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Abstract
In this paper, some new inequalities for the minimum eigenvalue of the Hadamard
product of anM-matrix and its inverse are given. These inequalities are sharper than
the well-known results. A simple example is shown.
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1 Introduction
A matrix A = (aij) ∈ R

n×n is called a nonnegative matrix if aij ≥ . A matrix A ∈ R
n×n is

called a nonsingularM-matrix [] if there exist B≥  and s >  such that

A = sIn – B and s > ρ(B),

where ρ(B) is a spectral radius of the nonnegative matrix B, In is the n×n identity matrix.
Denote byMn the set of all n× n nonsingularM-matrices. The matrices inM–

n := {A– :
A ∈Mn} are called inverseM-matrices. Let us denote

τ (A) =min
{
Reλ : λ ∈ σ (A)

}
,

and σ (A) denotes the spectrum of A. It is known that []

τ (A) =


ρ
(
A–

)
is a positive real eigenvalue of A ∈Mn and the corresponding eigenvector is nonnegative.
Indeed

τ (A) = s – ρ(B),

if A = sIn – B, where s > ρ(B), B≥ .
For any two n × n matrices A = (aij) and B = (bij), the Hadamard product of A and B is

A ◦ B = (aijbij). If A,B ∈Mn, then A ◦ B– is also anM-matrix [].
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A matrix A is irreducible if there does not exist a permutation matrix P such that

PAPT =

[
A, A,

 A,

]
,

where A, and A, are square matrices.
For convenience, the set {, , . . . ,n} is denoted byN , where n (≥ ) is any positive integer.

Let A = (aij) ∈R
n×n be a strictly diagonally dominant by row, denote

Ri =
∑
k �=i

|aik|, di =
Ri

|aii| , ∀i ∈ N ;

sji =
|aji| +∑

k �=j,i |ajk|dk
|ajj| , j �= i,∀j ∈N ; si =max

j �=i
{sij}, ∀i ∈N ;

rji =
|aji|

|ajj| –∑
k �=j,i |ajk|

, j �= i,∀j ∈N ; ri =max
j �=i

{rji}, ∀i ∈N ;

mji =
|aji| +∑

k �=j,i |ajk|ri
|ajj| , j �= i,∀j ∈N ; mi =max

j �=i
{mij}, ∀i ∈N ;

uji =
|aji| +∑

k �=j,i |ajk|mki

|ajj| , j �= i,∀j ∈N ; ui =max
j �=i

{uij}, ∀i ∈N .

Recently, some lower bounds for the minimum eigenvalue of the Hadamard product
of an M-matrix and an inverse M-matrix have been proposed. Let A ∈ Mn, for exam-
ple, τ (A ◦ A–) ≤  has been proven by Fiedler et al. in []. Subsequently, τ (A ◦ A–) > 

n
was given by Fiedler and Markham in [], and they conjectured that τ (A ◦A–) > 

n . Song
[], Yong [] and Chen [] have independently proven this conjecture. In [], Li et al. im-
proved the conjecture τ (A ◦A–) ≥ 

n when A– is a doubly stochastic matrix and gave the
following result:

τ
(
A ◦A–) ≥ min

i

{
aii – siRi

 +
∑

j �=i sji

}
.

In [], Li et al. gave the following result:

τ
(
A ◦A–) ≥ min

i

{
aii –miRi

 +
∑

j �=i mji

}
.

Furthermore, if a = a = · · · = ann, they have obtained

min
i

{
aii –miRi

 +
∑

j �=i mji

}
≥ min

i

{
aii – siRi

 +
∑

j �=i sji

}
,

i.e., under this condition, the bound of [] is better than the one of [].
In this paper, our motives are to improve the lower bounds for the minimum eigenvalue

τ (A ◦A–). The main ideas are based on the ones of [] and [].
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2 Some preliminaries and notations
In this section, we give some notations and lemmas which mainly focus on some in-
equalities for the entries of the inverse M-matrix and the strictly diagonally dominant
matrix.

Lemma . [] Let A ∈ R
n×n be a strictly diagonally dominant matrix by row, i.e.,

|aii| >
∑
j �=i

|aij|, ∀i ∈N .

If A– = (bij), then

|bji| ≤
∑

k �=j |ajk|
|ajj| |bii|, j �= i,∀j ∈N .

Lemma. Let A ∈R
n×n be a strictly diagonally dominantM-matrix by row. If A– = (bij),

then

bji ≤
|aji| +∑

k �=j,i |ajk|mki

ajj
bii ≤ ujbii, j �= i,∀i ∈N .

Proof Firstly, we considerA ∈R
n×n is a strictly diagonally dominantM-matrix by row. For

i ∈ N , let

ri(ε) =max
j �=i

{ |aji| + ε

ajj –
∑

k �=j,i |ajk|
}

and

mji(ε) =
ri(ε)(

∑
k �=j,i |ajk| + ε) + |aji|

ajj
, j �= i.

