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Abstract
This paper is concerned with the multiplicity of radially symmetric positive solutions
of the Dirichlet boundary value problem for the following N-dimensional p-harmonic
equation of the form

�(|�u|p–2�u) = λg(x)f (u), x ∈ B1,

where B1 is a unit ball in R
N (N ≥ 3). We apply the fixed point index theory and the

upper and lower solutions method to investigate the multiplicity of radially
symmetric positive solutions. We find that there exists a threshold λ∗ < +∞ such that
if λ > λ∗, the problem has no radially symmetric positive solution; while if 0 < λ ≤ λ∗,
the problem admits at least one radially symmetric positive solution. Especially, there
exist at least two radially symmetric positive solutions for 0 < λ < λ∗.

1 Introduction
This paper is devoted to the study of radially symmetric positive solutions of the following
boundary value problem for the N-dimensional quasilinear biharmonic equation:

�
(|�u|p–�u

)
= λg(x)f (u), x ∈ B,

u = , x ∈ ∂B, (P)

�u = , x ∈ ∂B,

where B = {x ∈R
N ||x| < }, N ≥ , � =

∑N
i=

∂

∂xi
, p >  is a constant, and λ >  is a positive

parameter. In order to discuss the radially symmetric solution, we assume that g(x) is radi-
ally symmetric, namely, g(x) = g(|x|). Let u(t)� u(|x|) with t = |x| be a radially symmetric
solution, then direct calculations show that

L
(|L u|p–L u

)
= λg(t)f (u), t = |x|,  < t < , (.)

with the boundary value condition

u′() = u() =
(|L u|p–L u

)′|t= =
(|L u|p–L u

)
t= = , (.)
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where L denotes the polar form of the two-dimensional Laplacian �, i.e.,

L = t–N
d
dt

(
tN– d

dt

)
.

In the past few years, in order to avoid transforming ramps into stairs (piecewise con-
stant regions), several high-order PDEs were adopted [–]. And a number of authors
hoped that these methods might perform better than some second-order equations. The
problem (P) can be regarded as the analogue of the Euler-Lagrange equations from the
variation problem in []. And the solution of the problem (P) can also be regarded as the
steady-state case of the fourth-order anisotropic diffusion equation in [–]. As the radi-
ally symmetric form of the equation in (P), equation (.) has been the subject of intensive
study in the recent decade [–]. Particularly, in [], under some structure conditions,
the authors obtained the existence of infinitely many positive symmetric radial entire so-
lutions and investigated the asymptotic behavior of these solutions. From then on, more
andmoremathematical workers paid their attention to the problems on harmonic or poly-
harmonic equation(s). In [, ], Debnath and Xu studied the existence of infinitely many
positive radically symmetric solutions for the singular nonlinear polyharmonic equation
inR

 andRN (N ≥ ), respectively. In [, ],Wu considered the nonlinear polyharmonic
systems and equation of the type (.), respectively, and obtained some sufficient condi-
tions for the existence of infinitelymany radial positive entire solutionswith the prescribed
asymptotic behavior at infinity. In most of the works mentioned above, the authors used
the operator � : C[,∞) → C[,∞),

(�h)(t) =
∫ t


s ln

(
s
t

)
h(s)ds, t ≥ , (.)

which was first represented in [], and the fixed point theorem to obtain their main re-
sults. For N = , by a direct computation, one can easily see that

L (�h)(t) = h(t), t ≥ .

