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Abstract
Recently, Araci-Acikgoz-Sen derived some interesting identities on weighted q-Euler
polynomials and higher-order q-Euler polynomials from the applications of umbral
calculus (see (Araci et al. in J. Number Theory 133(10):3348-3361, 2013)). In this paper,
we develop the new method of q-umbral calculus due to Roman, and we study a
new q-extension of Euler numbers and polynomials which are derived from q-umbral
calculus. Finally, we give some interesting identities on our q-Euler polynomials
related to the q-Bernoulli numbers and polynomials of Hegazi and Mansour.

1 Introduction
Throughout this paper we will assume q to be a fixed real number between  and . We
define the q-shifted factorials by

(a : q) = , (a : q)n =
n–∏
i=

(
 – aqi

)
, (a : q)∞ =

∞∏
i=

(
 – aqi

)
. (.)

If x is a classical object, such as a complex number, its q-version is defined as [x]q = –qx
–q .

We now introduce the q-extension of exponential function as follows:

eq(z) =
∞∑
n=

zn

[n]q!
=


(( – q)z : q)∞

(see [–]), (.)

where z ∈C with |z| < .
The Jackson definite q-integral of the function f is defined by

∫ x


f (t)dqt = ( – q)

∞∑
a=

f
(
qax

)
xqa (see [, , ]). (.)

The q-difference operator Dq is defined by

Dqf (x) =
dqf (x)
dqx

=

⎧⎨
⎩

f (x)–f (qx)
(–q)x if x �= ,

df (x)
dx if x = ,

(.)

where

lim
q→

Dqf (x) =
df (x)
dx

(see [, , , ]).
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By using an exponential function eq(x), Hegazi and Mansour defined q-Bernoulli poly-
nomials as follows:

∞∑
n=

Bn,q(x)
tn

[n]q!
=

t
eq(t) – 

eq(xt) (see [, , , ]). (.)

In the special case, x = , Bn,q() = Bn,q are called the nth q-Bernoulli numbers.
From (.), we can easily derive the following equation:

Bn,q(x) =
n∑
l=

(
n
l

)
q
Bn–l,qxl =

n∑
l=

(
n
l

)
q
Bl,qxn–l, (.)

where(
n
l

)
q
=

[n]q!
[n – l]q![l]q!

=
[n]q[n – ]q · · · [n – l + ]q

[l]q!
(see [, ]).

In the next section, we will consider new q-extensions of Euler numbers and polyno-
mials by using the method of Hegazi and Mansour. More than five decades ago, Carlitz
[] defined a q-extension of Euler polynomials. In a recent paper (see []), Kupershmidt
constructed reflection symmetries of q-Bernoulli polynomials which differ from Carlitz’s
q-Bernoulli numbers and polynomials. By using the method of Kupershmidt, Hegazi and
Mansour also introduced a new q-extension of Bernoulli numbers and polynomials (see
[, , ]). From the q-exponential function, Kurt and Cenkci derived some interesting new
formulae of q-extension of Genocchi polynomials. Recently, several authors have studied
various q-extensions of Bernoulli and Euler polynomials (see [–, –]). Let C be the
complex number field, and let F be the set of all formal power series in variable t over C
with

F =

{
f (t) =

∞∑
k=

ak
[k]q!

tk
∣∣∣∣ak ∈C

}
. (.)

Let P =C[t] and let P∗ be the vector space of all linear functionals on P. 〈L|p(x)〉 denotes
the action of linear functional L on the polynomial p(x), and it is well known that the vector
space operations on P

∗ are defined by

〈
L +M|p(x)〉 = 〈

L|p(x)〉 + 〈
M|p(x)〉, 〈

cL|p(x)〉 = c
〈
L|p(x)〉,

where c is a complex constant (see [, , ]).
For f (t) =

∑∞
k=

ak
[k]q ! t

k ∈F , we define the linear functional on P by setting

〈
f (t)|xn〉 = an for all n≥ . (.)

