Some inequalities for the minimum eigenvalue of the Hadamard product of an M-matrix and its inverse

Guanghui Cheng*, Qin Tan and Zhuande Wang

* Correspondence: ghcheng@uestc.edu.cn School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, P.R. China

Abstract

In this paper, some new inequalities for the minimum eigenvalue of the Hadamard product of an M-matrix and its inverse are given. These inequalities are sharper than the well-known results. A simple example is shown.

AMS Subject Classification: 15A18; 15A42 Keywords: Hadamard product; M-matrix; inverse M-matrix; strictly diagonally dominant matrix; eigenvalue

1 Introduction

A matrix $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ is called a nonnegative matrix if $a_{i j} \geq 0$. A matrix $A \in \mathbb{R}^{n \times n}$ is called a nonsingular M-matrix [1] if there exist $B \geq 0$ and $s>0$ such that

$$
A=s I_{n}-B \quad \text { and } \quad s>\rho(B),
$$

where $\rho(B)$ is a spectral radius of the nonnegative matrix B, I_{n} is the $n \times n$ identity matrix. Denote by \mathcal{M}_{n} the set of all $n \times n$ nonsingular M-matrices. The matrices in $\mathcal{M}_{n}^{-1}:=\left\{A^{-1}\right.$: $\left.A \in \mathcal{M}_{n}\right\}$ are called inverse M-matrices. Let us denote

$$
\tau(A)=\min \{\operatorname{Re} \lambda: \lambda \in \sigma(A)\},
$$

and $\sigma(A)$ denotes the spectrum of A. It is known that [2]

$$
\tau(A)=\frac{1}{\rho\left(A^{-1}\right)}
$$

is a positive real eigenvalue of $A \in \mathcal{M}_{n}$ and the corresponding eigenvector is nonnegative. Indeed

$$
\tau(A)=s-\rho(B),
$$

if $A=s I_{n}-B$, where $s>\rho(B), B \geq 0$.
For any two $n \times n$ matrices $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$, the Hadamard product of A and B is $A \circ B=\left(a_{i j} b_{i j}\right)$. If $A, B \in \mathcal{M}_{n}$, then $A \circ B^{-1}$ is also an M-matrix [3].

[^0]A matrix A is irreducible if there does not exist a permutation matrix P such that

$$
P A P^{T}=\left[\begin{array}{cc}
A_{1,1} & A_{1,2} \\
0 & A_{2,2}
\end{array}\right],
$$

where $A_{1,1}$ and $A_{2,2}$ are square matrices.
For convenience, the set $\{1,2, \ldots, n\}$ is denoted by N, where $n(\geq 3)$ is any positive integer. Let $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ be a strictly diagonally dominant by row, denote

$$
\begin{aligned}
& R_{i}=\sum_{k \neq i}\left|a_{i k}\right|, \quad d_{i}=\frac{R_{i}}{\left|a_{i i}\right|}, \quad \forall i \in N ; \\
& s_{j i}=\frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| d_{k}}{\left|a_{j j}\right|}, \quad j \neq i, \forall j \in N ; \quad s_{i}=\max _{j \neq i}\left\{s_{i j}\right\}, \quad \forall i \in N ; \\
& r_{j i}=\frac{\left|a_{j i}\right|}{\left|a_{j j}\right|-\sum_{k \neq j, i}\left|a_{j k}\right|}, \quad j \neq i, \forall j \in N ; \quad r_{i}=\max _{j \neq i}\left\{r_{j i}\right\}, \quad \forall i \in N ; \\
& m_{j i}=\frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| r_{i}}{\left|a_{j j}\right|}, \quad j \neq i, \forall j \in N ; \quad m_{i}=\max _{j \neq i}\left\{m_{i j}\right\}, \quad \forall i \in N ; \\
& u_{j i}=\frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| m_{k i}}{\left|a_{j j}\right|}, \quad j \neq i, \forall j \in N ; \quad u_{i}=\max _{j \neq i}\left\{u_{i j}\right\}, \quad \forall i \in N .
\end{aligned}
$$

