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Abstract

Background: Support vector machines, one of the non-parametric controlled
classifiers, is a two-class classification method introduced in the context of statistical
learning theory and structural risk minimization. Support vector machines are
basically divided into two groups as linear support vector machines and nonlinear
support vector machines. Nonlinear support vector machines are designed to make
classifications by creating a plane in a space by mapping data to that higher
dimensional input space. This method basically involves solving a quadratic
programming problem. In this study, the support vector machines, which have an
increasing rate of use in pattern recognition area, are used in the quality control of
DNA sequencing data. Consequently, the classification of quality of all the DNA
sequencing data will automatically be made as ‘high quality/low quality’.

Results: The proposed method is tested against a dataset created from public DNA
sequences provided by InSNP. We first transformed all DNA chromatograms into
feature vectors. An optimal hyperplane is first determined by applying SVM to the
training dataset. The instances in the testing dataset are then labeled by using the
hyperplane. Finally, the estimated class labels are compared against the true labels by
computing a confusion matrix. As the confusion matrix reveals, our method
successfully determines the labels of 23 out of 24 chromatograms.

Conclusions:We devised a new method to fulfill the quality screening of DNA
chromatograms. It is a composition of feature extraction and support vector
machines. It has been tested on a public dataset and it provided quite satisfactory
results. We believe that it is a strong solution for DNA sequencing institutions to be
used in automatic quality labeling of DNA chromatograms.

Introduction
Life sciences is one of the most demanding disciplines requiring advanced pattern recog-
nition algorithms like clustering and classification techniques that are frequently used in
molecular genetics and bioinformatics studies [, ]. With the advent of new DNA se-
quencing techniques in the last two decades, the amount of data used in classification
tasks has grown exponentially []. One of the main tasks in DNA sequencing centers is
to classify the quality of DNA sequencing data [–]. Regarding this problem, a quality of
DNA data, which is indeed a four-channel time series, needs to be classified as high or low
quality. It is a critically important service especially for large DNA sequencing institutions
since they need to know in advance before doing further analysis on data. It is also not a
good practice to service low quality data to the customers. If the quality of data is known
to be low, data might be reproduced by repeating necessary reactions. Manual labeling is
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prohibitive or, in most cases, impossible because of large data size. It also requires human
intervention which is sometimes error prone. Therefore automatic screening tools need
to be devised.
In order to estimate the quality of DNA data, the classification method of support vec-

tor machines (SVM), whose aim is to find an optimal hyperplane separating two different
classes, can be used. It was first developed by Vapnik in  []. It is applied to tremen-
dous number of diverse application fields like finance, telecommunication, life sciences
and others [–]. Deterministic approach, strong mathematical ground, widely available
software implementations and ease of use are the key factors of its success [].
Our aim in this article is to verify that SVMcan be used as a powerful classification tech-

nique to classify the quality of DNA chromatograms. In order to show this, we prepared a
dataset consisting of publicly available DNA chromatograms []. We then manually de-
termined the quality of each chromatogram in the dataset with the help of a bioinformatics
expert.We also divided the dataset into training and testing [].We then transformed the
chromatograms into a suitable format for SVM by extracting a set of feature vectors [].
The next thing was the learning phase in which SVM was trained to find an optimal hy-
perplane. Finally, we classified each data in testing dataset according to the trained SVM
classifier.Wemeasured the performance of the method by calculating a confusionmatrix.
The next two sections are reserved for explaining SVM and its variant in brief. In the

fourth section, we explained the details of our approach in four steps: dataset preparation,
feature extraction, training and testing. The article finishes with a conclusion.

Linear support vector machines
Linear support vector machines (LSVM) try to find an optimum hyperplane which has
the maximum margin among an infinite number of hyperplanes separating the instances
in the input space.

Linearly separable case
Let X denote the training set consisting of n samples

X =
{
(x, y), . . . , (xn, yn),xi ∈ Rd, yi ∈ {–,+}}, ()

where xi and yi are the sets of input vectors and corresponding labels, respectively [].
The decision function is signum(f (x)), where f (x) is the discriminant function associated
with the hyperplane and defined as

f (x) = wTxi + b, w ∈ Rd and b ∈ R. ()

Our aim here is to determine the vector w and the scalar b which together define the
optimum hyperplane shown in Figure . The hyperplane should satisfy the following con-
straints:

wTxi + b ≥ + for yi = +, ()

wTxi + b ≤ – for yi = –. ()
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Figure 1 Optimal separating hyperplane in SVM
for a linearly separable case.