From (.) and (.), we note that

〈
tk|xn〉 = [n]q!δn,k (n,k ≥ ), (.)

where δn,k is the Kronecker symbol.
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Let us assume that fL(t) =
∑∞

k=〈L|xn〉 tkk! . Then by (.) we easily see that 〈fL(t)|xn〉 =
〈L|xn〉. That is, fL(t) = L. Additionally, the map L 
−→ fL(t) is a vector space isomorphism
from P

∗ onto F . Henceforth F denotes both the algebra of formal power series in t and
the vector space of all linear functionals on P, and so an element f (t) of F will be thought
of as a formal power series and a linear functional. We call it the q-umbral algebra. The
q-umbral calculus is the study of q-umbral algebra. By (.) and (.), we easily see that
〈eq(yt)|xn〉 = yn and so 〈eq(yt)|p(x)〉 = p(y) for p(x) ∈ P. The order o(f (t)) of the power series
f (t) �=  is the smallest integer for which ak does not vanish. If o(f (t)) = , then f (t) is
called an invertible series. If o(f (t)) = , thenf (t) is called a delta series (see [, , , ]).
For f (t), g(t) ∈ F , we have 〈f (t)g(t)|p(x)〉 = 〈f (t)|g(t)p(x)〉 = 〈g(t)|f (t)p(x)〉. Let f (t) ∈ F and
p(x) ∈ P. Then we have

f (t) =
∞∑
k=

〈
f (t)|xk 〉 tk

[k]q!
, p(x) =

∞∑
k=

〈
tk|p(x)〉 xk

[k]q!
(see []). (.)

From (.), we have

p(k)(x) =Dk
qp(x) =

∞∑
l=k

〈tl|p(x)〉
[l]q!

[l]q · · · [l – k + ]qxl–k . (.)

By (.), we get

p(k)() =
〈
tk|p(x)〉 and

〈
|p(k)(x)〉 = p(k)(). (.)

Thus from (.), we note that

tkp(x) = p(k)(x) =Dk
qp(x). (.)

Let f (t), g(t) ∈ F with o(f (t)) =  and o(g(t)) = . Then there exists a unique sequence
Sn(x) (degSn(x) = n) of polynomials such that 〈g(t)f (t)k|Sn(x)〉 = [n]q!δn,k (n,k ≥ ). The
sequence Sn(x) is called the q-Sheffer sequence for (g(t), f (t)) which is denoted by Sn(x) ∼
(g(t), f (t)). Let Sn(x) ∼ (g(t), f (t)). For h(t) ∈F and p(x) ∈ P, we have

h(t) =
∞∑
k=

〈h(t)|Sk(x)〉
[k]q!

g(t)f (t)k , p(x) =
∞∑
k=

〈g(t)f (t)k|p(x)〉
[k]q!

Sk(x), (.)

and


g(f̄ (t)

eq
(
yf̄ (t)

)
=

∞∑
k=

Sk(y)
[k]q!

tk for all y ∈C, (.)

where f̄ (t) is the compositional inverse of f (t) (see [, ]).
Recently, Araci-Acikgoz-Sen derived some new interesting properties on the new family

of q-Euler numbers and polynomials from some applications of umbral algebra (see []).
The properties of q-Euler and q-Bernoulli polynomials seem to be of interest and worth-
while in the areas of both number theory and mathematical physics. In this paper, we de-
velop the newmethod of q-umbral calculus due to Roman and study a new q-extension of

http://www.journalofinequalitiesandapplications.com/content/2014/1/1


Kim and Kim Journal of Inequalities and Applications 2014, 2014:1 Page 4 of 12
http://www.journalofinequalitiesandapplications.com/content/2014/1/1

Euler numbers and polynomials which are derived from q-umbral calculus. Finally, we give
new explicit formulas on q-Euler polynomials related to Hegazi-Mansour’s q-Bernoulli
polynomials.

2 q-Euler numbers and polynomials
We consider the new q-extension of Euler polynomials which are generated by the gener-
ating function to be


eq(t) + 

eq(xt) =
∞∑
n=

En,q(x)
tn

[n]q!
. (.)