Recently, some lower bounds for the minimum eigenvalue of the Hadamard product of an M-matrix and an inverse M-matrix have been proposed. Let $A \in \mathcal{M}_{n}$, for example, $\tau\left(A \circ A^{-1}\right) \leq 1$ has been proven by Fiedler et al. in [4]. Subsequently, $\tau\left(A \circ A^{-1}\right)>\frac{1}{n}$ was given by Fiedler and Markham in [3], and they conjectured that $\tau\left(A \circ A^{-1}\right)>\frac{2}{n}$. Song [5], Yong [6] and Chen [7] have independently proven this conjecture. In [8], Li et al. improved the conjecture $\tau\left(A \circ A^{-1}\right) \geq \frac{2}{n}$ when A^{-1} is a doubly stochastic matrix and gave the following result:

$$
\tau\left(A \circ A^{-1}\right) \geq \min _{i}\left\{\frac{a_{i i}-s_{i} R_{i}}{1+\sum_{j \neq i} s_{j i}}\right\} .
$$

In [9], Li et al. gave the following result:

$$
\tau\left(A \circ A^{-1}\right) \geq \min _{i}\left\{\frac{a_{i i}-m_{i} R_{i}}{1+\sum_{j \neq i} m_{j i}}\right\} .
$$

Furthermore, if $a_{11}=a_{22}=\cdots=a_{n n}$, they have obtained

$$
\min _{i}\left\{\frac{a_{i i}-m_{i} R_{i}}{1+\sum_{j \neq i} m_{j i}}\right\} \geq \min _{i}\left\{\frac{a_{i i}-s_{i} R_{i}}{1+\sum_{j \neq i} s_{j i}}\right\},
$$

i.e., under this condition, the bound of [9] is better than the one of [8].

In this paper, our motives are to improve the lower bounds for the minimum eigenvalue $\tau\left(A \circ A^{-1}\right)$. The main ideas are based on the ones of [8] and [9].

2 Some preliminaries and notations

In this section, we give some notations and lemmas which mainly focus on some inequalities for the entries of the inverse M-matrix and the strictly diagonally dominant matrix.

Lemma 2.1[6] Let $A \in \mathbb{R}^{n \times n}$ be a strictly diagonally dominant matrix by row, i.e.,

$$
\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right|, \quad \forall i \in N .
$$

If $A^{-1}=\left(b_{i j}\right)$, then

$$
\left|b_{j i}\right| \leq \frac{\sum_{k \neq \mid}\left|a_{j k}\right|}{\left|a_{j j}\right|}\left|b_{i i}\right|, \quad j \neq i, \forall j \in N .
$$

Lemma 2.2 Let $A \in \mathbb{R}^{n \times n}$ be a strictly diagonally dominant M-matrix by row.If $A^{-1}=\left(b_{i j}\right)$, then

$$
b_{j i} \leq \frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| m_{k i}}{a_{j j}} b_{i i} \leq u_{j} b_{i i}, \quad j \neq i, \forall i \in N .
$$

Proof Firstly, we consider $A \in \mathbb{R}^{n \times n}$ is a strictly diagonally dominant M-matrix by row. For $i \in N$, let

$$
r_{i}(\varepsilon)=\max _{j \neq i}\left\{\frac{\left|a_{j i}\right|+\varepsilon}{a_{j j}-\sum_{k \neq j, i}\left|a_{j k}\right|}\right\}
$$

and

$$
m_{j i}(\varepsilon)=\frac{r_{i}(\varepsilon)\left(\sum_{k \neq j, i}\left|a_{j k}\right|+\varepsilon\right)+\left|a_{j i}\right|}{a_{j j}}, \quad j \neq i .
$$

