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Abstract
In this paper, we prove theM2-type sharp maximal function estimates for the
Toeplitz-type operators associated to certain singular integral operators satisfying a
variant of Hörmander’s condition. As an application, we obtain the weighted
boundedness of the operators on the Lebesgue and Morrey spaces.
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1 Introduction
As the development of singular integral operators (see [, ]), their commutators have
been well studied. In [, ], the authors prove that the commutators generated by the sin-
gular integral operators andBMO functions are bounded on Lp(Rn) for  < p <∞. Chanillo
(see []) proves a similar result when singular integral operators are replaced by the frac-
tional integral operators. In [, ], some Toeplitz-type operators related to the singular
integral operators and strongly singular integral operators are introduced, and the bound-
edness for the operators generated by BMO and Lipschitz functions is obtained. In [],
some singular integral operators satisfying a variant of Hörmander’s condition are intro-
duced, and the boundedness for the operators is obtained (see [], []). In this paper, we
prove the sharp maximal function inequalities for the Toeplitz-type operator related to
some singular integral operators satisfying a variant of Hörmander’s condition. As an ap-
plication, we obtain the weighted boundedness of the Toeplitz-type operator on Lebesgue
and Morrey spaces.

2 Preliminaries
First, let us introduce some notations. Throughout this paper, Q will denote a cube of Rn

with sides parallel to the axes. For any locally integrable function f , the sharp maximal
function of f is defined by

f #(x) = sup
Q�x


|Q|

∫
Q

∣∣f (y) – fQ
∣∣dy,
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where, and in what follows, fQ = |Q|– ∫Q f (x)dx. We say that f belongs to BMO(Rn) if f #

belongs to L∞(Rn) and define ‖f ‖BMO = ‖f #‖L∞ . It has been known that (see [])

‖f – fkQ‖BMO ≤ Ck‖f ‖BMO.

LetM be the Hardy-Littlewood maximal operator defined by

M(f )(x) = sup
Q�x


|Q|

∫
Q

∣∣f (y)∣∣dy.
For η > , let Mη(f ) =M(|f |η)/η . For k ∈ N , we denote by Mk the operator M iterated k
times, i.e.,M(f ) =M(f ) and

Mk(f ) =M
(
Mk–(f )

)
when k ≥ .

Let � be a Young function and �̃ be the complementary associated to �. We denote the
�-average by, for a function f ,

‖f ‖�,Q = inf

{
λ >  :


|Q|

∫
Q

�

( |f (y)|
λ

)
dy ≤ 

}

and the maximal function associated to � by

M�(f )(x) = sup
x∈Q

‖f ‖�,Q.

The Young functions to be used in this paper are �(t) = t( + log t) and �̃(t) = exp(t),
the corresponding average and maximal functions denoted by ‖ · ‖L(logL),Q, ML(logL) and
‖ · ‖expL,Q, MexpL. Following [], we know that the generalized Hölder inequality and the
following inequalities hold:


|Q|

∫
Q

∣∣f (y)g(y)∣∣dy≤ ‖f ‖�,Q‖g‖�̃,Q,

‖f ‖L(logL),Q ≤ML(logL)(f ) ≤ CM(f ),

‖f – fQ‖expL,Q ≤ C‖f ‖BMO

and

‖f – fQ‖expL,kQ ≤ Ck‖f ‖BMO.

The Ap weight is defined by (see [])

Ap =
{
w ∈ Lloc

(
Rn) : sup

Q

(


|Q|
∫
Q
w(x)dx

)(


|Q|
∫
Q
w(x)–/(p–) dx

)p–

< ∞
}
,

 < p < ∞,
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and

A =
{
w ∈ Lploc

(
Rn) :M(w)(x) ≤ Cw(x), a.e.

}
.

Given a weight function w, for  ≤ p < ∞, the weighted Lebesgue space Lp(w) is the
space of functions f such that

‖f ‖Lp(w) =
(∫

Rn

∣∣f (x)∣∣pw(x)dx)/p

< ∞.