In this paper, we discuss the multiplicity of positive radially symmetric solutions for the
problem (P), namely, problem (.)-(.). The main purpose of this paper is to investigate
the existence, nonexistence and multiplicity of positive solutions of problem (.)-(.).
Different from some known works, the equation we consider is quasilinear and it might
have degeneracy or singularity. In fact, if p > , the equation is degenerate at the points
where L u = ; while if  < p < , then the equation has singularity at the points where
L u = . And for the restrictions of the boundary value conditions, the above-mentioned
operator � in (.), which is suitable for the entire space, is inappropriate in this paper.
Hence, we propose a new analogue of the operator � and apply the fixed point index the-
ory combining with the upper and lower solutions method to investigate the multiplicity
of positive radially symmetric solutions for the problem (P).
Assume that
(H) f : [, +∞) → (, +∞) is continuous and nondecreasing on [, +∞). Furthermore,

there exist δ >  and m > p –  such that f (s) > δsm, s ∈ [, +∞);
(H) g : (, )→ (, +∞) is continuous,  <

∫ 
 s

N–(s–N – )g(s)ds < +∞, and g(s) 	≡ 
on any subinterval of (, ).

The main result of this paper is the following.
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Theorem  Let (H) and (H) hold true. Then there exists a threshold  < λ∗ < +∞ such
that problem (.)-(.) has no positive solution for λ > λ∗, has at least one positive solution
for  < λ ≤ λ∗, and especially has at least two positive solutions for  < λ < λ∗.

This paper is organized as follows. As preliminaries, we state some necessary lemmas
in Section . In the last section, we apply the fixed point index theory and the upper and
lower solutions method to prove the main result.

2 Preliminaries
In this section, we first present the necessary definitions and introduce some auxiliary
lemmas, including those from the fixed point index theory and the theory based on the
upper and lower solutions method.

Definition  Let u(t) ∈ C[, ]∩C(, ). We say that u is a positive solution of problem
(.)-(.) if it satisfies (.)-(.) and u(t) >  on (, ).

Let E = C[, ] be a real Banach space with the norm ‖u‖ =max≤t≤ |u(t)| and

P =
{
u ∈ E : u(t) ≥ , t ∈ [, ]

}
.

It is clear that P is a normal cone of E. Consider the following equation

T x = x, (.)

where T : E → E is an operator defined on the Banach space E.

Definition  We say that u is an upper solution of equation (.) if it satisfies

T u ≤ u.

If we change ‘≤’ in the above inequality by ‘≥’, we can obtain the definition of a lower
solution.
We say that u is a solution of problem (.), if u is an upper solution and is also a lower

solution.

Throughout this paper, the main tools, which can be used to obtain the multiplicity of
solutions for the problem, are the following two lemmas related to the fixed point index
theory and the theory based on upper and lower solutions method, respectively, see [].

Lemma  Let P be a cone in a real Banach space E, let � be a bounded open subset of E
with  ∈ �, and let A : P ∩ � → P be a completely continuous operator. If

Ax = μx, x ∈ P ∩ ∂� ⇒ μ ∈ (, ),

then i(A,P ∩ �,P) = ; while if infx∈P∩∂� ‖Ax‖ >  and

Ax = μx, x ∈ P ∩ ∂� ⇒ μ /∈ (, ],

then i(A,P ∩ �,P) = .
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Lemma  Suppose that X is a partially ordered Banach space, D is a normal subset of X,
and A : D → X is a monotonic increasing complete continuous operator. If there exist x
and y ∈ D such that x ≤ y, 〈x, y〉 ∈D, x, y are the lower and the upper solution of the
equation

x –Ax = ,

respectively, then the above equation has a minimum solution x∗ and amaximum solution
y∗ in the ordered interval 〈x, y〉, and x∗ ≤ y∗.

We also need the following technical lemma on the property of the function f , see [].

Lemma  Suppose that f : [, +∞) → (, +∞) is continuous. For s >  and M > , there
exist s > s and h >  such that

sf (u + h) < sf (u), u ∈ [,M],h ∈ (,h).

In order to show the existence of the solutions, it is necessary to construct an appropriate
operator and solve the corresponding operator equation. For this purpose, we notice that
u is a solution of problem (.)-(.) if and only if u is a solution of the following problem:

L v = λg(t)f (u),  < t < , (.)

