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Abstract
We investigate the multiplicity of solutions for the Hamiltonian system with some
asymptotically linear conditions. We get a theorem which shows the existence of at
least three 2π -periodic solutions for the asymptotically linear Hamiltonian system. We
obtain this result by the variational reduction method which reduces the infinite
dimensional problem to the finite dimensional one. We also use the critical point
theory and the variational method.
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1 Introduction and statement of themain result
Let G(t, z(t)) be a C function defined on R × Rn which is π-periodic with respect to
the first variable t. In this paper we investigate the number of π-periodic solutions of the
following Hamiltonian system:

ṗ(t) = –Gq
(
t,p(t),q(t)

)
,

q̇(t) =Gp
(
t,p(t),q(t)

)
,

(.)

where p,q ∈ Rn, z = (p,q). Let J be the standard symplectic structure on Rn, i.e.,

J =

(
 –In
In 

)
,

where In is the n× n identity matrix. Then (.) can be rewritten as

–J ż =Gz
(
t, z(t)

)
, (.)

where ż = dz
dt and Gz is the gradient ofG. We assume that G ∈ C(R ×Rn,R) satisfies the

following asymptotically linear conditions:

(G) G(t, z(t)) = o(|z|) as |z| → , G(t, θ ) = , Gz(t, θ ) = θ , where θ = (, . . . , ).
(G) There exist constants α, β (without loss of generality, we may assume α,β /∈ Z) such

that

αI ≤ d
zG(t, z) ≤ βI ∀(t, z) ∈ R × Rn.
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(G) Let j be an integer within [α,β] such that

j –  < α < d
zG(t, ) = lim|z|→

Gz(t, z) · z
|z| < j.

(G) lim|z|→∞ Gz(t,z)·z
|z| exists and there exists j = j +  which satisfies

j < d
zG(t,∞) = lim|z|→∞

Gz(t, z) · z
|z| < β < j.

(G) G is π -periodic with respect to t.

We are looking for the weak solutions of (.) with conditions (G)-(G). The π-periodic
weak solution z = (p,q) ∈ E of (.) satisfies

∫ π



(
ż – J

(
Gz

(
t, z(t)

))) · Jwdt =  for all w ∈ E,

i.e.,

∫ π



[(
ṗ +Gq

(
t, z(t)

)) · ψ –
(
q̇ –Gp

(
t, z(t)

)) · φ]
dt =  for all ζ = (φ,ψ) ∈ E,

where E is introduced in Section . By Lemma . in Section , the weak solutions of (.)
coincide with the critical points of the functional

f (z) =



∫ π


(–J ż) · z dt –

∫ π


G

(
t, z(t)

)
dt =

∫ π


pq̇ dt –

∫ π


G

(
t, z(t)

)
dt. (.)

Several authors [–] considered the multiplicity of solutions for the Hamiltonian system.
Chang proved in [] that if G ∈ C(R × Rn,R) satisfies conditions (G), (G) and the
following additional conditions:

(G)′ Let j, j +, . . . , and j be all integers within [α,β] (without loss of generality, wemay
assume α,β /∈ Z) such that j –  < α < j < j < β < j +  = j. Suppose that there exist
γ >  and τ >  such that j < γ < β and

G(t, z) ≥ 

γ ‖z‖L – τ ∀(t, z) ∈ R × Rn.

(G)′ Gz(t, θ ) = θ and j ∈ [j, j)∩ Z such that

jI < d
zG(t, θ ) < (j + )I ∀t ∈ R,

then (.) has at least two nontrivial π-periodic weak solutions. Jung and Choi proved in
[] that if G satisfies the following conditions:

(G)′′ G : Rn → R is C with G(θ ) = .
(G)′′ There exists h ∈N such that

h < lim inf|z|→∞
G′(z) · z

|z| < h + .
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(G)′′ There existsm ∈N such that

h + m < lim inf|z|→

G′(z) · z
|z| < h + m + 

or

h – m –  < lim sup
|z|→

G′(z) · z
|z| < h – m.