Since A is strictly diagonally dominant, then $r_{j i}<1$ and $m_{j i}<1$. Therefore, there exists $\varepsilon>0$ such that $0<r_{i}(\varepsilon)<1$ and $0<m_{j i}(\varepsilon)<1$. Let us define one positive diagonal matrix

$$
M_{i}(\varepsilon)=\operatorname{diag}\left(m_{1 i}(\varepsilon), \ldots, m_{i-1, i}(\varepsilon), 1, m_{i+1, i}(\varepsilon), \ldots, m_{n i}(\varepsilon)\right) .
$$

Similarly to the proofs of Theorem 2.1 and Theorem 2.4 in [8], we can prove that the matrix $A M_{i}(\varepsilon)$ is also a strictly diagonally dominant M-matrix by row for any $i \in N$. Furthermore, by Lemma 2.1, we can obtain the following result:

$$
m_{j i}^{-1}(\varepsilon) b_{j i} \leq \frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| m_{k i}(\varepsilon)}{m_{j i}(\varepsilon) a_{j j}} b_{i i}, \quad j \neq i, j \in N,
$$

i.e.,

$$
b_{j i} \leq \frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| m_{k i}(\varepsilon)}{a_{i j}} b_{i i}, \quad j \neq i, j \in N .
$$

Let $\varepsilon \longrightarrow 0^{+}$to get

$$
b_{j i} \leq \frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| m_{k i}}{a_{j j}} b_{i i} \leq u_{j} b_{i i}, \quad j \neq i, j \in N
$$

This proof is completed.

Lemma 2.3 Let $A=\left(a_{i j}\right) \in \mathcal{M}_{n}$ be a strictly diagonally dominant matrix by row and $A^{-1}=$ ($b_{i j}$), then we have

$$
\frac{1}{a_{i i}} \leq b_{i i} \leq \frac{1}{a_{i i}-\sum_{j \neq i}\left|a_{i j}\right| u_{j i}}, \quad \forall i \in N .
$$

Proof Let $B=A^{-1}$. Since A is an M-matrix, then $B \geq 0$. By $A B=B A=I_{n}$, we have

$$
1=\sum_{j=1}^{n} a_{i j} b_{j i}=a_{i i} b_{i i}-\sum_{j \neq i}\left|a_{i j}\right| b_{j i}, \quad \forall i \in N .
$$

Hence

$$
1 \leq a_{i i} b_{i i}, \quad \forall i \in N,
$$

or equivalently,

$$
\frac{1}{a_{i i}} \leq b_{i i}, \quad \forall i \in N
$$

Furthermore, by Lemma 2.2, we get

$$
1=a_{i i} b_{i i}-\sum_{j \neq i}\left|a_{i j}\right| b_{j i} \geq\left(a_{i i}-\sum_{j \neq i}\left|a_{i j}\right| u_{j i}\right) b_{i i}, \quad \forall i \in N,
$$

i.e.,

$$
b_{i i} \leq \frac{1}{a_{i i}-\sum_{j \neq i}\left|a_{i j}\right| u_{j i}}, \quad \forall i \in N .
$$

Thus the proof is completed.

Lemma 2.4 [10] Let $A \in \mathbb{C}^{n \times n}$ and $x_{1}, x_{2}, \ldots, x_{n}$ be positive real numbers. Then all the eigenvalues of A lie in the region

$$
\bigcup_{1}^{n}\left\{z \in C:\left|z-a_{i i}\right| \leq x_{i} \sum_{j \neq i} \frac{1}{x_{j}}\left|a_{j i}\right|\right\} .
$$

Lemma 2.5 [11] If A^{-1} is a doubly stochastic matrix, then $A e=e, A^{T} e=e$, where $e=$ $(1,1, \ldots, 1)^{T}$.

3 Main results

In this section, we give two new lower bounds for $\tau\left(A \circ A^{-1}\right)$ which improve the ones in [8] and [9].

Lemma 3.1 If $A \in \mathcal{M}_{n}$ and $A^{-1}=\left(b_{i j}\right)$ is a doubly stochastic matrix, then

$$
b_{i i} \geq \frac{1}{1+\sum_{j \neq i} u_{j i}}, \quad \forall i \in N
$$

Proof This proof is similar to the ones of Lemma 3.2 in [8] and Theorem 3.2 in [9].