L u = ϕq(v),  < t < , (.)

v′() =  = v(), (.)

u′() =  = u(), (.)

where ϕq(s) = |s|q–s, /p + /q = . By (.) and (.), v(t) can be expressed by

v(τ ) = –λ

∫ 

τ

(∫ θ



(
s
θ

)N–

g(s)f
(
u(s)

)
ds

)
dθ . (.)

By (.) and the following formula of Dirichlet integral

∫ b

a

(∫ x

a
f (x, y)dy

)
dx =

∫ b

a

(∫ b

y
f (x, y)dx

)
dy,

we have

v(τ ) = –λ

∫ 

τ

(∫ τ



(
s
θ

)N–

g(s)f
(
u(s)

)
ds

)
dθ – λ

∫ 

τ

(∫ θ

τ

(
s
θ

)N–

g(s)f
(
u(s)

)
ds

)
dθ

= –
λ

N – 

∫ τ


sN–(τ –N – 

)
g(s)f

(
u(s)

)
ds

–
λ

N – 

∫ 

τ

sN–(s–N – 
)
g(s)f

(
u(s)

)
ds

= –λ

∫ 


k(τ , s)g(s)f

(
u(s)

)
ds,
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where k(τ , s) is defined as follows:

k(τ , s) =

{
sN–(τ–N–)

N– , ≤ s ≤ τ ≤ ,
sN–(s–N–)

N– ,  ≤ τ ≤ s ≤ .

It is easy to prove that k(τ , s) has the following properties.

Proposition  For all τ , s ∈ [, ], we have
(i) k(τ , s) >  for (τ , s) ∈ (, )× (, );
(ii) k(τ , s)≤ k(s, s) = sN–(s–N–)

N– = s–sN–

N– for  ≤ τ , s≤ ;
(iii) ≤ k(τ , s)≤ (N – )(N – )–(N–)/(N–).

Proof We can easily obtain (i) and (ii) from the definition of k(τ , s). Now, we prove the
conclusion (iii). Let q(s) = k(s, s). We can see that

q() = , q() = lim
s→+

g(s) = ,

and

q(s) >  for  < s < .

So there exists s such that max≤s≤ q(s) = g(s), where s satisfies g ′(s) = . Hence, s =
(N – )–/(N–) and g(s) = (N – )(N – )–(N–)/(N–). The proof is complete. �

Then u(t) can be expressed by

u(t) = λ


p–

∫ 


k(t, τ )ϕq

(∫ 


k(τ , s)g(s)f

(
u(s)

)
ds

)
dτ . (.)

Next, we consider the following problem:

L
(|L u|p–L u

)
= λg(t)f (u), t = |x|,  < t < , (.)

u′() = , u() = h≥ ,
(|L u|p–L u

)′|t= =
(|L u|p–L u

)|t= = . (.)

We can define an integral operator T h
λ : E → E, which is related to problem (.)-(.) by

(
T h

λ u
)
(t) = h + λ


p–

∫ 


k(t, τ )ϕq

(∫ 


k(τ , s)g(s)f

(
u(s)

)
ds

)
dτ . (.)

By (.), it is easy to obtain the following lemma, which is proved by a direct computa-
tion.

Lemma  Let (H) and (H) hold true. Then problem (.)-(.) has a solution u if and
only if u is a fixed point of T 

λ . And equations (.)-(.) have a solution u if and only if u
is a fixed point of T h

λ .

Now, we discuss the properties of the function (T h
λ u)(t) for u ∈ P.

http://www.journalofinequalitiesandapplications.com/content/2013/1/588
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Lemma  Let u be a positive solution of problem (.)-(.). Then

‖u‖ = (
T h

λ u
)
(),

i.e.,

‖u‖ = h + λ


p–

∫ 


k(τ , τ )ϕq

(∫ 


k(τ , s)g(s)f

(
u(s)

)
ds

)
dτ .

Proof By Lemma , we have

uλ(t) =
(
T h

λ u
)
(t) = h + λ


p–

∫ 


k(t, τ )ϕq

(∫ 


k(τ , s)g(s)f

(
u(s)

)
ds

)
dτ .