In the special case, x = , En,q() = En,q are called the nth q-Euler numbers. From (.),
we note that

En,q(x) =
n∑
l=

(
n
l

)
q
El,qxn–l =

n∑
l=

(
n
l

)
q
En–l,qxl. (.)

By (.), we easily get

E,q = , En,q() + En,q = δ,n. (.)

For example, E,q = , E,q = – 
 , E,q = q–

 , E,q = q+q–
 + (–q)[]q

 , . . . . From (.) and
(.), we have

En,q(x)∼
(
eq(t) + 


, t

)
(.)

and


eq(t) + 

xn = En,q(x) (n≥ ). (.)

Thus, by (.) and (.), we get

tEn,q(x) =


eq(t) + 
txn = [n]q


eq(t) + 

xn– = [n]qEn–,q(x) (n≥ ). (.)

Indeed, by (.), we get

〈
eq(t) + 


tk

∣∣∣En,q(x)
〉
=
[k]q!


(
n
k

)
q

〈
eq(t) + |En–k,q(x)

〉

=
[k]q!


(
n
k

)
q

(
En–k,q() + En–k,q

)
. (.)

From (.), we have

〈(
eq(t) + 



)
tk

∣∣∣En,q(x)
〉
= [n]q!δn,k . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/1
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Thus, by (.) and (.), we get

 = En–k,q() + En–k,q =
n–k∑
l=

(
n – k
l

)
q
El,q + En–k,q (n,k ∈ Z≥ with n > k). (.)

This is equivalent to

–En–k,q =
n–k–∑
l=

(
n – k
l

)
q
El,q, where n,k ∈ Z≥ with n > k. (.)

Therefore, by (.), we obtain the following lemma.

Lemma . For n ≥ , we have

–En,q =
n–∑
l=

(
n
l

)
q
El,q.

From (.) we have

∫ x+y

x
En,q(u)dqu =

n∑
l=

(
n
l

)
q
En–l,q


[l + ]q

{
(x + y)l+ – xl+

}

=


[n + ]q

n∑
l=

(
n + 
l + 

)
q
En–l,q

{
(x + y)l+ – xl+

}

=


[n + ]q

n+∑
l=

(
n + 
l

)
q
En+–l,q

{
(x + y)l – xl

}

=


[n + ]q

n+∑
l=

(
n + 
l

)
q
En+–l,q

{
(x + y)l – xl

}

=


[n + ]q
{
En+,q(x + y) – En+,q(x)

}
. (.)

Thus, by (.), we get

〈
eq(t) – 

t

∣∣∣En,q(x)
〉
=


[n + ]q

〈
eq(t) – 

t

∣∣∣tEn+,q(x)
〉

=


[n + ]q
〈
eq(t) – |En+,q(x)

〉
=


[n + ]q

{
En+,q() – En+,q

}

=
∫ 


En,q(u)dqu. (.)

Therefore, by (.), we obtain the following theorem.

http://www.journalofinequalitiesandapplications.com/content/2014/1/1
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Theorem . For n ≥ , we have

〈
eq(t) – 

t

∣∣∣En,q(x)
〉
=

∫ 


En,q(u)dqu.

Let

Pn =
{
p(x) ∈C[x]|degp(x) ≤ n

}
. (.)

For p(x) ∈ Pn, let us assume that

p(x) =
n∑

k=

bk,qEk,q(x). (.)

Then, by (.), we get

〈(
eq(t) + 



)
tk

∣∣∣En,q(x)
〉
= [n]q!δn,k . (.)

From (.) and (.), we can derive the following equation:

〈(
eq(t) + 



)
tk

∣∣∣p(x)〉 = n∑
l=

bl,q
〈(

eq(t) + 


)
tk

∣∣∣El,q(x)
〉

=
n∑
l=

bl,q[l]q!δl,k = [k]q!bk,q. (.)

Thus, by (.), we get

bk,q =


[k]q!

〈(
eq(t) + 



)
tk

∣∣∣p(x)〉 = 
[k]q!