These constraints can be written in a single form with little effort

yi
(
wTxi + b

) ≥ +, i = , . . . ,n. ()

A margin band is defined as the region between hyperplanes wTxi + b = + and
wTxi + b = – []. The width of themargin band can easily be calculated as /‖w‖. For the
separable case, a maximummargin band can be determined by minimizing the inverse of
the distance as in the following quadratic optimization problem with linear constraints:

Object function: min /‖w‖, ()

Subject to: yi
(
wTxi + b

) ≥ +, i = , . . . ,n. ()

It is proved that an optimal hyperplane exists and is unique so that the negative instances
lie on one side of the hyperplane and the positive instances lie on the other []. The opti-
mization problem in Eq.  can be formulated as an unconstrained optimization problem
by introducing Lagrange multipliers:

Lp = /‖w‖ –
n∑

i=

αi
[
yi

(
wTxi + b

)
– 

]
, ()

where αi are Lagrange multipliers. The Lagrangian function Lp has to be minimized with
respect to w and b and maximized with respect to αi ≥ . By using Karush-Kuhn-Tucker
(KKT) conditions, the design variables w and b in Eq.  can be expressed in terms of αi,
which then transforms the problem into a dual problem that requires only maximization
with respect to the Lagrangian multipliers αi

∂Lp
∂w

=  →
n∑

i=

αiyixi = w, ()

∂Lp
∂b

=  →
n∑

i=

αiyi = . ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/85


Öz and Kaya Journal of Inequalities and Applications 2013, 2013:85 Page 4 of 9
http://www.journalofinequalitiesandapplications.com/content/2013/1/85

The dual problem is constructed by substituting Eq.  and Eq.  into Eq. , from which
the dual form of a quadratic programming (QP) problem can be obtained as follows:

Ld =
n∑

i=

αi – /
n∑

i=

n∑

j=

αiαjyiyjxTi xj. ()

Then we solve the dual problem with respect to αi and subject to the constraints

n∑

i=

αiyi =  and αi ≥ . ()

This QP problem is then solved by any standard quadratic optimization method to de-
termine αi. Although there are n such variables, most of them vanish. The instances xi
corresponding to positive αi values are called support vectors. Finally, the vector w is de-
termined by using Eq. . The last unknown parameter b is determined by taking average
of

b = yi –wTxi ()

for all support vectors [].

Linearly nonseparable case
In the previous section, we assumed that the data can be perfectly separable in the sense
that the data samples of different class labels resides on different regions.However, in prac-
tice, such a hyperplane may not be found because of the specific distribution of instances
in the data. This makes linear separability difficult as the basic linear decision boundaries
are often not sufficient to classify patterns with high accuracy.
If the data is not separable, then the constraint in Eq. may not hold. This corresponds to

the data sample that falls within the margin or on the wrong side of the decision bound-
ary as shown in Figure . In order to handle the nonseparable data, the formulation is
generalized by introducing a slack variable ξ for each instance

yi
(
wTxi + b

) ≥  – ξi, i = , . . . ,n, ξi > . ()

Figure 2 Optimal separating hyperplane in SVM
for a linearly nonseparable case [20].
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The new optimization problem is defined as the combination of two goals: margin max-
imization and error minimization. If ξi = , the instances xi are correctly classified (the
point  in Figure ). When  < ξi < , the instances xi are also correctly classified, but they
are inside the margin (the point  in Figure ). Finally, ξi ≥ , the instances xi are wrongly
classified (the point  in Figure ). The number of misclassifications is the number of ξ

greater than . On the other hand, the number of nonseparable points is the number of
positive ξi. Finally, the soft error is defined as follows:

n∑

i=

ξi.

It is added also to the primal of Eq. :

Lp = /‖w‖ +C
n∑

i=

ξi –
n∑

i=

αi
[
yi

(
wTxi + b

)
–  + ξi

]
–

n∑

i=

μiξi ()

ξi values are guaranteed to be positive by the new Lagrange parametersμi. The parameter
C is used to set the weight between the number of support vectors and the number of
nonseparable points. In other words, the instances inside the margin band are penalized
together with the misclassified instances to reach a better generalization in testing.
The dual problem is

Ld =
n∑

i=

αi – /
n∑

i=

n∑

j=

αiαjyiyjxTi xj ()

subject to

n∑

i=

αiyi = , and ≤ αi ≤ C. ()

The methods in the separable case can be applied to the nonseparable case. The instances
for which αi =  hold are not support vectors. The remaining part of the equation that
defines the parameters w and b can be determined similarly [].

Nonlinear support vector machines
When the data is nonlinearly separable, the linear SVM is not profitable. It is better to use
a nonlinear SVM for this situation. In order to transform this input, the nonlinear SVM
first uses a nonlinear kernel and then a linear SVM. The nonlinear kernel function, which
most probably is a large matrix, makes the nonlinear SVM take a very long time when
mapping the input to a higher dimensional space []. Here, the purpose is to find the
separating hyperplane that has the highest margin in the new dimension, the one where
the data are transformed.
To transform the nonlinearly separable data into linearly separable data, the data are

mapped in the form φ : Rn → H using a nonlinear function φ into a higher dimensional
feature space which is also a Hilbert space. Consequently, the maximum margin hyper-
plane fits in a feature space with the help of the nonlinear SVM. Then, in this feature space,
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Table 1 The most typical kernel functions in the literature where γ , r, τ and d are kernel
parameters

