
Ju and Jeong Journal of Inequalities and Applications 2013, 2013:92
http://www.journalofinequalitiesandapplications.com/content/2013/1/92

RESEARCH Open Access

Optimal control problems for hyperbolic
equations with damping terms involving
p-Laplacian
Eun-Young Ju and Jin-Mun Jeong*

*Correspondence:
jmjeong@pknu.ac.kr
Department of Applied
Mathematics, Pukyong National
University, Busan, 608-737, Korea

Abstract
In this paper we study optimal control problems for the hyperbolic equations with a
damping term involving p-Laplacian. We prove the existence of an optimal control
and the Gâteaux differentiability of a solution mapping on control variables. And then
we characterize the optimal controls by giving necessary conditions for optimality.

AMS Subject Classification: 49K20; 93C20

Keywords: optimal control; hyperbolic equation; p-Laplacian; conditions for
optimality; Gâteaux differentiability

1 Introduction
In this paper, we are concernedwith optimal control problems for the hyperbolic equation
with a damping term involving p-Laplacian:

⎧⎪⎪⎨
⎪⎪⎩
y′′ –�y′ – div(|∇y|p–∇y) = f in � × (,∞),

y =  on ∂� × (,∞),

y(x, ) = y(x), y′(x, ) = y(x) in x ∈ �,

(.)

where � is a bounded domain in R
N with sufficiently smooth boundary ∂�, f is a forc-

ing function, and y′ = ∂y
∂t , y

′′ = ∂y
∂t . The background of these variational problems are in

physics, especially in solid mechanics. The precise hypotheses on the above system will
be given in the next section.
Recently, much research has been devoted to the study of hemivariational inequalities

[–]. The research works have mainly considered the existence of weak solutions for dif-
ferential inclusions of various forms [, , , , ]. In particular, the case where the nonlin-
ear wave equation includes a nonlinear damping term in a bounded domainwas proved by
many authors for both existence and nonexistence of global solutions [–]. Especially,
[] showed the existence of global weak solutions for (.) and the asymptotic stability of
the solution by using the Nakao lemma [].
On the other hand, it is interesting to mention that optimal control problems for the

equation of Kirchhoff type with a damping term have been studied by Hwang and Naka-
giri []. We can find some articles about the studies on some kinds of semilinear partial

© 2013 Ju and Jeong; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://www.journalofinequalitiesandapplications.com/content/2013/1/92
mailto:jmjeong@pknu.ac.kr
http://creativecommons.org/licenses/by/2.0


Ju and Jeong Journal of Inequalities and Applications 2013, 2013:92 Page 2 of 12
http://www.journalofinequalitiesandapplications.com/content/2013/1/92

differential equations and on quasilinear partial differential equations; see Ha and Naka-
giri [], Hwang and Nakagiri []. Based on these methods, we intend to study optimal
control problems for the hyperbolic hemivariational inequality (.) due to the theory of
Lions [] in which the optimal control problems are surveyed on many types of linear
partial differential equations.
Our goal in this paper is to extend the optimal control theory in the framework of Lions

[] to the hyperbolic equation (.) involving p-Laplacianwith a damping term. LetH be a
Hilbert space and let U be another Hilbert space of control variables, and B be a bounded
linear operator from U into L(,T ;H), which is called a controller. We formulate our
optimal control problem as follows:

y′′(v) –�y′(v) – div
(∣∣∇y(v)

∣∣p–∇y(v)
)
= f + Bv in � × (,∞). (.)

The plan of this paper is as follows. In Section , the main results besides notations and
assumptions are stated. In Section , we show the existence of an optimal control u ∈ U
which minimizes the quadratic cost function. In Section , we characterize the optimal
controls by giving necessary conditions for optimality. For this we prove the Gâteaux dif-
ferentiability of the nonlinear mapping v → y(v), which is used to define the associated
adjoint system.

2 Preliminaries
Throughout this paper we denote

V =
{
y ∈W ,(�) : y =  on ∂�

}
, (y, z) =

∫
�

y(x)z(x)dx, ∀y, z ∈ V .