(G)′′ There exists an integer � such that � ≤ G′(z)·z
|z| ≤ � + ,

then (.) has at leastmweak solutions, which are geometrically distinct and nonconstant.
Our main result is the following:

Theorem . Assume that G satisfies conditions (G)-(G). Then system (.) has at least
three π -periodic solutions.

Theorem .will be proved by the finite dimensional reductionmethod, the critical point
theory and the variational method for the perturbed operator Aε . The finite dimensional
reduction method combined with the critical point theory and the variational method
reduces the critical point results of the functional I(z) on the infinite dimensional space to
those of the corresponding functional Ĩ(v) on the finite dimensional subspace.
The outline of this paper is organized as follows. In Section , we introduce the Hilbert

normed space E, show that the corresponding functional I(z) of (.) is in C(E,R), Fréchet
differentiable and prove the reduction lemma for the perturbed operator Aε . In Section ,
we show that the reduced functional –Ĩ(v) satisfies (P.S.)c condition and v =  is the strict
local point ofminimumof Ĩ(v) and prove Theorem . by the shape of graph of the reduced
functional.

2 The perturbed operator Aε

Let L([, π ],Rn) denote the set of n-tuples of the square integrable π-periodic func-
tions and choose z ∈ L([, π ],Rn). Then it has a Fourier expansion z(t) =

∑k=+∞
k=–∞ akeikt ,

with ak = 
π

∫ π
 z(t)e–ikt dt ∈ Cn, a–k = āk and

∑
k∈Z |ak| < ∞. Let

A : z(t) �→ –J ż(t)

with the domain

D(A) =
{
z(t) ∈ H([, π ],Rn)|z() = z(π )

}
=

{
z(t) ∈ L

(
[, π ],Rn)∣∣∣∑

k∈Z

(
ε + |k|)|ak| < +∞

}
,

where ε is a positive small number. Then A is a self-adjoint operator. Let {Mλ} be the
spectral resolution of A, and let

P =
∫ β

α

dMλ, P+ =
∫ +∞

β

dMλ, P– =
∫ α

–∞
dMλ.

http://www.journalofinequalitiesandapplications.com/content/2013/1/91


Jung and Choi Journal of Inequalities and Applications 2013, 2013:91 Page 4 of 11
http://www.journalofinequalitiesandapplications.com/content/2013/1/91

Let

L = PL
(
[, π ],Rn), L+ = P+L

(
[, π ],Rn), L– = P–L

(
[, π ],Rn).

For each u ∈ L([, π ],Rn), we have the composition

u = u + u+ + u–,

where u ∈ L, u+ ∈ L+, u– ∈ L–. According to A, there exists a small number ε >  such
that –ε /∈ σ (A). Let us define the space E as follows:

E =D
(|A|  ) = {

z ∈ L
(
[, π ],Rn)∣∣∣∑

k∈Z

(
ε + |k|)|ak| <∞

}

with the scalar product

(z,w)E = ε(z,w)L +
(|A|  z, |A| w)

L

and the norm

‖z‖ = (z, z)


E =

(∑
k∈Z

(
ε + |k|)|ak|

) 

.

The space E endowed with this norm is a real Hilbert space continuously embedded in
L([, π ],Rn). The scalar product in L naturally extends as the duality pairing between
E and E′ = W– 

 ,([, π ],Rn). We note that the operator (ε + |A|)– is a compact linear
operator from L([, π ],Rn) to E such that

((
ε + |A|)–w, z)E = (w, z)L .

Let

Aε = εI +A.

Let

E = |Aε |– 
 L, E+ = |Aε |– 

 L+, E– = |Aε |– 
 L–.

Then E = E ⊕ E+ ⊕ E– and for z ∈ E, z has the decomposition z = z + z+ + z– ∈ E, where

z = |Aε |– 
 u, z+ = |Aε |– 

 u+, z– = |Aε |– 
 u–.

