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1 Introduction

Variational inequality theory constitutes significant and novel extensions of the varia-
tional principles. It describes a broad spectrum of interesting developments involving
a link between various fields of physical, engineering, pure and applied sciences. It has
been shown that variational inequality theory provides the unified and efficient frame-
work for a general treatment of a wide class of problems; for details, see Baiocchi and
Capelo [1], Fukushima [2], Giannessi and Maugeri [3], Glowinski and Tallec [4], Noor et
al. [5], Patriksson [6], Kinderlehrer and Stampacchia [7] and references therein. The de-
velopment of variational inequality theory can be viewed as the simultaneous pursuit of
two different lines of research. On the one hand, it reveals the fundamental fact on the
qualitative aspects of the solutions to important classes of problems; on the other hand, it
also enables us to develop highly efficient and powerful new numerical methods for solv-
ing various problems. One of the most interesting and important problems in variational
inequality theory is the development of efficient numerical methods. There is a substantial
number of numerical methods, including the projection methods and their variant forms.
The projection method and its variant forms represent important tools for approximate
solvability of various kinds of variational inequalities; see [1-34] and references therein.
The main idea behind this technique is to establish equivalence between the variational
inequalities and the fixed point problem, using the concept of projection. This alternate
formulation is used to suggest iterative methods for approximate solvability of variational
inequality problems.
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In many problems of analysis, one encounters operators who may be split in the form
S =A=+ T, where A and T satisfy some conditions, and S itself has neither of these prop-
erties. An early theorem of this type was given by Krasnoselskii [8], where a complicated
operator is split into the sum of two simpler operators. There is another setting arising
from perturbation theory. Here, the operator equation Tx + Ax = x is considered as a per-
turbation of Tx = x (or Ax = x), and one would like to assert that the original unperturbed
equation has a solution. In such a situation, there is, in general, no continuous depen-
dence of solutions on the perturbations. For various results in this direction, please see
Browder [9], Fucik [10, 11], Kirk [12], Petryshyn [13], Webb [14]. Another argument is
concerned with the approximate solution of the problem: For f in H, find x in H such
that Tx + Ax = f. Here T and A are given self-operators of H. Many boundary value prob-
lems for quasi-linear partial differential equations arising in physics, fluid mechanics and
other areas of applications can be formulated as the equation Tx + Ax = f; see, e.g., Zeidler
[15]. Combettes and Hirstoaga [16] showed that the finding of zeros of sum of two oper-
ators can be solved via the variational inequality involving sum of two operators. Several
authors have studied this type of situations; see, e.g., Dhage [17], O’'Reagan [18] and refer-
ences therein.

It is our aim in this paper, to consider a new class of generalized extended nonlinear
quasi-variational inequality problems, involving set-valued relaxed monotone operators,
and to establish its equivalence with the fixed point problem. Using this framework, we
study criteria for existence of their solutions. Iterative methods for finding approximate so-
lutions are also proposed and analyzed. As we shall see, in some circumstances, our results
reduce to previous results of Bruck [19], Fang and Peterson [20], Lions and Stampacchia
[21], Noor [22-24], Verma [25, 26], Qin and Shang [27], Noor and Noor [28, 29].

2 Preliminaries
Let H be a real Hilbert space whose inner product and norm are denoted by (-,-) and | - ||,
respectively. Let K : H — H be a point to set mapping, which is closed and convex valued.
In other words, for every x € H, the set K(x) is closed and convex.