For every q ∈ (,∞), we denote ‖ · ‖q = ‖ · ‖Lq(�). For brevity, we denote ‖ · ‖ by ‖ · ‖. For
a Banach space X, we denote by ‖ · ‖X the norm of X.
Define A : V → V * by

〈Ay, z〉 = (|∇y|p–∇y,∇z
)

for all y, z ∈ V ,

where V * denotes the dual space of V and 〈·, ·〉 the dual pairing between V and V *. Then
the operator A is bounded, monotone, hemicontinuous (see, e.g., []) and

〈Ay, y〉 = ‖∇y‖pp,
〈
Ay, y′〉 = 

p
d
dt

‖∇y‖pp for y ∈ V .

Now, we formulate the following assumption:
(H) We assume that p is an even natural number satisfying

 ≤ p <
(N – )p
(N – p)

+  ( ≤ p < ∞ if p =N).

Definition . A function y(x, t) is a weak solution to problem (.) if for every T > ,
y satisfies y ∈ L∞(,T ;D(�)), y′ ∈ L(,T ;D(�)) ∩ L∞(,T ;V ), y′′ ∈ L(,T ;H). And for

http://www.journalofinequalitiesandapplications.com/content/2013/1/92
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any z ∈ V and f ∈ L(,T ;H), the following relations hold:

⎧⎨
⎩

∫ T
 {〈y′′(t), z〉 + (∇y′(t),∇z) + (|∇y(t)|p–∇y(t),∇z)}dt = ∫ T

 (f , z)dt,

y() = y, y′() = y.

The following theorem is from Jeong et al. [].

Theorem . Let assumptions (H) be satisfied. Then, for y ∈ D(�), y ∈ V and f ∈
L(,T ;H), problem (.) has a weak solution.

For any initial data (y, y) ∈D(�)×V , we define the solution spaceW = L∞(,T ;V )∩
W ,(,T ;V )∩W ,(,T ;H)∩W ,∞(,T ;V ).
Here we remark thatW is continuously imbedded in C([,T];V )∩C([,T];V ), so that

we assume that there exists

∣∣∇y(t)
∣∣ < C,

∣∣∣∣ ddt∇y(t)
∣∣∣∣ < C. (.)

Theorem . Assume that y ∈ D(�), y ∈ V and f ∈ L(,T ;H). The solution mapping
p = (y, y, f ) → y(p) of P ≡D(�)×V × L(,T ;H) intoW is strongly continuous. Further,
for each p = (y, y, f) ∈ P and p = (y, y , f) ∈ P, we have the inequality

∣∣y′(p; t) – y′(p; t)
∣∣ + ∣∣∇(

y(p; t) – y(p; t)
)∣∣ +

∫ t



∣∣∇(
y′(p) – y′(p)

)∣∣ ds
≤ C

(∣∣∇(
y – y

)∣∣ + ∣∣y – y
∣∣ + ‖f – f‖L(,T ;H)

)
. (.)

Proof Due to [], we can infer that a weak solution y ∈ W under the data condition
p = (y, y, f ) ∈D(�)×V × L(,T :H). Based on the above results, we prove the inequal-
ity (.). For that purpose, we denote y – y ≡ y(p) – y(p) by ψ . Then we can observe
from (.) that

⎧⎪⎪⎨
⎪⎪⎩

ψ ′′ –�ψ ′ – div(|∇y|p–∇ψ) = f – f + div(ε(ψ)) in (,∞),

ψ =  on (,∞),

ψ() = y – y, ψ ′() = y – y in �,

(.)

where

ε(ψ) =
(|∇y|p– – |∇y|p–

)∇y

=
(∇ψ , |∇y|p– + · · · + |∇y|p–

)∇y. (.)