Theorem 3.1 Let $A \in \mathcal{M}_{n}$ and $A^{-1}=\left(b_{i j}\right)$ be a doubly stochastic matrix. Then

$$
\tau\left(A \circ A^{-1}\right) \geq \min _{i}\left\{\frac{a_{i i}-u_{i} R_{i}}{1+\sum_{j \neq i} u_{j i}}\right\} .
$$

Proof Firstly, we assume that A is irreducible. By Lemma 2.5, we have

$$
a_{i i}=\sum_{j \neq i}\left|a_{i j}\right|+1=\sum_{j \neq i}\left|a_{j i}\right|+1 \quad \text { and } \quad a_{i i}>1, \quad i \in N .
$$

Denote

$$
u_{j}=\max _{i \neq j}\left\{u_{j i}\right\}=\max \left\{\frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| m_{k i}}{a_{j j}}\right\}, \quad j \in N .
$$

Since A is an irreducible matrix, we know that $0<u_{j} \leq 1$. So, by Lemma 2.4, there exists $i_{0} \in N$ such that

$$
\left|\lambda-a_{i_{0} i_{0}} b_{i_{0} i_{0}}\right| \leq u_{i_{0}} \sum_{j \neq i_{0}} \frac{1}{u_{j}}\left|a_{j i_{0}} b_{j i_{0}}\right|,
$$

or equivalently,

$$
\begin{aligned}
|\lambda| & \geq a_{i_{0} i_{0}} b_{i_{0} i_{0}}-u_{i_{0}} \sum_{j \neq i_{0}} \frac{1}{u_{j}}\left|a_{j i_{0}} b_{j i_{0}}\right| \\
& \geq a_{i_{0} i_{0}} b_{i_{0} i_{0}}-u_{i_{0}} \sum_{j \neq i_{0}} \frac{1}{u_{j}}\left|a_{j i_{0}}\right| u_{j} b_{i_{0} i_{0}} \quad \text { (by Lemma 2.2) } \\
& \geq\left(a_{i_{0} i_{0}}-u_{i_{0}} \sum_{j \neq i_{0}}\left|a_{j i_{0}}\right|\right) b_{i_{0} i_{0}} \\
& =\left(a_{i_{0} i_{0}}-u_{i_{0}} R_{i_{0}}\right) b_{i_{0} i_{0}} \\
& \geq \frac{a_{i_{0} i_{0}}-u_{i_{0}} R_{i_{0}}}{1+\sum_{j \neq i_{0}} u_{j i_{0}}} \quad \text { (by Lemma 3.1) } \\
& \geq \min _{i}\left\{\frac{a_{i i}-u_{i} R_{i}}{1+\sum_{j \neq i} u_{j i}}\right\}
\end{aligned}
$$

Secondly, if A is reducible, without loss of generality, we may assume that A has the following block upper triangular form:

$$
A=\left[\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 K} \\
0 & A_{22} & \cdots & A_{2 K} \\
0 & 0 & \cdots & \cdots \\
0 & 0 & 0 & A_{K K}
\end{array}\right],
$$

where $A_{i i} \in \mathcal{M}_{n_{i}}$ is an irreducible diagonal block matrix, $i=1,2, \ldots, K$. Obviously, $\tau(A \circ$ $\left.A^{-1}\right)=\min _{i} \tau\left(A_{i i} \circ A_{i i}^{-1}\right)$. Thus the reducible case is converted into the irreducible case. This proof is completed.