〈(
eq(t) + 

)
tk|p(x)〉

=


[k]q!
〈
eq(t) + |p(k)(x)〉 = 

[k]q!
{
p(k)() + p(k)()

}
, (.)

where p(k)(x) =Dk
qp(x).

Therefore, by (.) and (.), we obtain the following theorem.

Theorem . For p(x) ∈ Pn, let p(x) =
∑n

k= bk,qEk,q(x). Then we have

bk,q =


[k]q!
〈(
eq(t) + 

)
tk|p(x)〉

=


[k]q!
{
p(k)() + p(k)()

}
,

where p(k)(x) =Dk
qp(x).

From (.), we note that

Bn,q(x)∼
(
eq(t) – 

t
, t

)
(n≥ ). (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/1
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Let us take p(x) = Bn,q(x) ∈ Pn. Then Bn,q(x) can be represented as a linear combination
of {E,q(x),E,q(x), . . . ,En,q(x)} as follows:

Bn,q(x) = p(x) =
n∑

k=

bk,qEk,q(x) (n≥ ), (.)

where

bk,q =


[k]q!
〈(
eq(t) + 

)
tk|Bn,q(x)

〉
=
[n]q[n – ]q · · · [n – k + ]q

[k]q!
〈
eq(t) + |Bn–k,q(x)

〉
=



(
n
k

)
q

〈
eq(t) + |Bn–k,q(x)

〉
=



(
n
k

)
q

{
Bn–k,q() + Bn–k,q

}
. (.)

From (.), we can derive the following recurrence relation for the q-Bernoulli numbers:

t =

( ∞∑
l=

Bl,q
tl

[l]q!

)(
eq(t) – 

)

=
∞∑
n=

( n∑
l=

(
n
l

)
q
Bl,q

)
tn

[n]q!
–

∞∑
n=

Bn,q
tn

[n]q!

=
∞∑
n=

(
Bn,q() – Bn,q

) tn

[n]q!
. (.)

Thus, by (.), we get

B,q = , Bn,q() – Bn,q =

⎧⎨
⎩ if n = ,

 if n > .
(.)

For example, B,q = , B,q = – 
[]q , B,q = q

[]q[]q , . . . .
By (.), (.) and (.), we get

Bn,q(x) = bn,qEn,q(x) + bn–,qEn–,q(x) +
n–∑
k=

bk,qEk,q(x)

= En,q(x) +
[n]q


(
 –


[]q

)
En–,q(x) +

n–∑
k=

(
n
k

)
q
Bn–k,qEk,q(x)

= En,q(x) –
[n]q( – q)

[]q
En–,q(x) +

n–∑
k=

(
n
k

)
q
Bn–k,qEk,q(x). (.)

Therefore, by (.), we obtain the following theorem.

Theorem . For n ≥ , we have

Bn,q(x) = En,q(x) +
[n]q(q – )

[]q
En–,q(x) +

n–∑
k=

(
n
k

)
q
Bn–k,qEk,q(x).

http://www.journalofinequalitiesandapplications.com/content/2014/1/1
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For r ∈ Z≥, the q-Euler polynomials, E(r)
n,q(x), of order r are defined by the generating

function to be(


eq(t) + 

)r

eq(xt) =
(


eq(t) + 

)
× · · · ×

(


eq(t) + 

)
︸ ︷︷ ︸

r-times

eq(xt)

=
∞∑
n=

E(r)
n,q(x)

tn

[n]q!
. (.)

In the special case, x = , E(r)
n,q() = E(r)

n,q are called the nth q-Euler numbers of order r.
Let

gr(t) =
(
eq(t) + 



)r

(r ∈ Z≥). (.)

Then gr(t) is an invertible series. From (.) and (.), we have

∞∑
n=

E(r)
n,q(x)

tn

[n]q!
=


gr(t)

eq(xt) =
∞∑
n=


gr(t)

xn
tn

[n]q!
. (.)

