( + β)
[k]qk

≥ ε



}
.

By condition (), we have

st-lim
n
( – qn) = , st-lim

n

 + α + α + ( + β)( + β)
[n]qn

= .

So, we can get

st-lim
n

∥∥̃S(α,β)n,qn (e; ·) – e
∥∥
C[,] = . ()

In view of Eqs. (), () and (), the proof is complete. �
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4 Rates of statistical convergence
Let f ∈ C[, ], for any δ > , the usual modulus of continuity for f is defined as ω(f ; δ) =
sup<h≤δ supx,x+h∈[,] |f (x + h) – f (x)|.
For f ∈ C[, ] and any t,x ∈ [, ], we have |f (t) – f (x)| ≤ ω(f , |t – x|), so for any δ > ,

we get

ω
(
f , |t – x|) ≤

{
ω(f , δ), |t – x| < δ,
ω(f , (t–x)



δ
), |t – x| ≥ δ.

In the light of ω(f ;λδ) ≤ ( + λ)ω(f ; δ) for λ > , it is clear that we have

∣∣f (t) – f (x)
∣∣ ≤ (

 + δ–(t – x)
)
ω(f , δ) ()

for any t,x ∈ [, ] and δ > .
Next we will give the rates of convergence of both S(α,β)n,qn (f ;x) and S̃(α,β)n,qn (f ;x) by means of

modulus of continuity.

Theorem  Let q = {qn},  < qn <  be a sequence satisfying condition (), then for any
monotone increasing function f ∈ C[, ], we have

∥∥S(α,β)n,qn (f ; ·) – f
∥∥
C[,] ≤ ω(f ; δn),

where

δn =
{

( + β)

[n + ]qn + β

(


+


[n + ]qn + β

)}/

. ()

Proof Using the linearity and positivity of the operator S(α,β)n,q (f ;x), by Lemma  and in-
equality (), we get

∣∣S(α,β)n,q (f ;x) – f (x)
∣∣

≤ S(α,β)n,q
(∣∣f (t) – f (x)

∣∣;x)
≤ (

 + δ–S(α,β)n,q
(
(t – x);x

))
ω(f , δ)

≤
[
 + δ–

( + β)

[n + ]q + β

(


+


[n + ]q + β

)]
ω(f , δ).

Take q = {qn},  < qn < , to be a sequence satisfying condition () and choose δ = δn in
(), we have |S(α,β)n,qn (f ;x) – f (x)| ≤ ω(f ; δn), which implies the proof is complete. �

Theorem  Let q = {qn},  < qn < , be a sequence satisfying condition (), then for any
f ∈ C[, ], we have ‖̃S(α,β)n,qn (f ; ·) – f ‖C[,] ≤ ω(f ; δn), where

δn =
{
( – q) +


[n + ]qn + β

(
 +

( + α) + ( + β)

[n + ]qn + β

)}/

. ()
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Proof Using the linearity and positivity of the operator S̃(α,β)n,q (f ;x), by Lemma  and in-
equality (), we get

∣∣̃S(α,β)n,q (f ;x) – f (x)
∣∣

≤ S̃(α,β)n,q
(∣∣f (t) – f (x)

∣∣;x)
≤ (

 + δ–̃S(α,β)n,q
(
(t – x);x

))
ω(f , δ)

≤
{
 + δ–

[
( – q) +


[n + ]q + β

(
 +

( + α) + ( + β)

[n + ]q + β

)]}
ω(f , δ).

Take q = {qn},  < qn < , to be a sequence satisfying condition () and choose δ = δn in
(), we have |̃S(α,β)n,qn (f ;x) – f (x)| ≤ ω(f ; δn), which implies the proof is complete. �
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19. Doǧru, O: On statistical approximation properties of Stancu type bivariate generalization of q-Balás-Szabados

operators. In: Seminar on Numerical Analysis and Approximation Theory, pp. 179-194. Univ. Babeş-Bolya, Cluj-Napoca
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