Theorem 3.2 If $A=\left(a_{i j}\right) \in \mathcal{M}_{n}$ is a strictly diagonally dominant by row, then

$$
\min _{i}\left\{\frac{a_{i i}-u_{i} R_{i}}{1+\sum_{j \neq i} u_{j i}}\right\} \geq \min _{i}\left\{\frac{a_{i i}-s_{i} R_{i}}{1+\sum_{j \neq i} s_{j i}}\right\} .
$$

Proof Since A is strictly diagonally dominant by row, for any $j \neq i$, we have

$$
\begin{aligned}
d_{j}-m_{j i} & =\frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right|}{a_{j j}}-\frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| r_{i}}{a_{j j}} \\
& =\frac{\left(1-r_{i}\right) \sum_{k \neq j, i}\left|a_{j k}\right|}{a_{j j}}
\end{aligned}
$$

$$
\geq 0
$$

or equivalently,

$$
\begin{equation*}
d_{j} \geq m_{j i}, \quad j \neq i, \forall j \in N . \tag{1}
\end{equation*}
$$

So, we can obtain

$$
\begin{equation*}
u_{j i}=\frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| m_{k i}}{a_{j j}} \leq \frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| d_{k}}{a_{j j}}=s_{j i}, \quad j \neq i, \forall j \in N, \tag{2}
\end{equation*}
$$

and

$$
u_{i} \leq s_{i}, \quad \forall i \in N .
$$

Therefore, it is easy to obtain that

$$
\frac{a_{i i}-u_{i} R_{i}}{1+\sum_{j \neq i} u_{j i}} \geq \frac{a_{i i}-s_{i} R_{i}}{1+\sum_{j \neq i} s_{j i}}, \quad \forall i \in N
$$

Obviously, we have the desired result

$$
\min _{i}\left\{\frac{a_{i i}-u_{i} R_{i}}{1+\sum_{j \neq i} u_{j i}}\right\} \geq \min _{i}\left\{\frac{a_{i i}-s_{i} R_{i}}{1+\sum_{j \neq i} s_{j i}}\right\} .
$$

This proof is completed.

Theorem 3.3 If $A=\left(a_{i j}\right) \in \mathcal{M}_{n}$ is strictly diagonally dominant by row, then

$$
\min _{i}\left\{\frac{a_{i i}-u_{i} R_{i}}{1+\sum_{j \neq i} u_{j i}}\right\} \geq \min _{i}\left\{\frac{a_{i i}-m_{i} R_{i}}{1+\sum_{j \neq i} m_{j i}}\right\} .
$$

Proof Since A is strictly diagonally dominant by row, for any $j \neq i$, we have

$$
\begin{aligned}
r_{i}-m_{j i} & =r_{i}-\frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| r_{i}}{a_{j j}} \\
& =\frac{r_{i}-\left|a_{j i}\right|-\sum_{k \neq j, i}\left|a_{j k}\right|}{a_{j j}} \\
& =\frac{r_{i}\left(a_{j j}-\sum_{k \neq j, i}\left|a_{j k}\right|\right)-\left|a_{j i}\right|}{a_{j j}} \\
& =\frac{a_{j j}-\sum_{k \neq j, i}\left|a_{j k}\right|}{a_{j j}}\left(r_{i}-\frac{\left|a_{j i}\right|}{a_{j j}-\sum_{k \neq j, i}\left|a_{j k}\right|}\right)
\end{aligned}
$$

$$
\geq 0
$$

i.e.,

$$
\begin{equation*}
r_{i} \geq m_{j i}, \quad j \neq i, \forall j \in N . \tag{3}
\end{equation*}
$$

So, we can obtain

$$
\begin{equation*}
u_{j i}=\frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| m_{k i}}{a_{j j}} \leq \frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| r_{i}}{a_{j j}}=m_{j i}, \quad j \neq i, \forall j \in N \tag{4}
\end{equation*}
$$

and

$$
u_{i} \leq m_{i}, \quad \forall i \in N .
$$

Therefore, it is easy to obtain that

$$
\frac{a_{i i}-u_{i} R_{i}}{1+\sum_{j \neq i} u_{j i}} \geq \frac{a_{i i}-m_{i} R_{i}}{1+\sum_{j \neq i} m_{j i}}, \quad \forall i \in N .
$$