By (.), we get

E(r)
n,q(x) =


gr(t)

xn, (.)

and

tE(r)
n,q(x) =


gr(t)

txn = [n]q


gr(t)
xn– = [n]qE(r)

n–,q(x). (.)

Thus, by (.), (.) and (.), we see that

E(r)
n,q(x)∼

((
eq(t) + 



)r

, t
)
. (.)

By (.) and (.), we get

〈(


eq(t) + 

)r

eq(yt)
∣∣∣xn〉 = E(r)

n,q(y) =
n∑
l=

(
n
l

)
q
E(r)
n–l,qy

l. (.)

Thus, we have

〈(


eq(t) + 

)r∣∣∣xn〉 = ∞∑
m=

( ∑
i+···+ir=m

Ei,q · · ·Eir ,q

[i]q! · · · [ir]q!

)〈
tm|xn〉

=
∑

i+···+ir=n

[n]q!
[i]q! · · · [ir]q!Ei,q · · ·Eir ,q

=
∑

i+···+ir=n

(
n

i, . . . , ir

)
q
Ei,q · · ·Eir ,q, (.)

where
( n
i,...,ir

)
q
= [n]q !

[i]q !···[ir ]q ! .

http://www.journalofinequalitiesandapplications.com/content/2014/1/1
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By (.), we easily get

〈(


eq(t) + 

)r∣∣∣xn〉 = E(r)
n,q. (.)

Therefore, by (.) and (.), we obtain the following theorem.

Theorem . For n ≥ , we have

E(r)
n,q =

∑
i+···+ir=n

(
n

i, . . . , ir

)
q
Ei,q · · ·Eir ,q,

where
( n
i,...,ir

)
q
= [n]q !

[i]q !···[ir ]q ! .

Let us take p(x) = E(r)
n,q(x) ∈ Pn. Then, by Theorem ., we get

E(r)
n,q(x) = p(x) =

n∑
k=

bk,qEk,q(x), (.)

where

bk,q =


[k]q!
〈(
eq(t) + 

)
tk|p(x)〉 = 

[k]q!
〈(
eq(t) + 

)|tkp(x)〉

=

(n
k
)
q


〈(
eq(t) + 

)|E(r)
n–k,q(x)

〉
=

(n
k
)
q


{
E(r)
n–k,q() + E(r)

n–k,q
}
. (.)

From (.), we have

∞∑
k=

{
E(r)
n,q() + E(r)

n,q
} tn

[n]q!
=

(


eq(t) + 

)r(
eq(t) + 

)

= 
(


eq(t) + 

)r–

= 
∞∑
n=

E(r–)
n,q

tn

[n]q!
. (.)

By comparing the coefficients on the both sides of (.), we get

E(r)
n,q() + E(r)

n,q = E(r–)
n,q (n≥ ). (.)

Therefore, by (.), (.) and (.), we obtain the following theorem.

Theorem . For n ∈ Z≥, r ∈ Z>, we have

E(r)
n,q(x) =

∞∑
k=

(
n
k

)
q
E(r–)
n–k,qEk,q(x).

Let us assume that

p(x) =
n∑

k=

brk,qE
(r)
k,q(x) ∈ Pn. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/1
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By (.) and (.), we get

〈(
eq(t) + 



)r

tk
∣∣∣p(x)〉 = n∑

l=

brl,q

〈(
eq(t) + 



)r

tk
∣∣∣E(r)

l,q(x)
〉

=
n∑
l=

brl,q[l]q!δl,k = [k]q!brk,q. (.)

From (.), we have

brk,q =


[k]q!

〈(
eq(t) + 



)r

tk
∣∣∣p(x)〉 = 

r[k]q!
〈(
eq(t) + 

)r|tkp(x)〉

=


r[k]q!

r∑
l=

(
r
l

) ∑
m≥

( ∑
i+···+il=m

(
m

i, . . . , il

)
q

)


[m]q!
〈
|tm+kp(x)

〉

=


r[k]q!

r∑
l=

(
r
l

) ∑
m≥

∑
i+···+il=m

(
m

i, . . . , il

)
q


[m]q!

p(m+k)(). (.)