Definition  Let � = {φ, . . . ,φl} be a finite family of bounded functions in Rn. For any
locally integrable function f , the � sharp maximal function of f is defined by

M#
�(f )(x) = sup

Q�x
inf{c,...,cl}


|Q|

∫
Q

∣∣∣∣∣f (y) –
l∑

i=

ciφi(xQ – y)

∣∣∣∣∣dy,
where the infimum is taken over allm-tuples {c, . . . , cl} of complex numbers and xQ is the
center of Q. For η > , let

M#
�,η(f )(x) = sup

Q�x
inf{c,...,cl}

(


|Q|
∫
Q

∣∣∣∣∣f (y) –
l∑

i=

cjφi(xQ – y)

∣∣∣∣∣
η

dy

)/η

.

Remark We note thatM#
� ≈ f # if l =  and φ = .

Definition  Given a positive and locally integrable function f in Rn, we say that f satisfies
the reverse Hölder condition (write this as f ∈ RH∞(Rn)) if for any cube Q centered at the
origin, we have

 < sup
x∈Q

f (x)≤ C


|Q|
∫
Q
f (y)dy.

Definition  Let ϕ be a positive, increasing function on R+, and there exists a constant
D >  such that

ϕ(t)≤Dϕ(t) for t ≥ .

Let w be a weight function and f be a locally integrable function on Rn. Set, for ≤ p < ∞,

‖f ‖Lp,ϕ (w) = sup
x∈Rn , d>

(


ϕ(d)

∫
Q(x,d)

∣∣f (y)∣∣pw(y)dy)/p

,

where Q(x,d) = {y ∈ Rn : |x – y| < d}. The generalized Morrey space is defined by

Lp,ϕ
(
Rn,w

)
=

{
f ∈ Lloc

(
Rn) : ‖f ‖Lp,ϕ (w) < ∞}

.

If ϕ(d) = dη , η > , then Lp,ϕ(Rn,w) = Lp,η(Rn,w), which is the classical weighted Morrey
spaces (see [, ]). If ϕ(d) = , then Lp,ϕ(Rn,w) = Lp(Rn,w), which is the weighted Lebesgue
spaces (see []).
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As the Morrey space may be considered as an extension of the Lebesgue space, it is
natural and important to study the boundedness of the operator on the Morrey spaces
(see [, –]).
In this paper, we study some singular integral operators as follows (see []).

Definition  Let K ∈ L(Rn) and satisfy

‖K‖L∞ ≤ C,∣∣K (x)
∣∣ ≤ C|x|–n,

there exist functions B, . . . ,Bl ∈ Lloc(R
n – {}) and � = {φ, . . . ,φl} ⊂ L∞(Rn) such that

|det[φj(yi)]| ∈ RH∞(Rnl), and for a fixed δ >  and any |x| > |y| > ,

∣∣∣∣∣K (x – y) –
l∑

i=

Bi(x)φi(y)

∣∣∣∣∣ ≤ C
|y|δ

|x – y|n+δ
.

For f ∈ C∞
 , we define the singular integral operator related to the kernel K by

T(f )(x) =
∫
Rn
K (x – y)f (y)dy.

Moreover, let b be a locally integrable function onRn. TheToeplitz-type operator related
to T is defined by

Tb =
m∑
j=

Tj,MbTj,,

where Tj, are T or ±I (the identity operator), Tj, are the bounded linear operators on
Lp(w) for  < p < ∞ and w ∈ A, j = , . . . ,m,Mb(f ) = bf .