Since

(
T h

λ u
)
(t) = h + λ


p–

(∫ t



τN–(t–N – )
N – 

ϕq

(∫ 


k(τ , s)g(s)f

(
u(s)

)
ds

)
dτ

+
∫ 

t

τN–(τ –N – )
N – 

ϕq

(∫ 


k(τ , s)g(s)f

(
u(s)

)
ds

)
dτ

)
,

we have

u′(t) =
(
T h

λ u
)′(t) = –λ


p–

∫ t



τN–

tN– ϕq

(∫ 


k(τ , s)g(s)f

(
u(s)

)
ds

)
dτ (.)

for any t ∈ (, ], and

u′() = – lim
t→+

λ


p– tϕq

(∫ 


k(t, s)g(s)f

(
u(s)

)
ds

)
= .

Consequently, uλ(t) is a strictly decreasing function on [, ]. Hence

∥∥u(t)∥∥ =
(
T h

λ u
)
() = h + λ


p–

∫ 


k(τ , τ )ϕq

(∫ 


k(τ , s)g(s)f

(
u(s)

)
ds

)
dτ . �

Lemma  Assume {un} ⊂ P, u ∈ P, and ‖un – u‖ →  as n → +∞. Then there exists θn ∈
(, ) such that

(
T h

λ un
)′′(θn) =  and

(
T h

λ un
)′′(t) <  for t ∈ [, θn).

Furthermore,

lim
n→∞

(
T h

λ u
)′′(θn) =  and θn → θ ,

where θ ∈ (, ) and satisfies

(
T h

λ u
)′′(θ ) =  and

(
T h

λ u
)′′(t) <  for t ∈ [, θ ).

http://www.journalofinequalitiesandapplications.com/content/2013/1/588
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Proof First, we want to prove that for any un ∈ P, there exists θn ∈ (, ) such that
(T h

λ un)′′(θn) =  and (T h
λ un)′′(t) <  for t ∈ [, θn).

From the proof of Lemma , we have

(
T h

λ un
)′(t) = –λ


p–

∫ t



τN–

tN– ϕq

(∫ 


k(τ , s)g(s)f

(
un(s)

)
ds

)
dτ . (.)

And therefore the function T h
λ un(t) is decreasing, and maxt∈[,](T h

λ un)(t) = (T h
λ un)(),

and (T h
λ un)′() = . From (.), we have

(
T h

λ un
)′′(t) = λ


p– (N – )

∫ t



τN–

tN
ϕq

(∫ 


k(τ , s)g(s)f

(
un(s)

)
ds

)
dτ

– λ


p– ϕq

(∫ 


k(t, s)g(s)f

(
un(s)

)
ds

)
. (.)

From (.), using L’Hospital’s rule, we can derive that for any un ∈ P,

(
T h

λ un
)′′() = lim

t→+

(
T 

λ un
)′′(t)

= lim
t→+

λ


p–

(
(N – )

∫ t



τN–

tN
ϕq

(∫ 


k(τ , s)g(s)f

(
un(s)

)
ds

)
dτ

– ϕq

(∫ 


k(t, s)g(s)f

(
un(s)

)
ds

))

= –

N

ϕq

(∫ 



sN–(s–N – )
N – 

g(s)f
(
un(s)

)
ds

)

≤ –

N

ϕq

(∫ 



sN–(s–N – )
N – 

g(s)f ()ds
)
< 

for any u ∈ P, which together with the following equation

(
T h

λ un
)′′() = λ


p– (N – )

∫ 


τN–ϕq

(∫ 


k(τ , s)g(s)f

(
un(s)

)
ds

)
dτ > ,

implies that for any un ∈ P, there exists θn ∈ (, ) such that (T h
λ un)′′(θn) =  and

(T h
λ un)′′(t) <  for t ∈ [, θn).
Next, we are going to prove the remainder of Lemma . By (.), we have Lemma . By