Thus we have

‖z‖E = ‖u‖L , ‖z+‖E+ = ‖u+‖L+ , ‖z–‖E– = ‖u–‖L–

http://www.journalofinequalitiesandapplications.com/content/2013/1/91
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and that E, E+, E– are isomorphic to L, L+, L–, respectively. Let us define the functional
f (u) on L as follows:

f (u) =


(‖u+‖ + ‖M+u‖ – ‖M–u‖ – ‖u–‖

)
–ψε(z), (.)

whereM+ =
∫ ∞
 dMλ,M– =

∫ 
–∞ dMλ and ψε(z) = ψ(z) + ε

‖z(t)‖L , ψ(z) =
∫ π
 G(t, z(t))dt.

Let

F(z) =Gz
(
t, z(t)

)
.

By G ∈ C and (G), ψ(z) =
∫ π
 G(t, z(t)) ∈ C(E,R). Let

Fε(z) = εI + F(z) = εI +Gz
(
t, z(t)

)
.

The system (.) is equal to

Aε(z) = Fε(z). (.)

The Euler equation of the functional f (u) is the system

u+ = |Aε |– 
 P+Fε(z), (.)

u– = –|Aε |– 
 P–Fε(z), (.)

M+u = |Aε |– 
M+PFε(z), M–u = –|Aε |– 

M–PFε(z). (.)

Thus z = z + z+ + z– is a solution of (.) if and only if u = u + u+ + u– is a critical point
of f . System (.)-(.) is reduced to

Aεz+ = P+Fε(z + z+ + z–) or z+ = (Aε)–P+Fε(z + z+ + z–), (.)

Aεz– = P–Fε(z + z+ + z–) or z– = (Aε)–P–Fε(z + z+ + z–), (.)

AεM+z =M+PFε(z + z+ + z–), AεM–z =M–PFε(z + z+ + z–). (.)

By (G),

∥∥Fε(u) – Fε(v)
∥∥
L ≤ (ε + β)‖u – v‖L ∀u, v ∈ L. (.)

By (G), there exists a γ > β + ε such that

∥∥A–
ε |L+⊕L–

∥∥ ≤ 
γ
.

We note that

f (u) = f
(
u(z + z– + z+)

)
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/91
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Let us set

I(z + z+ + z–) = f
(
u(z + z– + z+)

)
.

Now we will prove a reduction lemma which reduces the problem on the infinite dimen-
sional space E to that of the finite dimensional subspace.
Let z ∈ E be fixed and consider the function h : E– × E+ → R defined by

h(z–, z+) = I(z + z– + z+).

The function h has continuous partial Fréchet derivatives Dh and Dh with respect to its
first and second variables given by

Dih(z–, z+)(yi) =DI(z + z– + z+)(yi) (.)

for y ∈ E– and y ∈ E+, i = , . Let v = z.

Lemma . Assume that G satisfies the conditions (G)-(G).
(i) For given v ∈ E, there exists a unique z– + z+ ∈ C(E,E– ⊕ E+) satisfying the

equation

Aε(z– + z+) = (P– + P+)Fε(v + z– + z+). (.)

(ii) There exists m <  such that if z– and y– are in E– and z+ ∈ E+, then

(
Dh(z–, z+) –Dh(y–, z+)

)
(z– – y–) ≤ m‖z– – y–‖. (.)

(iii) There exists m >  such that if z+ and y+ are in E+ and z– ∈ E–, then

(
Dh(z–, z+) –Dh(z–, y+)

)
(z+ – y+)≥ m‖z+ – y+‖. (.)

(iv) For given v ∈ E, if we put the unique solution z–(v) + z+(v) of (.) as
z–(v) + z+(v) = θ (v), then θ (v) is continuous on E and satisfies a uniform Lipschitz
condition in E with respect to L norm (also norm ‖ · ‖E) and
|Aε |  z–(v) ∈ C(E,E– ⊕ E+), |Aε |  z+(v) ∈ C(E,E– ⊕ E+).Moreover,

DI
(
v + θ (v)

)
(w) =  for all w ∈ E– ⊕ E+.