Remark Note that the classical Calderón-Zygmund singular integral operator satisfies
Definition  (see [], []). Also note that the commutator [b,T](f ) = bT(f ) – T(bf ) is
a particular operator of the Toeplitz-type operators Tb. The Toeplitz-type operators Tb

are the non-trivial generalizations of the commutator. It is well known that commutators
are of great interest in harmonic analysis and have been widely studied by many authors
(see [, ]). The main purpose of this paper is to prove the sharp maximal inequalities
for the Toeplitz-type operator Tb. As the application, we obtain the weighted Lp-norm
inequality and Morrey space boundedness for the Toeplitz-type operators Tb.

3 Theorems and lemmas
We shall prove the following theorems.

Theorem  Let T be the singular integral operator as Definition ,  < r <  and b ∈
BMO(Rn). If T (g) =  for any g ∈ Lu(Rn) ( < u < ∞), then there exists a constant C > 
such that, for any f ∈ C∞

 (Rn) and x̃ ∈ Rn,

M#
�,r

(
Tb(f )

)
(x̃) ≤ C‖b‖BMO

m∑
j=

M(Tj,(f )
)
(x̃).
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Theorem  Let T be the singular integral operator as Definition ,  < p < ∞, w ∈ A and
b ∈ BMO(Rn). If T (g) =  for any g ∈ Lu(Rn) ( < u < ∞), then Tb is bounded on Lp(w).

Theorem  Let T be the singular integral operator as Definition ,  <D < n,  < p < ∞,
w ∈ A and b ∈ BMO(Rn). If T (g) =  for any g ∈ Lu(Rn) ( < u < ∞), then Tb is bounded
on Lp,ϕ(Rn,w).

To prove the theorems, we need the following lemmas.

Lemma  ([, p.]) Let  < p < q < ∞ and for any function f ≥ . We define that for
/r = /p – /q,

‖f ‖WLq = sup
λ>

λ
∣∣{x ∈ Rn : f (x) > λ

}∣∣/q,
Np,q(f ) = sup

E
‖f χE‖Lp/‖χE‖Lr ,

where the sup is taken for all measurable sets E with  < |E| < ∞. Then

‖f ‖WLq ≤Np,q(f ) ≤
(
q/(q – p)

)/p‖f ‖WLq .

Lemma  (see []) We have


|Q|

∫
Q

∣∣f (x)g(x)∣∣dx ≤ ‖f ‖expL,Q‖g‖L(logL),Q.

Lemma  (see []) Let T be the singular integral operator as Definition . Then T is
bounded on Lp(w) for  < p < ∞, w ∈ A and weak (L,L) bounded.

Lemma  (see []) Let  < p < ∞,  < η < ∞, w ∈ A∞ and � = {φ, . . . ,φl} ⊂ L∞(Rn) such
that |det[φj(yi)]| ∈ RH∞(Rnl). Then, for any smooth function f for which the left-hand side
is finite,

∫
Rn
Mη(f )(x)pw(x)dx ≤ C

∫
Rn
M#

�,η(f )(x)
pw(x)dx.

Lemma  (see [, ]) Let  < p < ∞, w ∈ A and  <D < n. Then, for any smooth function
f for which the left-hand side is finite,

∥∥M(f )
∥∥
Lp,ϕ (w) ≤ C‖f ‖Lp,ϕ (w).

Lemma  Let  < p <∞,  < η <∞, w ∈ A,  <D < n and � = {φ, . . . ,φl} ⊂ L∞(Rn) such
that |det[φj(yi)]| ∈ RH∞(Rnl). Then, for any smooth function f for which the left-hand side
is finite,

∥∥Mη(f )
∥∥
Lp,ϕ (w) ≤ C

∥∥M#
�,η(f )

∥∥
Lp,ϕ (w).
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Proof For any cube Q = Q(x,d) in Rn, we know M(wχQ) ∈ A for any cube Q = Q(x,d)
by []. By Lemma , we have, for f ∈ Lp,ϕ(Rn,w),

∫
Q

∣∣Mη(f )(y)
∣∣pw(y)dy

=
∫
Rn

∣∣Mη(f )(y)
∣∣pw(y)χQ(y)dy

≤
∫
Rn

∣∣Mη(f )(y)
∣∣pM(wχQ)(y)dy

≤ C
∫
Rn

∣∣M#
�,η(f )(y)