Kernel K(xTi xj)

Linear xTi xj
Radial basis function exp(–γ ‖xi – xj‖2), γ > 0
Polynomial (γ xTi xj + r)d , γ > 0
Sigmoid tanh(γ xTi xj + r), γ > 0
Multi quadratic (‖xi – xj‖ + τ )1/4

Inverse multi quadratic (‖xi – xj‖ + τ )–1/4

Figure 3 A diagram showing experimental study steps.

a linear classification problem is formulated []. Depending on this, Eqs.  and , which
point to the Lagrangian of the dual optimization problem, need to change as follows:

Ld =
n∑

i=

αi – /
n∑

i=

n∑

j=

αiαjyiyjK
(
xTi xj

)
. ()

A kernel function is expressed as follows and it involves the input vectors:

K
(
xTi xj

)
= φ(xi)Tφ(xj). ()

The majority of the φ(·) transformations are not known. However, it is possible to get
the dot product of the corresponding space using an input vector function [].
Kernel functions need to have a corresponding inner product in the feature space which

is transformed. This is stated in Mercer’s theorem []. In this way, the solution of a dual
problem gets simpler because there is no need tomake calculations for the inner products
in the transformed space. Commonly used kernels are shown in Table .

Application
The experimental study consists of (i) dataset preparation, (ii) feature extraction, (iii) SVM
learning (iv) SVM testing as summarized in Figure .We used the software package libsvm
which is a popular implementation of SVM [].
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Figure 4 Sample regions from two DNA chromatograms. On the left, two peaks are overlapped whereas
in the right figure, secondary peaks are much closer to the baseline.

Dataset
In order to evaluate the performance of the proposedmethod, a benchmark dataset should
be available. To create the dataset, we selected  DNA chromatograms from InSNP
database. The data in each chromatogram is a four-channel time series with different
lengths. Each channel is a series of Gaussian shaped peaks along the time axis which con-
tains information about the nucleotides A, C, G and T, respectively.
We thenmanually screened each data and labeled the quality of a data as high if its peaks

were well resolved.We labeled the quality of a data as low if its peaks were overlapped and
had low signal to noise ratio. The example for such a case is shown in Figure .We followed
SVM labeling convention and chose the labels – and + for high and low quality.

Feature extraction
We cannot give DNA chromatograms directly as input data to SVM. First of all, they have
different lengths and are too long. Using whole length data is not a good strategy. So,
we should create a set of features representing the statistical characteristics of each data.
The number of features should be low and fixed. Also, the features should be chosen to
best represent the quality of the chromatograms []. To fulfill these requirements, the
following set of features are chosen:
. Average of all values in the data.
. Standard deviation of all values in the data.
. Median of all values in the data.
. Average of all values created for each peak available in all of the four channels of the

data.
. Standard deviation of all values created for each peak available in all of the four

channels of the data.
. Median of all values created for each peak available in all of the four channels of the

data.
. The number of peaks.
. Average of all values created for each peak available in the combination of channels.
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Table 2 Confusion matrix

True Labels Estimated
Labels

Totals

–1 +1

–1 10 1 11
+1 0 13 13
Totals 10 14 24

Having determined the features, we processed each data and obtained a feature vector.
Each feature vector is accompanied with a label determined in the previous step. In con-
clusion, we converted the dataset of DNA chromatograms into an inputmatrix and output
vector. From now on, the data is ready for SVM.

Training
SVM needs to be trained before making classification. So, we reserved some of the data
for training by randomly selecting  data. We need to give a training set into SVM so
that it can create a hyperplane. However, we must first adjust the parameters. The most
important parameter is C in Eq. . We can set C =  if we are sure that the data is linearly
separable. We know that it is generally not perfectly linearly separable. So, we give C = 
to make it flexible. SVM is then run for the training samples.

Testing
Now we have a hyperplane provided by SVM. We should use this hyperplane to classify
other samples in the data using signum(f (x)).We used  of them in training, so the testing
set has  samples. We run SVM for testing. A confusion matrix for SVM testing is pre-
sented in Table . As indicated in the table, SVM correctly classifies almost all instances in
the testing set. There is only one mistake which is false positive. This is a very promising
result. It means we can use SVM for automatic quality screening of DNA chromatograms.

Conclusion
We developed a new quality evaluation technique in which the quality of a DNA chro-
matogram is classified as low or high. In this sense, it is a two-class classification problem
for which SVM is chosen. To apply SVM, some sets of features of the chromatograms are
extracted. SVM is trained on a training set to learn the hyperplane; SVM is then run on the
testing set, from which a confusion matrix is created. As it clearly shows, the results are
quite satisfactory as only onemistake was made. Therefore, our method is a good solution
for automatic screening of DNA data, especially for large DNA sequencing facilities.
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