(.), we have

∣∣(T h
λ un

)′′(t) –
(
T h

λ u
)′′(t)

∣∣
≤ λ


p– (N – )

∫ t



τN–

tN

∣∣∣∣ϕq

(∫ 


k(τ , s)g(s)f

(
un(s)

)
ds

)

– ϕq

(∫ 


k(τ , s)g(s)f

(
u(s)

)
ds

)∣∣∣∣dτ

+ λ


p–

∣∣∣∣ϕq

(∫ 


k(t, s)g(s)f

(
un(s)

)
ds

)
– ϕq

(∫ 


k(t, s)g(s)f

(
u(s)

)
ds

)∣∣∣∣
≤ N – 

N
λ


p– sup

t∈[,]

∣∣∣∣ϕq

(∫ 


k(t, s)g(s)f

(
un(s)

)
ds

)
– ϕq

(∫ 


k(t, s)g(s)f

(
u(s)

)
ds

)∣∣∣∣.
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We see that un,u ∈ P, which implies that ‖u‖, ‖un‖ are bounded respectively. And by
‖un – u‖ → , we immediately infer that {un(t)} are bounded uniformly. Then there must
exist M >  such that |un(t)| <M, |u(t)| <M for any t ∈ [, ]. Due to the continuity of
f (u), we see that f (un) is continuous and bounded uniformly in [,M]. Together with the
continuity of ϕq(s), (H), (H), and by using the Lebesgue dominated convergence theo-
rem, it is not difficult to infer that ‖(T h

λ un)′′ – (T h
λ u)′′‖ → . Hence, we have

∣∣(T h
λ u

)′′(θn)
∣∣ = ∣∣(T h

λ u
)′′(θn) –

(
T h

λ un
)′′(θn)

∣∣ ≤ ∥∥(
T h

λ un
)′′ –

(
T h

λ u
)′′∥∥ → .

By the front argumentation, (T h
λ u)′′(t) =  has a null point θ ∈ (, ) and (T h

λ u)′′(t) <  for
t ∈ [, θ ). If θn � θ , then there must exist a subsequence {θnk } of {θn} such that θnk ≤ θ

and θnk → θ∗ < θ . Due to |(T h
λ u)′′(θn)| → , by the continuity of (T h

λ u)′′, we then have
(T h

λ u)′′(θ∗) = , which contradicts the fact that (T h
λ u)′′(θ∗) < . �

Now, we can define a cone K ⊂ P,

K =
{
u ∈ P; min

t∈[  θ ,  θ ]
u(t) ≥ /‖u‖

}
,

where θ is defined in Lemma . It is clear that the nonnegative continuous concave func-
tions are in K.
In order to apply the fixed point index theory, the following two lemmas, which relate

to the monotonicity and the continuity of the operator T h
λ , are necessary. The proofs of

Lemma  can be obtained immediately, by using (H) and (.) with some simple direct
computations.

Lemma  Let (H) and (H) hold true. Then the operator T h
λ defined by (.) is a mono-

tonic increasing operator, i.e., if u(t)≤ u(t), then T h
λ u ≤ T h

λ u, where ‘≤’ is the partial
order defined on K .

Lemma  Let (H) and (H) hold true. Then the operator T h
λ is completely continuous,

and T h
λ K ⊂ K .

Proof Firstly, we testify the complete continuity of T h
λ . Let {un} ⊂ K , u ∈ K with ‖un –

u‖ →  as n→ +∞. Then we have

∥∥(
T h

λ un
)
(t) –

(
T h

λ u
)
(t)

∥∥
≤ λ


p–

∫ 


k(t, τ )

∣∣∣∣ϕq

(∫ 


k(τ , s)g(s)f

(
un(s)

)
ds

)
– ϕq

(∫ 


k(τ , s)g(s)f

(
u(s)

)
ds

)∣∣∣∣dτ

≤ λ


p– sup
t∈[,]

∣∣∣∣ϕq

(∫ 


k(t, s)g(s)f

(
un(s)