(v) If Ĩ : E → R is defined by

Ĩ(v) = I
(
v + θ (v)

)
= I

(
v + z–(v) + z+(v)

)
,

then Ĩ has a continuous Fréchet derivative DĨ with respect to v, and

DĨ(v)(y) =DI
(
v + θ (v)

)
(y) for all v, y ∈ E. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/91
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(vi) v ∈ E is a critical point of Ĩ if and only if v + θ (v) = v + z–(v) + z+(v) is a critical
point of I .

Proof (i) Let δ = α+β

 + ε. If Fδ
ε (ψ) = Fε(ψ) – δ, then equation (.) is equivalent to the

equation

z– + z+ = (Aε – δ)–(P– + P+)Fδ
ε (v + z– + z+). (.)

The operator (Aε – δ)–(P– +P+) is a self-adjoint, compact and linear map from (P– +P+)L
into itself and its norm is (min{|j – δ|, |j –  – δ|})–. We note that

∥∥Fδ
ε (ψ) – Fδ

ε (ψ)
∥∥
L ≤ (

max
{|α – δ|, |β – δ|} + ε

)‖ψ –ψ‖L

=
(

β – α


+ ε

)
‖ψ –ψ‖L .

We claim that the right-hand side of (.) is a Lipschitz mapping of (P– +P+)L into itself
with a Lipschitz constant r < . In fact, let v be a fixed element in E and w = v + z– + z+,
y = v +w– +w+ be any elements in E. Then we have

∥∥(Aε – δ)–(P– + P+)Fδ
ε (v + z– + z+) – (Aε – δ)–(P– + P+)Fδ

ε (v +w– +w+)
∥∥
E

=
∥∥|Aε – δ|– 

 (P– + P+)
(
Fδ

ε (w) – Fδ
ε (y)

)∥∥
L

≤ ∥∥|Aε – δ|– 
 (P– + P+)

∥∥∥∥(
Fδ

ε (w) – Fδ
ε (y)

)∥∥
L

≤ (
max

{|α – δ|, |β – δ|} + ε
)∥∥|Aε – δ|– 

 (P– + P+)
∥∥∥∥(z– + z+) – (w– +w+)

∥∥
L .

Since the operator norm of |Aε – δ|– 
 (P– +P+) is less than or equal to √

min{|j–δ|,|j––δ|}+ε

and

‖z–‖L =
∥∥|Aε |– 

 u–
∥∥
L ≤ √

min{|j – δ|, |j –  – δ|} + ε
‖u–‖L

=
√

min{|j – δ|, |j –  – δ|} + ε
‖z–‖E ,

‖z+‖L =
∥∥|Aε |– 

 u+
∥∥
L ≤ √

min{|j – δ|, |j –  – δ|} + ε
‖u+‖L

=
√

min{|j – δ|, |j –  – δ|} + ε
‖z+‖E ,

we have

∥∥(Aε – δ)–(P– + P+)Fδ
ε (w) – (Aε – δ)–(P– + P+)Fδ

ε (y)
∥∥
E

≤ max{|α – δ|, |β – δ|} + ε

min{|j – δ|, |j –  – δ|} + ε

∥∥(z– + z+) – (w– +w+)
∥∥
E–⊕E+

= r
∥∥(z– + z+) – (w– +w+)

∥∥
E–⊕E+

, where r < ,

http://www.journalofinequalitiesandapplications.com/content/2013/1/91
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since min{|j – δ|, |j –  – δ|} + ε > max{|α – δ|, |β – δ|} + ε. Therefore, by the implicit
function theorem, for given v ∈ E, there exists a unique solution z–(v) + z+(v) ∈ E– ⊕ E+

which satisfies (.).
(ii) For all z– ∈ E–,

‖z–‖E ≤ (j – )‖w‖L . (.)