SinceA is strictly diagonally dominant, then rji <  andmji < . Therefore, there exists ε > 
such that  < ri(ε) <  and  <mji(ε) < . Let us define one positive diagonal matrix

Mi(ε) = diag
(
mi(ε), . . . ,mi–,i(ε), ,mi+,i(ε), . . . ,mni(ε)

)
.

Similarly to the proofs of Theorem . and Theorem . in [], we can prove that the
matrix AMi(ε) is also a strictly diagonally dominant M-matrix by row for any i ∈ N . Fur-
thermore, by Lemma ., we can obtain the following result:

m–
ji (ε)bji ≤

|aji| +∑
k �=j,i |ajk|mki(ε)

mji(ε)ajj
bii, j �= i, j ∈N ,

i.e.,

bji ≤
|aji| +∑

k �=j,i |ajk|mki(ε)
ajj

bii, j �= i, j ∈ N .

http://www.journalofinequalitiesandapplications.com/content/2013/1/65
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Let ε –→ + to get

bji ≤
|aji| +∑

k �=j,i |ajk|mki

ajj
bii ≤ ujbii, j �= i, j ∈N .

This proof is completed. �

Lemma . Let A = (aij) ∈Mn be a strictly diagonally dominant matrix by row and A– =
(bij), then we have


aii

≤ bii ≤ 
aii –

∑
j �=i |aij|uji

, ∀i ∈N .

Proof Let B = A–. Since A is anM-matrix, then B ≥ . By AB = BA = In, we have

 =
n∑
j=

aijbji = aiibii –
∑
j �=i

|aij|bji, ∀i ∈ N .

Hence

 ≤ aiibii, ∀i ∈N ,

or equivalently,


aii

≤ bii, ∀i ∈N .

Furthermore, by Lemma ., we get

 = aiibii –
∑
j �=i

|aij|bji ≥
(
aii –

∑
j �=i

|aij|uji
)
bii, ∀i ∈N ,

i.e.,

bii ≤ 
aii –

∑
j �=i |aij|uji

, ∀i ∈N .

Thus the proof is completed. �

Lemma . [] Let A ∈ C
n×n and x,x, . . . ,xn be positive real numbers. Then all the

eigenvalues of A lie in the region

n⋃


{
z ∈ C : |z – aii| ≤ xi

∑
j �=i


xj

|aji|
}
.

Lemma . [] If A– is a doubly stochastic matrix, then Ae = e, ATe = e, where e =
(, , . . . , )T .

http://www.journalofinequalitiesandapplications.com/content/2013/1/65
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3 Main results
In this section, we give two new lower bounds for τ (A ◦ A–) which improve the ones in
[] and [].

Lemma . If A ∈Mn and A– = (bij) is a doubly stochastic matrix, then

bii ≥ 
 +

∑
j �=i uji

, ∀i ∈N .

Proof This proof is similar to the ones of Lemma . in [] and Theorem . in []. �

Theorem . Let A ∈Mn and A– = (bij) be a doubly stochastic matrix. Then

τ
(
A ◦A–) ≥ min

i

{
aii – uiRi

 +
∑

j �=i uji

}
.

Proof Firstly, we assume that A is irreducible. By Lemma ., we have

aii =
∑
j �=i

|aij| +  =
∑
j �=i

|aji| +  and aii > , i ∈ N .

Denote

uj =max
i�=j

{uji} =max

{ |aji| +∑
k �=j,i |ajk|mki

ajj

}
, j ∈N .

Since A is an irreducible matrix, we know that  < uj ≤ . So, by Lemma ., there exists
i ∈N such that

|λ – aiibii | ≤ ui
∑
j �=i


uj

|ajibji |,

or equivalently,

|λ| ≥ aiibii – ui
∑
j �=i


uj

|ajibji |

≥ aiibii – ui
∑
j �=i


uj

|aji |ujbii (by Lemma .)

≥
(
aii – ui

∑
j �=i

|aji |
)
bii

= (aii – uiRi )bii

≥ aii – uiRi
 +

∑
j �=i uji

(by Lemma .)

≥ min
i

{
aii – uiRi

 +
∑

j �=i uji

}
.
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Secondly, if A is reducible, without loss of generality, we may assume that A has the
following block upper triangular form:

A =

⎡
⎢⎢⎢⎣
A A · · · AK

 A · · · AK

  · · · · · ·
   AKK

⎤
⎥⎥⎥⎦ ,

where Aii ∈ Mni is an irreducible diagonal block matrix, i = , , . . . ,K . Obviously, τ (A ◦
A–) =mini τ (Aii ◦A–

ii ). Thus the reducible case is converted into the irreducible case. This
proof is completed. �

Theorem . If A = (aij) ∈Mn is a strictly diagonally dominant by row, then

min
i

{
aii – uiRi

 +
∑

j �=i uji

}
≥ min

i

{
aii – siRi

 +
∑

j �=i sji

}
.

Proof Since A is strictly diagonally dominant by row, for any j �= i, we have

dj –mji =
|aji| +∑

k �=j,i |ajk|
ajj

–
|aji| +∑

k �=j,i |ajk|ri
ajj

=
( – ri)

∑
k �=j,i |ajk|

ajj
≥ ,

or equivalently,

dj ≥ mji, j �= i,∀j ∈N . ()

So, we can obtain

uji =
|aji| +∑

k �=j,i |ajk|mki

ajj
≤ |aji| +∑

k �=j,i |ajk|dk
ajj

= sji, j �= i,∀j ∈N , ()

and

ui ≤ si, ∀i ∈N .