We consider the problem of finding x* € H and w* € T'(x*) such that g(x*) € K(x*) and

(p(Ax* +w*) + g(x*) = h(x*),h(y*) —g(x*)) = 0, Vh(y*) € K(x*) (2.1)

for some p >0, where A: H — Hand T: H — 2* are nonlinear mappings, while g,/ :
‘H — 7 are any mappings.
We call inequality (2.1) a generalized extended nonlinear quasi-variational inequality
problem.
We now list some special cases of generalized extended nonlinear quasi-variational in-
equality problem (2.1).
(1) If we take T =0, then problem (2.1) is equivalent to the extended general
quasi-variational inequality problem introduced and studied by Noor et al. [29, 30].
(2) If wetake T =0 and g = I, then problem (2.1) is equivalent to a class of
quasi-variational inequality problems introduced by Noor et al. [29].
(3) If wetake T =0 and g = /, then problem (2.1) is equivalent to the general

quasi-variational inequality problem studied by Noor et al. [30].
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(4) If we take T =0 and /4 = I, then problem (2.1) is equivalent to the general
quasi-variational inequality problem defined by Noor et al. [28].
If K(x*) = K, that is, the convex set K (x*) is independent of the solution x*, then general-
ized extended nonlinear quasi-variational inequality problem (2.1) is equivalent to finding
x* € H and w* € T'(x*) such that g(x*) € K and

(p(Ax* +w*) + g(x*) - h(x*), h(y*) —g(x*)) =0, Vh(y*) €K (2.2)

for some p > 0, where K is a closed and convex subset of a real Hilbert space .
We call inequality (2.2) a generalized extended nonlinear variational inequality problem.
Variational inequality problem (2.2) covers several variational inequality problems studied
in the literature, to which we now turn:
(1) If wetake T =0, then problem (2.2) is equivalent to the extended general variational
inequality problem introduced and studied by Noor [31].

(2) If T is single-valued and 4 is an identity mapping, then problem (2.2) is equivalent
to a variational inequality problem studied by Noor and Noor [28].

(3) If we take g, i as identity mappings, then problem (2.2) reduces to a variational
inequality problem studied by Verma [26], Qin et al. [27].

(4) Ifwetake T =0 and g = 4, then problem (2.2) is equivalent to the general variational
inequality problem studied by Noor [23, 24].

(5) If we take A = 0 and 4 as an identity mapping, then problem (2.2) is equivalent to a
variational inequality studied by Verma [25].

(6) If T is single-valued and g, & are identity mappings, then problem (2.2) is equivalent
to a variational inequality problem studied by Noor [22].

(7) If A =0andg, / are identity mappings, then problem (2.2) is equivalent to a
variational inequality problem studied by Bruck [19] and Fang et al. [20].

(8) If T =0 and g, & are identity mappings, then problem (2.2) is equivalent to a
classical variational inequality problem studied by Lions and Stampacchia [21].

Let us recall the following standard and classical result.

Lemma 2.1 Let K(x) be a closed and convex set in a Hilbert space H. Then, for a given
z € H, x € K(x) satisfies the inequality

(x—z,y—x)>0, VyeK(x),
if and only if
X = PK(x)Z,
where Py (y) is the projection of H onto the closed convex set K(x) in H.
It is important to point out that the implicit projection operator Pk, is not non-
expansive. We shall assume that the implicit projection operator Py, satisfies the
Lipschitz-type continuity, which plays an important and fundamental role in the existence

theory and in developing numerical methods for solving the quasi-variational inequali-
ties.


http://www.journalofinequalitiesandapplications.com/content/2013/1/590

Thakur and Postolache Journal of Inequalities and Applications 2013, 2013:590
http://www.journalofinequalitiesandapplications.com/content/2013/1/590

Assumption 2.1 For all x,y,z € H, the implicit projection operator Pk, satisfies the con-
dition

I1Pxxz — Pzl < P llx -y, (2.3)
where ¥ is a positive constant.

Noor et al. [32] showed that Assumption 2.1 holds for certain cases.
We now recall some definitions.