)
ds

)
– ϕq

(∫ 


k(t, s)g(s)f

(
u(s)

)
ds

)∣∣∣∣.
Since ‖un – u‖ →  as n→ ∞ and un,u ∈ K , {un(t)} is bounded uniformly, then there ex-
ists a constantM >  such that |u(t)| ≤M, |un(t)| ≤M for any t ∈ [, ], n = , , . . . . Due
to the continuity of f (s), it follows that f (un) is bounded uniformly in [,M]. Moreover,
because of the continuity of ϕq(s), by the Lebesgue dominated convergence theorem and

http://www.journalofinequalitiesandapplications.com/content/2013/1/588
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(H), we have

∥∥T h
λ un –T h

λ u
∥∥ →  (n→ ∞).

Therefore, we see thatT h
λ is continuous. And the compactness of the operatorT h

λ is easily
obtained from the Arzela-Ascoli theorem.
Next, we want to obtainT h

λ K ⊂ K . For each u ∈ K , it is easy to check that (T h
λ u)′′(t) ≤ 

for  ≤ t ≤ θ ; (T h
λ u)(t) ≥  for  < t <  and maxt∈[,] T h

λ u(t) = T h
λ u(). It follows from

the concavity of (T h
λ u)(t) on [, θ ] that each point on the chord between (, (T h

λ u)()) and
(θ , (T h

λ u)(θ )) is below the graph of (T h
λ u)(t) on [, θ ]. Thus,

(
T h

λ u
)
(t) ≥ (

T h
λ u

)
() +

(T h
λ u)(θ ) – (T h

λ u)()
θ – 

t, t ∈
[
,



θ

]
.

Hence,

min
t∈[  θ ,  θ ]

(
T h

λ u
)
(t)≥ min

t∈[,  θ ]

(
T h

λ u
)
(t)

≥ min
t∈[,  θ ]

[(
T h

λ u
)
() +

(T h
λ u)(θ ) – (T h

λ u)()
θ – 

t
]

= min
t∈[,  θ ]

[
(θ – t)(T h

λ u)() + t(T h
λ u)(θ )

θ

]

≥ 

(
T h

λ u
)
()

=


∥∥T h

λ u
∥∥,

which implies (T h
λ u)(t) ∈ K . Hence, we obtain T h

λ K ⊂ K . �

Define

S =
{
λ > ; such that problem (.)-(.) has at least one positive solution

}
.

Now, we give the a priori estimates on the positive solutions of problem (.)-(.).

Lemma  Let (H) and (H) hold true. And suppose that λ ∈ S, S = (λ, +∞) ∩ S 	≡ ∅.
Then there exists R(λ) >  such that ‖uλ′ ‖ ≤ R(λ), where λ′ ∈ S, and uλ′ ∈ K is a solution
of problem (.)-(.) with λ′ instead of λ.

Proof For any fixed λ′ ∈ S, let uλ′ be a positive solution of problem (.)-(.). Then, by
Lemma , we have

uλ′ (t) =T 
λ′ uλ′ (t)

=
(
λ′) 

p–

∫ 


k(t, τ )ϕq

(∫ 


k(τ , s)g(s)f

(
uλ′ (s)

)
ds

)
dτ .
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Let

R(λ) = max

{(
λ


p–

∫ 
 θ


 θ

k(τ , τ )ϕq

((



)m (θ/)–N – 
(θ/)–N – 

×
∫ 

 θ


 θ

k(s, s)g(s)δ ds
)
dτ

)– p–
m–p+

, 
}
.