Multiplying both sides of (.) by ψ ′, we have



d
dt

∣∣ψ ′(t)
∣∣ + ∣∣∇ψ ′(t)

∣∣ + ∣∣∇y(t)
∣∣p– 


d
dt

∣∣∇ψ(t)
∣∣

= –
(
ε(ψ),∇ψ ′) + (

f – f,ψ ′). (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/92
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And we integrate (.) over [,t] to have

∣∣ψ ′(t)
∣∣ + ∣∣∇ψ(t)

∣∣∣∣∇y(t)
∣∣p– + 

∫ t



∣∣∇ψ ′(s)
∣∣ ds

= –
∫ t



(
ε(ψ),∇ψ ′)ds +

∫ t


|∇ψ |

(
d
ds

|∇y|p–
)
ds

+
∣∣ψ ′()

∣∣ + ∣∣∇ψ()
∣∣∣∣∇y

∣∣p– + 
∫ t



(
f – f,ψ ′)ds. (.)

The right member of (.) can be estimated as follows:

∣∣∣∣
∫ t



(
f – f,ψ ′)ds

∣∣∣∣ ≤ 
∫ t


|f – f|

∣∣ψ ′∣∣ds ≤
∫ t


|f – f| ds +

∫ t



∣∣ψ ′∣∣ ds, (.)

∣∣∣∣–
∫ t



(
ε(ψ),∇ψ ′)ds

∣∣∣∣ ≤ 
∫ t



∣∣ε(ψ)
∣∣∣∣∇ψ ′∣∣ds ≤

∫ t



∣∣ε(ψ)
∣∣ ds +

∫ t



∣∣∇ψ ′∣∣ ds

≤ c
∫ t


|∇ψ | ds +

∫ t



∣∣∇ψ ′∣∣ ds, (.)
∣∣∣∣
∫ t


|∇ψ |

(
d
ds

|∇y|p–
)
ds

∣∣∣∣ ≤
∣∣∣∣(p – )

∫ t



(|∇y|p–,∇y′

)|∇ψ | ds

∣∣∣∣
≤ c

∫ t


|∇ψ | ds, (.)

where c, c are constants. By using the boundedness of (.), we obtain (.) and (.).
Finally, we replace the right-hand side of (.) by the right members of (.)-(.) and
apply Gronwall’s inequality to the replaced inequality to obtain

∣∣ψ ′(t)
∣∣ + ∣∣∇ψ(t)

∣∣ +
∫ t



∣∣∇ψ ′(s)
∣∣ ds

≤ C
(∣∣ψ ′()

∣∣ + ∣∣∇ψ()
∣∣ + ‖f – f‖L(,T ;H)

)
, (.)

where C is a constant. This completes the proof. �

3 Existence of an optimal control
Let U be a Hilbert space of control variables, and let B be a bounded linear operator from
U into L(,T ;H), which is denoted by

B ∈L
(
U ,L(,T ;H)

)
. (.)

We consider the following nonlinear control system:

⎧⎪⎪⎨
⎪⎪⎩
y′′(v) –�y′(v) – div(|∇y(v)|p–∇y(v)) = f + Bv in � × (,∞),

y(v) =  on ∂� × (,∞),

y(v;x, ) = y(x), y′(v;x, ) = y(x) in �,

(.)

where y ∈ D(�), y ∈ V , and v ∈ U is a control. By virtue of Theorem . and (.), we
can define uniquely the solution map v → y(v) of U into W . We will call the solution y(v)

http://www.journalofinequalitiesandapplications.com/content/2013/1/92
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of (.) the state of the control system (.). The observation of the state is assumed to be
given by

z(v) = Cy(v), C ∈L(W ,M), (.)

where C is an operator called the observer and M is a Hilbert space of observation vari-
ables. The quadratic cost function associated with the control system (.) is given by

J(v) =
∥∥Cy(v) – zd

∥∥
M + (Rv, v)U for v ∈ U , (.)

where zd ∈M is a desired value of y(v) and R ∈L(U ,U ) is symmetric and positive, i.e.,

(Rv, v)U = (v,Rv)U ≥ d‖v‖U (.)

for some d > . Let Uad be a closed convex subset of U , which is called an admissible
set. An element u ∈ Uad which attains the minimum of J(v) over Uad is called an optimal
control for the cost function (.).
As indicated in Introduction, we need to show the existence of an optimal control and to

give the characterizations of it. The existence of an optimal control u for the cost function
(.) can be stated by the following theorem.