Definition 2.1 A mapping A : H — H is said to be:

(i) strongly monotone if there exists a constant v > 0 such that, for each x € H,
(A@) - AG),x - y) = vilx-yI1?

holds for all y € H;

(ii) ¢-cocoercive if there exists a constant ¢ > 0 such that, for each x € H,

(A®) - A(),x—y) > ¢ A) - AW

holds for all y € H;

(iii) relaxed ¢-cocoercive if there exists a constant ¢ > 0 such that, for each x € H,

(A®) - A@),x—y) = -¢|A) - AG)|”
holds for all y € H;

(iv) relaxed (¢, y)-cocoercive or relaxed cocoercive with constant (¢, y) if there exist
constants ¢ > 0 and y > 0 such that, for each x € H,

(A@) - AG),x—9) > ¢ |A@) - AG) | + v Ix - yI1?
holds for all y € H;

(v) w-Lipschitz continuous or Lipschitz with constant w if there exists a constant u > 0
such that, for each x,y € H,

|A@) —AG)|| < pllx - yll;
(vi) nonexpansive if for each x,y € H,
|AG) —AG)]|| < llx = yll.

A set-valued mapping T : H — 2 is said to be:

(vii) H -Lipschitz continuous with constant ¢ if there exists a constant ¢ > 0 such that

H(T(),TW) <¢lx-yl, VxyeH,

Page 4 of 13
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where H is the Hausdorff pseudo-metric, i.e., for any two nonempty subsets A and
BofH,

ﬁ(A,B) = max{sup d(x, B), sug d(A,y) },
xeA JE

where

dx,B)=inf|lx—y|| and d(A,y)=inf |x-y]|.
yeB x€A

It should be pointed out that if the domain of H is restricted to the family of closed
bounded subsets of H (denoted by CB(H)), then H is the Hausdorff metric.

Lemma 2.2 [35] Let (X,d) be a complete metric space, T : X — CB(X) be a set-valued
mapping. Then, for any ¢ >0 and x,y € X, u € T(x), there exists v € T(y) such that

d(u,v) < 1+ e)H(T(x), T(»)).

Lemma 2.3 [35] Let (X,d) be a complete metric space, T : X — CB(X) be a set-valued
mapping satisfying

H(T(x), T()) < kd(x,5), Vx,y€X,
where 0 < k <1 is a constant. Then the mapping T has a fixed point in X.

3 Existence results
First of all, using Lemma 2.1, we will establish that generalized extended nonlinear quasi-

variational inequality problem (2.1) is equivalent to a fixed point problem.

Lemma 3.1 x* € H and w* € T(x*) such that g(x*) € K(x*) is a solution of generalized
extended nonlinear quasi-variational inequality problem (2.1) if and only if for some p > 0,
the mapping

F:H — 2", F(x*) = U 5" —g(x*) + Pxieny (B(x*) = p(A(x") +w*))}  (3.D)

wreT (x*)
has a fixed point.

Proof Letx* € H and w* € T(x*) such that g(x*) € K(x*) is a solution of problem (2.1), i.e.,
(o)~ (1) = p(AG") + w)), H(") ") = 0 62

for all A(y*) € K(x*).
Applying Lemma 2.1 to (3.2), we get

8(x") = Picer ((x") = p(A(x") + w7)),
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xF=x* —g(x*) + PK(x*)(h(x*) - p(A(x*) + W*))

e U 1 -al) + Prin (h(x") - p(A () + W)

w*eT (x*)

=x*e F(x*),

i.e., x* is a fixed point of F.
Conversely, let x* be a fixed point of F, i.e., x* € F(x*), then there exists w* € T'(x*) such
that

= x" —g(x") + Py (h(x") = p(A(x") +w")),

8(") = Prwr (") = p(A(x) + w"))-
Hence,
(g(x*) = (n(x*) — p(A(x*) + w*)), h(y*) —g(x*)) = 0 forall h(y*) € K(x*).
The proof is complete. O

Lemma 3.1 implies that problem (2.1) is equivalent to fixed point problem (3.1). Using
this connection, we will establish the following existence result.