For all z+ ∈ E+,

‖z+‖E ≥ (j + )‖w‖L(�). (.)

If v ∈ E, z– and y– are in E–, z+ ∈ E+ and z = v + z– + z+, then

(
Dh(z–, z+) –Dh(y–, z+)

)
(z– – y–)

=
∫ π



[
Aε(z– – y–)(z– – y–) –

(
Gε

z (v + z– + z+) –Gε
z (v + y– + z+)

)
(z– – y–)

]
dt.

Since (Gε
z (ξ) –Gε

z (ξ))(ξ – ξ) > (α + ε)(ξ – ξ) and (.) holds, we see that if z– and y–
are in E– and z+ ∈ E+, then

(
Dh(z–, z+) –Dh(y–, z+)

)
(z– – y–) ≤ m‖z– – y–‖,

wherem =  – α
j–

< .
(iii) Similarly, using the fact that (Gε

z (ξ) – Gε
z (ξ))(ξ – ξ) < (β + ε)(ξ – ξ) and (.)

holds, we see that if z+ and y+ are in E+ and z– ∈ E–, then

(
Dh(z–, z+) –Dh(z–, y+)

)
(z+ – y+)≥ m‖z+ – y+‖,

wherem =  – β

j+
> .

(iv) If θ (v) denotes the unique (z– + z+)(v) ∈ E– ⊕ E+ which solves (.), then θ ∈
C(E,E). In fact, if v, v′ ∈ E, and p = θ (v), p = θ (v′), then we have

‖p – p‖E =
∥∥(Aε)–(P– + P+)

[
Fε(v + p) – Fε

(
v′ + p

)]∥∥
E

≤ C
∥∥(v + p) –

(
v′ + p

)∥∥
E

≤ C
∥∥(
v – v′) – (p – p)

∥∥
E .

Thus we have

‖p – p‖E ≤ C
 –C

∥∥v – v′∥∥
E .

Thus θ is continuous. Since Fε ∈ C(E,E), θ ∈ C(E,E). Since dimL is finite and all
topologies on L are equivalent, we have

|Aε |  z+(v) ∈ C(L,L).

http://www.journalofinequalitiesandapplications.com/content/2013/1/91
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Let v ∈ E. If q ∈ E– ⊕ E+, then from (.) we have

∫ π



[
Aε

(
θ (v)

) · q – (P– + P+)Fε

(
v + θ (v)

) · q]dt = .

Since
∫ π
 Aεv · q = , we have

DI
(
v + θ (v)

)
(w) =

∫ π



[
Aε

(
v + θ (v)

) · q – (P– + P+)Fε

(
v + θ (v)

) · q]dt = 

for all q ∈ E– ⊕ E+.
(v) Since the functional I has a continuous Fréchet derivative DI , Ĩ has a continuous

Fréchet derivative DĨ with respect to v.
(vi) Suppose that there exists v ∈ E such that DĨ(v) = . From DĨ(v)(h) =DI(v+ θ (v))(h)

for all v,h ∈ E,DI(v+ θ (v))(h) =  for all h ∈ E. SinceDI(v+ θ (v))(w) for allw ∈ E– ⊕E+, it
follows thatDI(v+ θ (v)) = . Thus v+ θ (v) is a solution of (.). Conversely if u is a solution
of (.) and v = Pu, then DĨ(v) = . �

3 Proof of Theorem 1.1
Lemma. Assume that G satisfies the conditions (G)-(G).Then –Ĩ(v) is bounded below
and satisfies (P.S.) condition.