Theorem . Assume that the hypotheses of Theorem . are satisfied. Then there exists
at least one optimal control u for the control problem (.) with (.).

Proof Set J = infv∈Uad J(v). Since Uad is non-empty, there is a sequence {vn} in U such that

inf
v∈Uad

J(v) = lim
n→∞ J(vn) = J .

Obviously, {J(vn)} is bounded in R
+. Then by (.) there exists a constant K >  such that

d‖vn‖U ≤ (Rvn, vn)U ≤ J(vn) ≤ K. (.)

This shows that {vn} is bounded in U . Since Uad is closed and convex, we can choose a
subsequence (denoted again by {vn}) of {vn} and find a u ∈Uad such that

vn → u weakly in U (.)

as n→ ∞. From now on, each state yn = y(vn) ∈W corresponding to vn is the solution of

⎧⎨
⎩
y′′
n(t) –�y′

n(t) – div(|∇yn(t)|p–∇yn(t)) = f + Bvn a.e. t ∈ [,T],

yn() = y, y′
n() = y.

(.)

By (.) the term Bvn is estimated as

‖Bvn‖L(,T ;H) ≤ ‖B‖L(U ,L(,T ;H))‖vn‖U ≤ ‖B‖L(U ,L(,T ;H))
√
Kd– ≡ K. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/92
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Hence it follows from the inequality (.), nothing y((, , ); t)≡ , that

∣∣y′
n(t)

∣∣ + ∣∣∇yn(t)
∣∣ +

∫ t



∣∣∇y′
n(s)

∣∣ ds ≤ C
(|∇y| + |y| + ‖f ‖L(,T ;H) +K


)

(.)

for some C > . Combining (.) and (.), we deduce that

{yn} is bounded inW . (.)

Therefore, by the extraction theorem of Rellich, we can find a subsequence of {yn}, say
again {yn}, and find a y ∈W such that

yn → y weakly inW . (.)

By using the fact that D(�) ↪→ V is compact and by virtue of (.), we can refer to the
result of Aubin-Lions Teman’s compact imbedding theorem (cf. Teman []) to verify that
{yn} is precompact in L(,T ;V ). Hence there exists a subsequence {ynk } ⊂ {yn} such that

ynk → y strongly in L(,T ;V ) as k → ∞. (.)

Then we can choose a subsequence of {ynk }, denoted again by {ynk }, such that

ynk (t)→ y(t) in V for a.e. t ∈ [,T]. (.)

Now we will show that

div
(|∇ynk |p–∇ynk

) → div
(|∇y|p–∇y

)
weakly in L

(
,T ;V *) as k → ∞. (.)

Let φ(·) ∈ L(,T ;V ) be given. Then we have

∣∣∣∣
∫ T



{〈
div

(∣∣∇ynk (t)
∣∣p–∇ynk (t)

)
,φ(t)

〉
–

〈
div

(∣∣∇y(t)
∣∣p–∇y(t)

)
,φ(t)

〉}
dt

∣∣∣∣
≤

∫ T



∣∣∣∣∇ynk (t)
∣∣p– – ∣∣∇y(t)

∣∣p–∣∣∣∣(∇ynk (t),∇φ(t)
)∣∣dt

+
∣∣∣∣
∫ T



(∇(
ynk (t) – y(t)

)
,
∣∣∇y(t)

∣∣p–∇φ(t)
)
dt

∣∣∣∣. (.)

Since |∇y(t)|p–∇φ ∈ L(,T ;H), it follows from (.) and the Hölder inequality that
the last term of (.) converges to  as k → ∞. By the continuous imbedding W ↪→
C([,T];V ) and (.), we see that the set {|∇ynk (t)| : t ∈ [,T],k = , , . . .} is bounded
with a bound M > . Then, by the Schwartz inequality, the middle term of (.) is esti-
mated by

∫ T



∣∣∣∣∇ynk (t)
∣∣p– – ∣∣∇y(t)

∣∣p–∣∣∣∣(∇ynk (t),∇φ(t)
)∣∣dt

≤ M
(∫ T



∣∣∣∣∇ynk (t)
∣∣p– – ∣∣∇y(t)