Therefore by (.) and (.), we obtain the following theorem.

Theorem . For n ≥ , let p(x) =
∑n

k= brk,qE
(r)
k,q(x) ∈ Pn.

Then we have

brk,q =


r[k]q!
=

〈(
eq(t) + 

)rtk|p(x)〉

=


r[k]q!
∑
m≥

r∑
l=

(
r
l

) ∑
i+···+il=m

(
m

i, . . . , il

)
q


[m]q!

p(m+k)(),

where p(k)(x) =Dk
qp(x).

Let us take p(x) = En,q(x) ∈ Pn. Then, by Theorem ., we get

En,q(x) = p(x) =
n∑

k=

brk,qE
(r)
k,q(x), (.)

where

bk,q =


r[k]q!

n–k∑
m=

r∑
l=

(
r
l

) ∑
i+···+il=m

(
m

i, . . . , il

)
q

× 
[m]q!

[n]q · · · [n –m – k + ]qEn–m–k,q

=

r

n–k∑
m=

r∑
l=

(
r
l

) ∑
i+···+il=m

(
m

i, . . . , il

)
q

× [m + k]q!
[m]q![k]q!

[n]q · · · [n –m – k + ]q
[m + k]q!

En–m–k,q

=

r

n–k∑
m=

r∑
l=

∑
i+···+il=m

(
r
l

)(
m

i, . . . , il

)
q

(
m + k
m

)
q

(
n

m + k

)
q
En–m–k,q. (.)
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Therefore, by (.) and (.), we obtain the following theorem.

Theorem . For n, r ≥ , we have

En,q(x) =

r

n∑
k=

{ n–k∑
m=

r∑
l=

∑
i+···+il=m

(
r
l

)(
m

i, . . . , il

)
q

(
m + k
m

)
q

(
n

m + k

)
q

× En–m–k,q

}
E(r)
k,q(x).

For r ∈ Z≥, let us consider q-Bernoulli polynomials of order r which are defined by the
generating function to be

(
t

eq(t) – 

)r

eq(xt) =
(

t
eq(t) – 

)
× · · · ×

(
t

eq(t) – 

)
︸ ︷︷ ︸

r-times

eq(xt)

=
∞∑
n=

B(r)
n,q(x)

tn

[n]q!
. (.)

In the special case, x = , B(r)
n,q() = B(r)

n,q are called the nth q-Bernoulli numbers of order r.
By (.), we easily get

B(r)
n,q(x) =

n∑
l=

(
n
l

)
q
B(r)
l,qx

n–l ∈ Pn. (.)

Let us take p(x) = B(r)
n,q(x) ∈ Pn. Then, by Theorem ., we get

B(r)
n,q(x) = p(x) =

n∑
k=

brk,qE
(r)
k,q(x), (.)

where

brk,q =


r[k]q!
〈(
eq(t) + 

)rtk|B(r)
n,q(x))

〉

=


r[k]q!

n–k∑
m=

r∑
l=

(
r
l

) ∑
i+···+il=m

(
m

i, . . . , il

)
q

[n]q · · · [n –m – k + ]q
[m]q!

B(r)
n–m–k,q

=

r

n–k∑
m=

r∑
l=

∑
i+···+il=m

(
r
l

)(
m

i, . . . , il

)
q

(
m + k
m

)
q

(
n

m + k

)
q
B(r)
n–m–k,q. (.)

Therefore, by (.) and (.), we obtain the following theorem.

Theorem . For n, r ≥ , we have

B(r)
n,q(x) =


r

n∑
k=

{ n–k∑
m=

r∑
l=

∑
i+···+il=m

(
r
l

)(
m

i, . . . , il

)
q

(
m + k
m

)
q

(
n

m + k

)
q

× B(r)
n–m–k,q

}
E(r)
k,q(x).
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Remark Recently, Aral, Gupta and Agarwal introduced many interesting properties and
applications of q-calculus which are related to this paper (see []).
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