∣∣pM(wχQ)(y)dy

= C

(∫
Q

∣∣M#
�,η(f )(y)

∣∣pM(wχQ)(y)dy +
∞∑
k=

∫
k+Q\kQ

∣∣M#
�,η(f )(y)

∣∣pM(wχQ)(y)dy

)

≤ C

(∫
Q

∣∣M#
�,η(f )(y)

∣∣pw(y)dy + ∞∑
k=

∫
k+Q\kQ

∣∣M#
�,η(f )(y)

∣∣p w(Q)
|k+Q| dy

)

≤ C

(∫
Q

∣∣M#
�,η(f )(y)

∣∣pw(y)dy + ∞∑
k=

∫
k+Q

∣∣M#
�,η(f )(y)

∣∣pM(w)(y)
n(k+)

dy

)

≤ C

(∫
Q

∣∣M#
�,η(f )(y)

∣∣pw(y)dy + ∞∑
k=

∫
k+Q

∣∣M#
�,η(f )(y)

∣∣p w(y)
nk

dy

)

≤ C
∥∥M#

�,η(f )
∥∥p
Lp,ϕ (w)

∞∑
k=

–nkϕ
(
k+d

)

≤ C
∥∥M#

�,η(f )
∥∥p
Lp,ϕ (w)

∞∑
k=

(
–nD

)k
ϕ(d)

≤ C
∥∥M#

�,η(f )
∥∥p
Lp,ϕ (w)ϕ(d),

thus

(


ϕ(d)

∫
Q
Mη(f )(x)pw(x)dx

)/p

≤ C
(


ϕ(d)

∫
Q
M#

�,η(f )(x)
pw(x)dx

)/p

and

∥∥Mη(f )
∥∥
Lp,ϕ (w) ≤ C

∥∥M#
�,η(f )

∥∥
Lp,ϕ (w).

This finishes the proof. �

Lemma  Let T be the singular integral operator as Definition  or the bounded linear
operator on Lr(w) for any  < r < ∞ and w ∈ A,  < p <∞, w ∈ A and  <D < n. Then

∥∥T(f )∥∥Lp,ϕ (w) ≤ C‖f ‖Lp,ϕ (w).

The proof of the lemma is similar to that of Lemma  by Lemma , we omit the details.
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4 Proofs of theorems

Proof of Theorem  It suffices to prove that for f ∈ C∞
 (Rn) and some constant C, the

following inequality holds:

(


|Q|
∫
Q

∣∣Tb(f )(x) –C
∣∣r dx)/r

≤ C‖b‖BMO

m∑
j=

M(Tj,(f )
)
(x̃),

where Q is any cube centered at x, C =
∑m

j=
∑l

i= gijφi(x – x) and gij =
∫
Rn Bi(x –

y)M(b–bQ)χ(Q)c T
j,(f )(y)dy. Without loss of generality, we may assume Tj, are T (j =

, . . . ,m). Let x̃ ∈Q. Fix a cube Q =Q(x,d) and x̃ ∈Q. Write

Tb(f )(x) = Tb–bQ (f )(x) = T (b–bQ)χQ (f )(x) + T (b–bQ)χ(Q)c (f )(x) = f(x) + f(x).

Then
(


|Q|

∫
Q

∣∣Tb(f )(x) –C
∣∣r dx)/r

≤ C
(


|Q|

∫
Q

∣∣f(x)∣∣r dx
)/r

+C
(


|Q|

∫
Q

∣∣f(x) –C
∣∣r dx)/r

= I + II.