∣∣p–∣∣ dt
) 


(∫ T



∣∣∇φ(t)
∣∣ dt

) 

. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/92
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We use (.) and apply the Lebesgue dominated convergence theorem to have that the
term of (.) converges to  as k → ∞. This proves (.). We replace yn by ynk and take
k → ∞ in (.). Since ynk ∈ W are also the weak solutions, as in the standard argument
in Dautray and Lions [] and Lions and Magenes [], we conclude that the limit y is a
weak solution of

⎧⎪⎪⎨
⎪⎪⎩
y′′ +�y′ – div(|∇y|p–∇y) = f + Bu in � × (,∞),

y =  on ∂� × (,∞),

y(x, ) = y(x)y′(x, ) = y(x) in �.

(.)

Also, since equation (.) has a unique strong solution y ∈ W by Theorem ., we con-
clude that y = y(v) inW by the uniqueness of solutions, which implies y(vn) → y(u) weakly
inW . Since C is continuous onW and ‖ · ‖M is lower semicontinuous, it follows that

∥∥Cy(u) – zd
∥∥
M ≤ lim inf

n→∞
∥∥Cy(vn) – zd

∥∥
M.

It is also clear from lim infn→∞ ‖R 
 vn‖U ≥ ‖R 

 u‖U that lim infn→∞(Rvn, vn)U ≥ (Ru,u)U .
Hence

J = lim inf
n→∞ J(vn)≥ J(u).

But since J(u) ≥ J by definition, we conclude that J(u) = infv∈Uad J(v). This completes the
proof. �

4 Necessary condition for optimality
In this section we will characterize the optimal controls by giving necessary conditions for
optimality. For this it is necessary to write down the necessary optimality condition

DJ(u)(v – u) ≥  for all v ∈Uad (.)

and to analyze (.) in view of the proper adjoint state system, where DJ(u) denotes the
Gâteaux derivative of J(v) at v = u. That is, we have to prove that the mapping v → y(v) of
U →W is Gâteaux differentiable at v = u. At first we can see the continuity of themapping.
The following lemma follows immediately from Theorem ..

Lemma . Let w ∈ U be arbitrarily fixed. Then

lim
λ→

y(u + λw) = y(u) strongly inW .

The solution map v → y(v) of U into W is said to be Gâteaux differentiable at v = u if for
any w ∈ U there exists a Dy(u) ∈L(U ,W) such that

∥∥∥∥ 
λ

(
y(u + λw) – y(u)

)
–Dy(u)w

∥∥∥∥
W

→  as λ → .

The operator Dy(u) denotes the Gâteaux derivative of y(u) at v = u and the function
Dy(u)w ∈ W is called the Gâteaux derivative in the direction w ∈ U , which plays an im-
portant part in the nonlinear optimal control problem.

http://www.journalofinequalitiesandapplications.com/content/2013/1/92


Ju and Jeong Journal of Inequalities and Applications 2013, 2013:92 Page 8 of 12
http://www.journalofinequalitiesandapplications.com/content/2013/1/92

Theorem . The map v → y(v) of U into W is Gâteaux differentiable at v = u and such
a Gâteaux derivative of y(v) at v = u in the direction v – u ∈ U , say z = Dy(u)(v – u), is a
unique strong solution of the following problem:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

z′′ –�z′ – div(|∇y(u)|p–∇z) = (p – )|∇y(u)|p– div(∇z∇y(u)) + Bw

in � × (,∞),

z =  on ∂� × (,∞),

z(x, ) = , z′(x, ) =  in �.

(.)

Proof Let λ ∈ (–, ), λ �= . We set w = v – u and

zλ = λ–(y(u + λw) – y(u)
)
.

Then zλ satisfies

⎧⎪⎪⎨
⎪⎪⎩
z′′
λ –�z′

λ =

λ
{div(|∇y(u + λw)|p–∇y(u + λw))

– div(|∇y(u)|p–∇y(u))} + Bw,

zλ() = , z′
λ() =  in �.

(.)