Theorem 3.1 Let A,g,hh: H — H be relaxed cocoercive with constants (¢, va), ($g: Ve)s
(@n, vi) and Lipschitz continuous mappings with constants (i, e, ltn, respectively. Let T :
H — CB(H) bean H -Lipschitz continuous mapping with constant { > 0. Assume that the

following assumption holds:

= dand =1 =10 - (4 - £k 2~ 1)
<

o Ya—dapi -1 -«)
(n3-1¢?)

u -2

’

wi>e?, ya>C(l—k)+papu? + (12 =22k (2 -x), (3.3)

L+ p2(L+26) > 2y, 1+ uj(L+2¢4) > 27

where

K=0+ \/1 ~ 2y + u2(L+ 2, + \/1 — 2y + p2(1L+ 2¢).
Then problem (2.1) has a solution.

Proof In the light of Lemma 3.1, it is enough to show that the mapping F defined by (3.1)
has a fixed point. Foranyx # y € H, p € F(x) and g € F(y), thereexist w € T'(x) and u € T(y)
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such that

p =x-gx) + Prey [h(x) — p(Ax) + w)],
q=y-80) + Pxy[h0) - p(AQ) + u)].

Using Assumption 2.1, we have

lp-qll < x-y- (e -g»)|
+ | P [1x) = p(A) + w) ] = Py [19) = £(AG) + w) ]|
< lx-y-(g@) -0
+ [ Prco [ ) = p (Ax) + w) | = Prcy [ () = p(Alx) + w) ]|
+ [Py [1x) = p(A) + w)] = Py [n9) = £(AG) + u) ]|
< Ja-y- (@) -g)| + ?lx =yl + |5~y — (%) ~ b)) |
+||x—y—,0{Ax — AW} +pllw—ul. (3.4)

Since g is a relaxed (¢,, y,)-cocoercive and pg-Lipschitz continuous mapping, we find the
following:

=y (&) = gW) | = Il = 71> = 2(g(x) - ), % - 5) + | g%) - )|
< (14 12) =y + 26 [g®) - g |* — 2yl 5112
< (1-2yg + ug(1+26)) llx - yII*. (3.5)
Similarly,
o= 5= (1) = BN | < (1= 29+ 130+ 26)) I - 1. (3.6)
Since A is a relaxed (¢4, ya)-cocoercive and p4-Lipschitz continuous mapping, we have
-y - pla@ - AW}
= e = y11” - 20{A@) - AQ),x - ) + p* | Aw) - AD) |
< = yI* = 2p{-¢aA®) AW + yallx - yI*} + P21 Il = yI1”

<llx=yI* + 2p¢ani lx = ylI* = 2pyallx — ylI* + >3 Ilx -yl

= (L+2p(pami —ya) + p*13) lx = y11%. (3.7)
Now, since T is an H -Lipschitz continuous mapping, we estimate

Iw—ull < (1+e)H(Tx) - T())
<c(+e)llx-yl. (3.8)

Substituting (3.5), (3.6), (3.7) and (3.8) into (3.4), we obtain

lp—qll < [« +f(p) + p¢ L+ &)]llx - yll, (3.9)


http://www.journalofinequalitiesandapplications.com/content/2013/1/590

Thakur and Postolache Journal of Inequalities and Applications 2013, 2013:590 Page 8 of 13
http://www.journalofinequalitiesandapplications.com/content/2013/1/590

where

K :19+\/1—2yg+u§(1+2¢g)+\/1—2yh+ug(1+2¢h)

and

p) = \/1 +2p(Pap’ — va) + P25

By using (3.9), we get
d(p,F(y)) = inf |lp—ql < (c +£(p) + pt (1 +¢))[lx - yl,
q€F(y)
since p € F(x) is arbitrary, we obtain

sup d(pF(y) (/c+f )+p§(1+8))||x—y||. (3.10)

peF(x)

Similarly, we get

sup d(q,F(x)) < (k +£(p) + pc(1+ &) lx~yl. (3.11)
q€F(y)

From the definition of Hausdorff metric H, it follows from (3.10) and (3.11) that
H(F@®),F()) < (c +f(p) + pt(L+8))llx—=yll, Vx,y€H.
Letting ¢ — 0, we get that
H(F@),FQ)) < (c +f(p) + p¢) Ix=yl, Vx,yeH.