Obviously, we have the desired result

$$
\min _{i}\left\{\frac{a_{i i}-u_{i} R_{i}}{1+\sum_{j \neq i} u_{j i}}\right\} \geq \min _{i}\left\{\frac{a_{i i}-m_{i} R_{i}}{1+\sum_{j \neq i} m_{j i}}\right\} .
$$

Remark 3.1 According to inequalities (1) and (3), it is easy to know that

$$
b_{j i} \leq \frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| m_{k i}}{a_{j j}} b_{i i} \leq \frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| d_{k}}{a_{j j}} b_{i i}, \quad \forall i \in N .
$$

and

$$
b_{j i} \leq \frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| m_{k i}}{a_{j j}} b_{i i} \leq \frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| r_{i}}{a_{j j}} b_{i i}, \quad \forall i \in N .
$$

That is to say, the result of Lemma 2.2 is sharper than the ones of Theorem 2.1 in [8] and Lemma 2.2 in [9]. Moreover, the results of Theorem 3.2 and Theorem 3.3 are sharper than the ones of Theorem 3.1 in [8] and Theorem 3.3 in [9], respectively.

Theorem 3.4 If $A \in \mathcal{M}_{n}$ is strictly diagonally dominant by row, then

$$
\tau\left(A \circ A^{-1}\right) \geq \min _{i}\left\{1-\frac{1}{a_{i i}} \sum_{j \neq i}\left|a_{j i}\right| u_{j i}\right\}
$$

Proof This proof is similar to the one of Theorem 3.5 in [8].
Remark 3.2 According to inequalities (2) and (4), we get

$$
1-\frac{1}{a_{i i}} \sum_{j \neq i}\left|a_{j i}\right| u_{j i} \geq 1-\frac{1}{a_{i i}} \sum_{j \neq i}\left|a_{j i}\right| s_{j i}
$$

and

$$
1-\frac{1}{a_{i i}} \sum_{j \neq i}\left|a_{j i}\right| u_{j i} \geq 1-\frac{1}{a_{i i}} \sum_{j \neq i}\left|a_{j i}\right| m_{j i} .
$$

That is to say, the bound of Theorem 3.4 is sharper than the ones of Theorem 3.5 in [8] and Theorem 3.4 in [9], respectively.

Remark 3.3 Using the above similar ideas, we can obtain similar inequalities of the strictly diagonally M-matrix by column.

4 Example

For convenience, we consider the M-matrix A is the same as the matrix of [8]. Define the M-matrix A as follows:

$$
A=\left[\begin{array}{cccc}
4 & -1 & -1 & -1 \\
-2 & 5 & -1 & -1 \\
0 & -2 & 4 & -1 \\
-1 & -1 & -1 & 4
\end{array}\right]
$$

1. Estimate the upper bounds for entries of $A^{-1}=\left(b_{i j}\right)$. Firstly, by Lemma 2.2(2) in [9], we have

$$
A^{-1} \leq\left[\begin{array}{cccc}
1 & 0.5833 & 0.5000 & 0.5000 \\
0.6667 & 1 & 0.5000 & 0.5000 \\
0.5000 & 0.6667 & 1 & 0.5000 \\
0.5833 & 0.5833 & 0.5000 & 1
\end{array}\right] \circ\left[\begin{array}{llll}
b_{11} & b_{22} & b_{33} & b_{44} \\
b_{11} & b_{22} & b_{33} & b_{44} \\
b_{11} & b_{22} & b_{33} & b_{44} \\
b_{11} & b_{22} & b_{33} & b_{44}
\end{array}\right] .
$$