For I , by Lemmas ,  and , we obtain

(


|Q|
∫
Q

∣∣Tj,M(b–bQ)χQT
j,(f )(x)

∣∣r dx)/r

≤ |Q|– ‖T
j,M(b–bQ)χQTj,(f )χQ‖Lr

|Q|/r–
≤ C|Q|–∥∥Tj,M(b–bQ)χQT

j,(f )
∥∥
WL

≤ C|Q|–∥∥M(b–bQ)χQT
j,(f )

∥∥
L

≤ C|Q|–
∫
Q

∣∣b(x) – bQ
∣∣∣∣Tj,(f )(x)

∣∣dx
≤ C‖b – bQ‖expL,Q

∥∥Tj,(f )
∥∥
L(logL),Q

≤ C‖b‖BMOM(Tj,(f )
)
(x̃),

thus

I ≤ C
m∑
j=

(


|Q|
∫
Q

∣∣Tj,M(b–bQ)χQT
j,(f )(x)

∣∣r dx)/r

≤ C‖b‖BMO

m∑
j=

M(Tj,(f )
)
(x̃).

For II , we get, for x ∈Q,

∣∣∣∣∣Tj,M(b–bQ)χ(Q)c T
j,(f )(x) –

l∑
i=

gijφi(x – x)

∣∣∣∣∣
≤

∣∣∣∣∣
∫
Rn

(
K (x – y) –

l∑
i=

Bi(x – y)φi(x – x)

)(
b(y) – bQ

)
χ(Q)c (y)Tj,(f )(y)dy

∣∣∣∣∣

http://www.journalofinequalitiesandapplications.com/content/2013/1/589
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≤
∞∑
k=

∫
kd≤|y–x|<k+d

∣∣∣∣∣K (x – y) –
l∑

i=

Bi(x – y)φi(x – x)

∣∣∣∣∣∣∣b(y) – bQ
∣∣∣∣Tj,(f )(y)

∣∣dy

≤ C
∞∑
k=

∫
kd≤|y–x|<k+d

|x – x|δ
|y – x|n+δ

∣∣b(y) – bQ
∣∣∣∣Tj,(f )(y)

∣∣dy

≤ C
∞∑
k=

dδ

(kd)n+δ

(
kd

)n‖b – bQ‖expL,k+Q
∥∥Tj,(f )

∥∥
L(logL),k+Q

≤ C‖b‖BMOM(Tj,(f )
)
(x̃)

∞∑
k=

k–kδ

≤ C‖b‖BMOM(Tj,(f )
)
(x̃),

thus

II ≤ 
|Q|

∫
Q

m∑
j=

∣∣Tj,M(b–bQ)χ(Q)c T
j,(f )(x) –C

∣∣dx ≤ C‖b‖BMO

m∑
j=

M(Tj,(f )
)
(x̃).

This completes the proof of Theorem . �

Proof of Theorem  By Theorem  and Lemmas -, we have

∥∥Tb(f )
∥∥
Lp(w) ≤

∥∥Mr(
(
Tb(f )

)∥∥
Lp(w) ≤ C

∥∥M#
�,r

(
Tb(f )

)∥∥
Lp(w)

≤ C‖b‖BMO

m∑
j=

∥∥M(Tj,(f )
)∥∥

Lp(w) ≤ C‖b‖BMO

m∑
j=

∥∥Tj,(f )
∥∥
Lp(w)

≤ C‖b‖BMO‖f ‖Lp(w).

This completes the proof. �

Proof of Theorem  By Theorem  and Lemmas -, we have

∥∥Tb(f )
∥∥
Lp,ϕ (w) ≤

∥∥Mr
(
Tb(f )

)∥∥
Lp,ϕ (w) ≤ C

∥∥M#
�,r

(
Tb(f )

)∥∥
Lp,ϕ (w)

≤ C‖b‖BMO

m∑
j=

∥∥M(Tj,(f )
)∥∥

Lp,ϕ (w) ≤ C‖b‖BMO

m∑
j=

∥∥Tj,(f )
∥∥
Lp,ϕ (w)

≤ C‖b‖BMO‖f ‖Lp,ϕ (w).

This completes the proof. �
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