First we recall the simple equality


λ

{
div

(∣∣∇y(u + λw)
∣∣p–∇y(u + λw)

)
– div

(∣∣∇y(u)
∣∣p–∇y(u)

)}

= div
(∣∣∇y(u + λw)

∣∣p–∇zλ

)
+

λ
div

((∣∣∇y(u + λw)
∣∣p– – ∣∣∇y(u)

∣∣p–)∇y(u)
)
.

Multiplying the weak form of (.) by z′
λ and using the above equality, we have



d
dt

∣∣z′
λ(t)

∣∣ + ∣∣∇z′
λ(t)

∣∣ + ∣∣∇y(u + λw)
∣∣p– 


d
dt

∣∣∇zλ(t)
∣∣

= –
(∇zλ,

∣∣∇y(u + λw)
∣∣p– + · · · + ∣∣∇y(u)

∣∣p–)(∇y(u),∇z′
λ

)
+

(
Bw, z′

λ

)
. (.)

We integrate (.) over [, t] and use the integration by parts to have

∣∣z′
λ(t)

∣∣ + 
∫ t



∣∣∇z′
λ(s)

∣∣ ds + ∣∣∇y(u + λw; t)
∣∣p–∣∣∇zλ(t)

∣∣

= –
∫ t



(∇zλ(s),
∣∣∇y(u + λw; s)

∣∣p– + · · · + ∣∣∇y(u; s)
∣∣p–)(∇y(u),∇z′

λ(s)
)
ds

+
∫ t



∣∣∇zλ(s)
∣∣( d

ds
∣∣∇y(u + λw; s)

∣∣p–)ds + 
∫ t



(
Bw, z′

λ

)
ds. (.)

By virtue of (.) and Young’s inequality, we can estimate each of the integrands of (.)
as follows:

∣∣–(∇zλ,
∣∣∇y(u + λw)

∣∣p– + · · · + ∣∣∇y(u)
∣∣p–)(∇y(u),∇z′

λ(s)
)∣∣

≤ (p – )Cp–|∇zλ|
∣∣∇z′

λ

∣∣ ≤ (p – )C(p–)|∇zλ| +
∣∣∇z′

λ

∣∣, (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/92
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∣∣∣∣∣∣∇zλ(s)
∣∣( d

ds
∣∣∇y(u + λw; s)

∣∣p–)∣∣∣∣ ≤ (p – )Cp–|∇zλ|, (.)

∣∣(Bw, z′
λ

)∣∣ ≤ |Bw|∣∣z′
λ

∣∣ ≤ 
α

|Bw| + α


∣∣z′

λ

∣∣, (.)

whereC is a positive constant depending only on the data and α > . Combining (.) with
(.)-(.), we have

∣∣z′
λ(t)

∣∣ + ∣∣∇zλ(t)
∣∣ +

∫ t



∣∣∇z′
λ(s)

∣∣ ds

≤ max

{
(p – )C(p–) + (p – )Cp–,

α



}∫ t



(∣∣z′
λ(s)

∣∣ + ∣∣∇zλ(s)
∣∣)ds

+

α

‖Bw‖L(,T ;H). (.)

By applying Grownwall’s inequality to (.), we obtain

∣∣z′
λ(t)

∣∣ + ∣∣∇zλ(t)
∣∣ +

∫ t



∣∣∇z′
λ(s)

∣∣ ds≤ C‖Bw‖L(,T ;H), (.)

where C is a constant. The inequality (.) provides the boundedness of zλ and z′
λ in ap-

propriate spaces, and hence via (.) we can infer that there exists a z ∈W and a sequence
{λk} ⊂ (–, ) tending to  such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

zλk → z weakly star in L∞(,T ;V ) as k → ∞,

z′
λk

→ z′ weakly star in L∞(,T ;H)

and weakly in L(,T ;V ) as k → ∞,

z′′
λk

→ z′′ weakly in L(,T ;H) as k → ∞,

z() = , z′() = .

(.)

From Lemma . and (.), we can easily show that

∣∣∇y(u + λkw)
∣∣p–∇zλk → ∣∣∇y(u)

∣∣p–∇z weakly in L(,T ;H) as k → ∞. (.)