Therefore, it is easy to obtain that

aii – uiRi

 +
∑

j �=i uji
≥ aii – siRi

 +
∑

j �=i sji
, ∀i ∈N .

Obviously, we have the desired result

min
i

{
aii – uiRi

 +
∑

j �=i uji

}
≥ min

i

{
aii – siRi

 +
∑

j �=i sji

}
.

This proof is completed. �
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Theorem . If A = (aij) ∈Mn is strictly diagonally dominant by row, then

min
i

{
aii – uiRi

 +
∑

j �=i uji

}
≥ min

i

{
aii –miRi

 +
∑

j �=i mji

}
.

Proof Since A is strictly diagonally dominant by row, for any j �= i, we have

ri –mji = ri –
|aji| +∑

k �=j,i |ajk|ri
ajj

=
ri – |aji| –∑

k �=j,i |ajk|
ajj

=
ri(ajj –

∑
k �=j,i |ajk|) – |aji|
ajj

=
ajj –

∑
k �=j,i |ajk|
ajj

(
ri –

|aji|
ajj –

∑
k �=j,i |ajk|

)

≥ ,

i.e.,

ri ≥ mji, j �= i,∀j ∈N . ()

So, we can obtain

uji =
|aji| +∑

k �=j,i |ajk|mki

ajj
≤ |aji| +∑

k �=j,i |ajk|ri
ajj

=mji, j �= i,∀j ∈N , ()

and

ui ≤ mi, ∀i ∈N .

Therefore, it is easy to obtain that

aii – uiRi

 +
∑

j �=i uji
≥ aii –miRi

 +
∑

j �=i mji
, ∀i ∈N .

Obviously, we have the desired result

min
i

{
aii – uiRi

 +
∑

j �=i uji

}
≥ min

i

{
aii –miRi

 +
∑

j �=i mji

}
. �

Remark . According to inequalities () and (), it is easy to know that

bji ≤
|aji| +∑

k �=j,i |ajk|mki

ajj
bii ≤

|aji| +∑
k �=j,i |ajk|dk
ajj

bii, ∀i ∈N .

and

bji ≤
|aji| +∑

k �=j,i |ajk|mki

ajj
bii ≤

|aji| +∑
k �=j,i |ajk|ri
ajj

bii, ∀i ∈N .
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That is to say, the result of Lemma . is sharper than the ones of Theorem . in [] and
Lemma . in []. Moreover, the results of Theorem . and Theorem . are sharper than
the ones of Theorem . in [] and Theorem . in [], respectively.

Theorem . If A ∈Mn is strictly diagonally dominant by row, then

τ
(
A ◦A–) ≥ min

i

{
 –


aii

∑
j �=i

|aji|uji
}
.

Proof This proof is similar to the one of Theorem . in []. �

Remark . According to inequalities () and (), we get

 –

aii

∑
j �=i

|aji|uji ≥  –

aii

∑
j �=i

|aji|sji,

and

 –

aii

∑
j �=i

|aji|uji ≥  –

aii

∑
j �=i

|aji|mji.

That is to say, the bound of Theorem . is sharper than the ones of Theorem . in []
and Theorem . in [], respectively.

Remark. Using the above similar ideas, we can obtain similar inequalities of the strictly
diagonallyM-matrix by column.

4 Example
For convenience, we consider theM-matrix A is the same as the matrix of []. Define the
M-matrix A as follows:

A =

⎡
⎢⎢⎢⎣

 – – –
–  – –
 –  –
– – – 

⎤
⎥⎥⎥⎦ .

. Estimate the upper bounds for entries of A– = (bij). Firstly, by Lemma .() in [],
we have

A– ≤

⎡
⎢⎢⎢⎣

 . . .
.  . .
. .  .
. . . 

⎤
⎥⎥⎥⎦ ◦

⎡
⎢⎢⎢⎣
b b b b
b b b b
b b b b
b b b b

⎤
⎥⎥⎥⎦ .

By Lemma ., we have

A– ≤

⎡
⎢⎢⎢⎣

 . . .
.  . .
. .  .
. . . 

⎤
⎥⎥⎥⎦ ◦

⎡
⎢⎢⎢⎣
b b b b
b b b b
b b b b
b b b b

⎤
⎥⎥⎥⎦ .
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By Lemma . and Theorem . in [], we get

. ≤ b ≤ ., .≤ b ≤ .,

.≤ b ≤ ., .≤ b ≤ ..

By Lemma . and Lemma ., we get

. ≤ b ≤ ., .≤ b ≤ .,

.≤ b ≤ ., .≤ b ≤ ..

. Lower bounds for τ (A ◦A–).
By Theorem . in [], we obtain

. = τ
(
A ◦A–) ≥ ..

By Theorem ., we obtain

. = τ
(
A ◦A–) ≥ ..
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