Proof Let v ∈ E. By the finite dimensional reduction,

Ĩ(v) =


(
Aε

(
v + θ (v)

)
, v + θ (v)

)
–

∫ π


Gε

(
t, v(t) + θ

(
v(t)

))
dt,

where θ (v) = θ–(v) + θ+(v), v ∈ E, θ–(v) ∈ E–, θ+(v) ∈ E+, Gε(t, v(t) + θ (v(t))) = G(t, v(t) +
θ (v(t))) + ε(v(t) + θ (v(t))). Let w = v + θ–(v). Then we have

Ĩ(v) =


(
Aε(w),w

)
–

∫ π


Gε

(
t,w(t)

)
dt

+
[


((
Aε

(
θ (v)

)
, θ (v)

)
–

(
Aε(w),w

))
–

∫ π



(
Gε

(
t, θ

(
v(t)

))
–Gε

(
t,w(t)

))
dt

]
.

Moreover, we have



((
Aε

(
θ (v)

)
, θ (v)

)
–

(
Aε(w),w

))
–

∫ π



(
Gε

(
t, θ

(
v(t)

))
–Gε

(
t,w(t)

))
dt

= –
∫ π



(
Gε

z
(
t, sθ+

(
v(t)

)
–w(t)

)
, θ+

(
v(t)

))
ds +



(
Aε

(
θ (v)

)
, θ+(v)

)

=
∫ π



∫ π



(
d
zG

ε
(
t, sθ+

(
v(t)

)
+w(t)

)
θ+

(
v(t)

)
, θ+

(
v(t)

))
s dsdt

–


(
Aε

(
θ+(v)

)
, θ+(v)

)
≤ .

http://www.journalofinequalitiesandapplications.com/content/2013/1/91
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By (G), we have chosen a number γ such that j < γ < d
zG(t,∞) < β . Thus we have

Ĩ(v) ≤ 

(
Aε(w),w

)
–

∫ π


Gε

(
t,w(t)

)
dt

≤ 

(j – γ )‖w‖L +C → –∞ as ‖v‖E → ∞.

Thus –Ĩ(v) is bounded from below and satisfies (P.S.) condition. �

Lemma . Assume that G satisfies conditions (G)-(G). Then v =  is a strict local point
of minimum of Ĩ(v) with Ĩ() = .

Proof

Ĩ(v) = I
(
v + θ (v)

)
=



(
Aε

(
v + θ (v)

)
, v + θ (v)

)
–

∫ π


Gε

(
t, v(t) + θ

(
v(t)

))
dt

=


(
Aε(v), v

)
+C,

where

C =


(
Aε

(
θ (v)

)
, θ (v)

)
–

∫ π


Gε

(
t, θ

(
v(t)

))
dt

–
∫ π



[
Gε

(
t, v(t) + θ

(
v(t)

))
–Gε

(
t, θ

(
v(t)

))]
dt

= Ĩ() –
∫ π



[
Gε

(
t, v(t) + θ

(
v(t)

))
–Gε

(
t, θ

(
v(t)

))]
dt,

lim|v|→
Ĩ(v) – Ĩ() =



(
Aε(v), v

)
– lim|v|→

∫ π



[
Gε

(
t, v(t) + θ

(
v(t)

))
–Gε

(
t, θ

(
v(t)

))]
dt

=


(
Aε(v), v

)
– lim|v|→

∫ π


Gε

z
(
t, sv(t) + θ

(
v(t)

))
v(t)dt.

Thus we have

lim|v|→
Ĩ(v) – Ĩ() =



(
j – d

zG(t, )
)‖v‖L > .

Thus v =  is a strict local point of minimum of Ĩ(v). Since θ () = , Ĩ() = . �

Proof of Theorem . By Lemma .(v), Ĩ(v) is continuous and Fréchet differentiable in
E. By Lemma ., Ĩ(v) is bounded above, satisfies the (P.S.) condition and Ĩ(v) → –∞ as
‖v‖E → ∞. By Lemma ., v =  is a strict local point of minimum of Ĩ(v) with a critical
value Ĩ() = . We note that maxv∈E Ĩ(v) >  is another critical value of Ĩ . By the shape of
the graph of the functional Ĩ on the one-dimensional subspace E, there exists the third
critical point of Ĩ(v). Thus (.) has at least three solutions, one of which is a trivial solution
u = v + θ (v) =  +  = . �
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