By Lemma .,

∇y(u + λw)→ ∇y(u) strongly in C
(
[,T];H

)
(.)

so that by (.)

(∇zλk ,∇y(u + λkw)
) → (∇z,∇y(u)

)
in L∞(,T).

This implies that


λk

(∣∣∇y(u + λkw)
∣∣p– – ∣∣∇y(u)

∣∣p–)∇y(u) → (p – )
(∇zλ,

∣∣∇y(u)
∣∣p–)∇y(u). (.)

Hence we can see from (.)-(.) that zλ → z =Dy(u)w weakly inW as λ →  in which

http://www.journalofinequalitiesandapplications.com/content/2013/1/92


Ju and Jeong Journal of Inequalities and Applications 2013, 2013:92 Page 10 of 12
http://www.journalofinequalitiesandapplications.com/content/2013/1/92

z is a strong solution of (.). This convergency can be improved by showing the strong
convergence of {zλ} also in the topology ofW .
Subtracting (.) from (.) and denoting zλ – z by φλ, we see that

⎧⎨
⎩

φ′′
λ –�φ′

λ – div(|y(u + λw)|p–∇φλ) = –div(ε(yλ)) + div(ε(yλ, zλ)),

φλ() = , φ′
λ() = .

(.)

Here in (.), for λ ∈ (–, ), we set

ε(yλ) =
(∣∣∇y(u + λw)

∣∣p– – ∣∣∇y(u)
∣∣p–)∇z,

ε(yλ, zλ) =
(∇zλ,

∣∣∇y(u + λw)
∣∣p– + · · · + ∣∣∇y(u)

∣∣p–)∇y(u)

– (p – )
(∇z,

∣∣∇y(u)
∣∣p–)∇y(u).

From Lemma . and (.), we know that

ε(yλ), ε(yλ, zλ) →  strongly in L(,T ;H) as λ → . (.)

To estimate φλ, we multiply both sides of (.) by φ′
λ and integrate it over [, t] and use

integration by parts to have

∣∣φ′
λ(t)

∣∣ + ∣∣∇y(u + λw; t)
∣∣p–∣∣∇φλ(t)

∣∣ + 
∫ t



∣∣∇φ′
λ(s)

∣∣ ds

=
∫ t



∣∣∇φλ(s)
∣∣( d

ds
∣∣∇y(u + λw)

∣∣p–)ds

– 
∫ t



(
ε(yλ) + ε(yλ, zλ),∇φ′

λ(s)
)
ds. (.)

The integral parts of the right member of (.) can be estimated as follows:

∣∣∣∣–
∫ t



(
ε(yλ) + ε(yλ, zλ),∇φ′

λ(s)
)
ds

∣∣∣∣
≤ 

∫ t



∣∣ε(yλ) + ε(yλ, zλ)
∣∣∣∣∇φ′

λ(s)
∣∣ds

≤
∫ t



∣∣ε(yλ) + ε(yλ, zλ)
∣∣ ds +

∫ t



∣∣∇φ′
λ(s)

∣∣ ds, (.)
∣∣∣∣
∫ t



∣∣∇φλ(s)
∣∣( d

ds
∣∣∇y(u + λw)

∣∣p–)ds
∣∣∣∣ ≤ C

∫ t



∣∣∇φλ(s)
∣∣ ds, (.)

where C is a constant. We replace the right-hand side of (.) by the right members of
(.)-(.) and we apply Gronwall’s inequality to the replaced inequality, then we arrive
at

∣∣φ′
λ(t)

∣∣ + ∣∣∇φλ(t)
∣∣ +

∫ t



∣∣∇φ′
λ(s)

∣∣ ds≤ C
∥∥ε(yλ) + ε(yλ, zλ)

∥∥
L(,T ;H), (.)
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where C is a constant. By virtue (.) and (.), we deduce that

φλ →  in C
(
[,T];H

)
as λ → , (.)

φ′
λ →  inW as λ → . (.)

Finally, by means of (.), (.) and (.), it follows that

zλ(·) → z(·) strongly inW as λ → . (.)

This completes the proof. �
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