From (3.3), we get that (« + f(p) + p¢) <1, thus F is a set-valued contraction mapping,
by Lemma 2.3 it has a fixed point. Lemma 3.1 implies that it is a solution of variational
inequality problem (2.1). O

4 Iterative algorithm and convergence
For given xy € H and wy € T'(xp), let

x1 = X0 — g(%0) + Pxxg) (h(x0) — p(A(xo) + ).
By Lemma 2.3 there exists w; € T(x;) such that
llwo —wall < (1 + DH(Txo, Tx1).

Letwy = %1 —g(%1) + Pr(xy) (h(%1) — p(A(x1) + w1)), then by Lemma 2.3 there exists wy € T (x2)
such that

1\~
[lwi = wsl < (1 + §>H(Tx1, Tx5).

By induction, we can get an iterative algorithm as follows.
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Algorithm 1 For given xy € H, wy € T(xy), define sequences {x,} and {w,} satisfying

Xn+l = Xp _g(xn) + PK(xn)(h(xn) - ,O(A(x,,) + Wn))r
1\ (4.1)
Wy € T(%4), Wy — Wyl < (1 + —)H(T(xn), T(%41))-
n+1

Now, we define an Ishikawa-type iterative algorithm [36] for approximate solvability of
variational inequality problem (2.2).

Algorithm 2 For a given x, € H, compute x,,,; by the scheme

Yn = (L= Bu)xn + Bu [xn —gxn) + PK(xn)(h(xn) - :O(A(xn) + Wn))]r

Xptl = (1 - an)xn + oy [xn _g(xn) + PK(yn)(h(yn) - p(A()/n) + Mn))];

4.2)

wherew, € T(x,),u, € T(y,),n=0,1,2,...and {&,}, {B,} are sequences in [0, 1], satisfying

certain conditions.
To prove the next result, we need the following.

Lemma 4.1 [37] Let {a,} be a nonnegative sequence satisfying
A1 = (1 - Cn)an + bn;
with ¢, € [0,1], Y02 ¢u = 00, by = 0(c,). Then lim,,_, » a, = 0.

Theorem 4.1 Let A, T, g, h satisfy all the assumptions of Theorem 3.1, and let {a,}, { B} be
sequences in [0,1], for all n > 0, such that y_.-, a, = 00. Then the approximate sequences
{xn}, {wn} constructed by Algorithm 2 converge strongly to a solution of problem (2.1).

Proof By Theorem 3.1, generalized extended nonlinear quasi-variational inequality prob-
lem (2.1) has a solution. Let x* € H, w* € T(x*) such that g(x*) € K(x*) be a solution of
(2.1). By Lemma 3.1, we have

& =x" = g(x*) + Prery (B(x*) — p(A(x") — w?)).
Using (4.2), we have

[ =& = || (1= )n + [0 — g(xn) + Priy) (1) — 0(An) + 1)) ] = ¥
< (1 —ap)|2n — ¥
+ [0 = ) + Picy) () = p(A(n) + 100)) ] = 2"
< (U= o) [0 = || + s — 2" = (gw) — £(x7)) |
+ 6 || Prcyp [ 1) = p(AGyn) + 1) | = Prcian [1(x7) = p(A(x") + w") ]|
< (- a)on =" | + s = 2" — (esn) g (")) |

)
+ | P [0) = (Al + 1n) ] = Pro [A(x7) = p(A(") +w7) ]|
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+ | i [(5) = p(A(5") + )] = Picio [1(x) = p (A (x) + )]
= (=)o = + e[ =27 = (g(a) = (7)) |

+ay|[hy) = h(x%) = p{(AG) + ) = (A(") + W)}

+a,? |y, -
= (=)t =7 + e[ =27 = (o) — (7)) |

+ay [y =" = (h) = h(x"))|

e[y = " = p(An) = A(x")) |

+a,,,o||u,,—w*|| +o¢,,z?||yn—x*||

<(1-a,) ||xn —x* || + an\/l — 2y + ué(l +2¢g) ||x,, —x* ||

+ an\/l =29 + w1+ 2¢) ||y — x|

+ an\/l +2p(pan? = ya) + 021 ||yn — ¥
+a,0c 1+ s)||yn —x* || + oc,,ﬂ”yn —x* ||
=(1-ay) ||xy, —x* || + aneg”xn —x* ||