By Lemma 2.2, we have

$$
A^{-1} \leq\left[\begin{array}{cccc}
1 & 0.5625 & 0.5000 & 0.5000 \\
0.6167 & 1 & 0.5000 & 0.5000 \\
0.4792 & 0.6458 & 1 & 0.5000 \\
0.5417 & 0.5625 & 0.5000 & 1
\end{array}\right] \circ\left[\begin{array}{llll}
b_{11} & b_{22} & b_{33} & b_{44} \\
b_{11} & b_{22} & b_{33} & b_{44} \\
b_{11} & b_{22} & b_{33} & b_{44} \\
b_{11} & b_{22} & b_{33} & b_{44}
\end{array}\right] .
$$

By Lemma 2.3 and Theorem 3.1 in [9], we get

$$
\begin{array}{lc}
0.3637 \leq b_{11} \leq 0.4430, & 0.3530 \leq b_{22} \leq 0.3870 \\
0.4000 \leq b_{33} \leq 0.4000, & 0.4000 \leq b_{44} \leq 0.4000
\end{array}
$$

By Lemma 2.3 and Lemma 3.1, we get

$$
\begin{array}{lc}
0.3791 \leq b_{11} \leq 0.4233, & 0.3609 \leq b_{22} \leq 0.3750 \\
0.4000 \leq b_{33} \leq 0.4000, & 0.4000 \leq b_{44} \leq 0.4000
\end{array}
$$

2. Lower bounds for $\tau\left(A \circ A^{-1}\right)$.

By Theorem 3.2 in [9], we obtain

$$
0.9755=\tau\left(A \circ A^{-1}\right) \geq 0.8000 .
$$

By Theorem 3.1, we obtain

$$
0.9755=\tau\left(A \circ A^{-1}\right) \geq 0.8250 .
$$

Competing interests

The authors declare that they have no competing interests

Authors' contributions

All authors conceived of the study, participated in its design and coordination, drafted the manuscript, participated in the sequence alignment, and read and approved the final manuscript.

Acknowledgements

This research is supported by National Natural Science Foundations of China (No. 11101069),
Received: 31 July 2012 Accepted: 24 January 2013 Published: 21 February 2013

References

1. Berman, A, Plemmons, RJ: Nonnegative Matrices in the Mathematical Sciences. Classics in Applied Mathematics, vol. 9. SIAM, Philadelphia (1994)
2. Horn, RA, Johnson, CR: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)
3. Fiedler, M, Markham, TL: An inequality for the Hadamard product of an M-matrix and inverse M-matrix. Linear Algebra Appl. 101, 1-8 (1988)
4. Fiedler, M, Johnson, CR, Markham, T, Neumann, M: A trace inequality for M-matrices and the symmetrizability of a real matrix by a positive diagonal matrix. Linear Algebra Appl. 71, 81-94 (1985)
5. Song, YZ: On an inequality for the Hadamard product of an M-matrix and its inverse. Linear Algebra Appl. 305, 99-105 (2000)
6. Yong, XR: Proof of a conjecture of Fiedler and Markham. Linear Algebra Appl. 320, 167-171 (2000)
7. Chen, SC: A lower bound for the minimum eigenvalue of the Hadamard product of matrix. Linear Algebra Appl. 378, 159-166 (2004)
8. Li, HB, Huang, TZ, Shen, SQ, Li, H: Lower bounds for the eigenvalue of Hadamard product of an M-matrix and its inverse. Linear Algebra Appl. 420, 235-247 (2007)
9. Li, YT, Chen, FB, Wang, DF: New lower bounds on eigenvalue of the Hadamard product of an M-matrix and its inverse Linear Algebra Appl. 430, 1423-1431 (2009)
10. Varga, RS: Minimal Gerschgorin sets. Pac. J. Math. 15(2), 719-729 (1965)
11. Sinkhorn, R: A relationship between arbitrary positive matrices and doubly stochastic matrices. Ann. Math. Stat. 35, 876-879 (1964)
[^1]
[^0]: o 2013 Cheng et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^1]: doi:10.1186/1029-242X-2013-65
 Cite this article as: Cheng et al.: Some inequalities for the minimum eigenvalue of the Hadamard product of an M-matrix and its inverse. Journal of Inequalities and Applications 2013 2013:65