We claim that ‖u′
λ‖ ≤ R(λ). Indeed, if ‖uλ′ ‖ < , the result is easily obtained; while if

‖uλ′ ‖ ≥ , by (H) and Lemma , we have

‖uλ′ ‖ = (
λ′) 

p–

∫ 


k(τ , τ )ϕq

(∫ 


k(τ , s)g(s)f

(
uλ′ (s)

)
ds

)
dτ

≥ λ


p–

∫ 
 θ


 θ

k(τ , τ )ϕq

((



)m (θ/)–N – 
(θ/)–N – 

‖uλ′ ‖m
∫ 

 θ


 θ

k(s, s)g(s)δ ds
)
dτ

≥ λ


p– ‖uλ′ ‖m/(p–)
∫ 

 θ


 θ

k(τ , τ )ϕq

((



)m (θ/)–N – 
(θ/)–N – 

∫ 
 θ


 θ

k(s, s)g(s)δ ds
)
dτ .

Consequently,

‖uλ′ ‖m/(p–)– ≤ λ


p–

∫ 
 θ


 θ

k(τ , τ )ϕq

((



)m (θ/)–N – 
(θ/)–N – 

∫ 
 θ


 θ

k(s, s)g(s)δ ds
)
dτ ,

‖uλ′ ‖ ≤
(

λ


p–

∫ 
 θ


 θ

k(τ , τ )ϕq

((



)m (θ/)–N – 
(θ/)–N – 

×
∫ 

 θ


 θ

k(s, s)g(s)δ ds
)
dτ

)–(p–)/(m–p+)

.

Therefore, ‖uλ′ ‖ ≤ R(λ). �

3 Existence of positive solutions
In this section, we give the proof of the main result, that is, Theorem . The proof will be
divided into two parts. Firstly, by the upper and lower solutionsmethod, we investigate the
basic existence of positive solutions of problem (.)-(.). Exactly, we will determine the
threshold λ∗ of the parameter λ such that the problem is solvable if and only if  < λ ≤ λ∗.
Finally, by utilizing the fixed point index theory, we establish the multiplicity of positive
solutions for the case  < λ < λ∗.
We first present and prove the basic existence result of positive solutions of problem

(.)-(.).

Proposition  Let (H) and (H) hold true. Then there exists λ∗ = supS with  < λ∗ < +∞
such that problem (.)-(.) admits at least one positive solution for λ ∈ (,λ∗] and has no
positive solution for any λ > λ∗.
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Proof Let β(t) be a solution of the following problem:

L
(|L u|p–L u

)
= g(t),  < t < ,

u′() = u() =
(|L u|p–L u

)′|t= =
(|L u|p–L u

)
t= = .

By (.), it has

β(t) =
∫ 


k(t, τ )ϕq

(∫ 


k(τ , s)g(s)ds

)
dτ .

Let β =maxt∈[,] β(t). Combining (H) with (.), we obtain

T 
λ β(t) ≤ T 

λ β

= λ


p–

∫ 


k(t, τ )ϕq

(∫ 


k(τ , s)g(s)f (β)ds

)
dτ

≤ λ


p– f (β)


p–

∫ 


k(t, τ )ϕq

(∫ 


k(τ , s)g(s)ds

)
dτ

= β(t), for  < λ <


f (β)
,

which implies that β(t) is an upper solution of T 
λ . It is obvious that, for all t ∈ [, ],

α(t) ≡  is a lower solution of T 
λ , and α(t) ≤ β(t), t ∈ (, ). Hence, T 

λ : 〈α,β〉 → 〈α,β〉,
where 〈α,β〉 is the ordered interval in E. By Lemma , T 

λ has a fixed point uλ ∈ 〈α,β〉
for  < λ < 

f (β)
. Therefore uλ is a solution of problem (.)-(.). And then, for any  < λ <


f (β)

, we have λ ∈ S, which implies that S 	= ∅.
On the other hand, if λ ∈ S, then we must have (,λ) ⊂ S. In fact, let uλ be a solution

of problem (.)-(.). Then, by Lemma , we have

uλ (t) =T 
λuλ (t), t ∈ [, ].