+ (0 +£(0) + pE (L + ) + 9) ||y — 4"

) (4.3)

where

O = \/1_2Vg + ug(1+2¢,), On = \/1 =2y + i1+ 2¢p)

and

flp) = \/1 +2p(Pap? — va) + P25

Similarly, we have

lvn =" || < = Bu)aw =" | + Bl on — 2" = (g(xa) - £ (27)) |
+ B | Prccen [160) = 0 (An) + W) | = Prciey [1(x") = p(A(x") = w") ]|
< (L= Bu)||2n =" || + Bubg |20 — x|
+ Bu || Prcan) [ 1) = p(An) + Wi) | = Picu [1(x%) = p(A (") = w)] |
+ B[ P [1(6) = p(A(x") = w*) ] = P [1(x") = p (A (") - w") ]|
< (L= Bu)||on =" || + Bubg |20 — x|
+ Bul[Aen) = 1 (x") = p{ (Alen) + wi) = (A(x") = w*) }
+ B || %0 — x|
< (L= B)||on = ™| + Bubg || — 2| + But? |2 — 2|
+ B |oen 2" = () - h(x")) |
+ B loen = 2" = p{AGen) ~ AW} + Bup | Wi — w7 |
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< (U= B[ = 2| + Bube | —
+ Bu(On +f(p) + pC A+ &) + ) |2, — x|

= (L= Bu)on = 27| + Bule +£(0) + pe A+ €)) 0 — 7. (4.4)
Substituting (4.4) into (4.3) yields that

o =] = =)=+ =]
+ (0 +£(0) + pL(L+£) +9)
x{l—ﬂn(l—(/c +f(p)+,o§(1+£)))}||x,,—x*||. (4.5)

Letting ¢ — 0, we get from (4.5) that

oo =] < Q= =2 +
+ (O +f(0) + & + )1 = Bl = (i +£(0) + £)) } [on — 7
< (L)t = "] + (6 + 00 +£(0) + pE +8) |20 —5°
= (L= ay) ln =" + au(ic +£(p) + p&) |20 — x|
= (L= an{1= (c +£(0) + p) ][0 = 5°- (4.6)

By virtue of Lemma 4.1, we get from (4.6) that lim,_, « [|[%s1 — 2*|| = 0, i.e., x,, — ¥, as

n — 00. Since

’

”Wn —-w* || <(1+e) ||x,, —x*
letting n — 0o, we get that w,, — w*. This completes the proof. O

Remark1 For a suitable and appropriate choice of the operators T, A, g, i and {«,}, {84},
{yn}, one can obtain a number of new and previously known iterative schemes for ap-
proximate solvability of variational inequality problems as discussed in special cases. This
clearly shows that Algorithm 2 is quite general and unifies several algorithms.

Remark 2 Results presented in the paper are significant improvement and extension of
the results obtained previously by many authors. Especially, our Theorem 3.1 extends the
existence of solution in the literature to the case of generalized extended nonlinear varia-
tional inequality (2.1). Algorithm 2 is a very general and unified algorithm for finding an

approximate solution of problem (2.1).

5 Conclusion

In this paper, we have considered a new class of generalized extended nonlinear quasi-
variational inequalities, which involves sum of two operators A : H — H and T : H — 2.
We have established the equivalence between the generalized extended nonlinear varia-
tional inequality and the fixed point problem using projection mapping. Using this equiv-
alence, we have first established criteria for the existence of solution of the proposed vari-
ational inequality problem. We have also suggested and analyzed some iterative methods
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for approximate solvability of generalized extended nonlinear quasi-variational inequali-
ties. Several special cases of the proposed variational inequality problem have also been

discussed.
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