Therefore, for any λ ∈ (,λ), by (.), we have

T 
λ uλ (t) = λ


p–

∫ 


k(t, τ )ϕq

(∫ 


k(τ , s)g(s)f

(
uλ (s)

)
ds

)
dτ

≤ λ


p–


∫ 


k(t, τ )ϕq

(∫ 


k(τ , s)g(s)f

(
uλ (s)

)
ds

)
dτ

=T 
λuλ (t)

= uλ (t),

which implies that uλ is an upper solution of T 
λ . Combining this with the fact that

for t ∈ [, ], α(t) ≡  is a lower solution of T 
λ , and therefore, by Lemma , Lemma ,

Lemma  and Lemma , problem (.)-(.) has a solution, therefore λ ∈ S, which implies
that (,λ) ⊂ S.
Now, we claim that supS < +∞. If this were not true, then we would have N ⊂ S, where

N denotes a natural number. Therefore, for any n ∈N, by the definition of S and Lemma ,

http://www.journalofinequalitiesandapplications.com/content/2013/1/588
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there exists un ∈ K satisfying

un =T 
n un = n


p–

∫ 


k(t, τ )ϕq

(∫ 


k(τ , s)g(s)f

(
un(s)

)
ds

)
dτ .

If ‖un‖ ≥ , by Lemma , we have

‖un‖ = n


p–

∫ 


k(τ , τ )ϕq

(∫ 


k(τ , s)g(s)f

(
un(s)

)
ds

)
dτ

≥ n


p–

∫ 
 θ


 θ

k(τ , τ )ϕq

((



)m (θ/)–N – 
(θ/)–N – 

‖un‖m
∫ 

 θ


 θ

δk(s, s)g(s)ds
)
dτ

≥ ‖u‖ m
p– n


p–

∫ 
 θ


 θ

k(τ , τ )ϕq

((



)m (θ/)–N – 
(θ/)–N – 

∫ 
 θ


 θ

k(s, s)g(s)ds
)
dτ .

Consequently, we obtain

≥ n


p–

∫ 
 θ


 θ

k(τ , τ )ϕq

((



)m (θ/)–N – 
(θ/)–N – 

∫ 
 θ


 θ

k(s, s)g(s)ds
)
dτ . (.)

If ‖un‖ ≤ , by Lemma , we have

≥ ‖un‖

= n


p–

∫ 


k(τ , τ )ϕq

(∫ 


k(τ , s)g(s)f

(
un(s)

)
ds

)
dτ

≥ n


p–

∫ 
 θ


 θ

k(τ , τ )ϕq

(
(θ/)–N – 
(θ/)–N – 

∫ 
 θ


 θ

k(s, s)g(s)f
(
un(s)

)
ds

)
dτ

≥ n


p–

∫ 
 θ


 θ

k(τ , τ )ϕq

(
(θ/)–N – 
(θ/)–N – 

∫ 
 θ


 θ

k(s, s)g(s)f ()ds
)
dτ . (.)

Letting n → +∞ in (.)-(.), we can obtain the contradiction. Therefore we have supS <
+∞.
We are now in a position to determine the threshold λ∗. We conclude that

λ∗ = supS.

It remains to show that λ∗ ∈ S. Let{λn} ⊂ [ λ∗
 ,λ

∗), λn → λ∗ (n→ +∞), {λn} be an increas-
ing sequence. Suppose thatun is the solution of (.)-(.)with λn instead of λ. By Lemma,
there exists R( λ∗

 ) >  such that ‖un‖ ≤ R( λ∗
 ), n = , , . . . . Therefore, {un} is an equicontin-

uous and bounded uniformly subset in C[, ]. By the Ascoli-Arzela theorem, {un} has a
convergent subsequence.Without loss of generality, we suppose un → u∗ (n→ +∞). Since
un = T 

λnun, due to the continuity of f (u), we see that f (un) is continuous and bounded
uniformly in [,R( λ∗

 )], from which together with the continuity of ϕq(s) and (H), by the
Lebesgue dominated convergence theorem, we have u∗ =T 

λ∗u∗. Hence, by Lemma , u∗ is
a solution of problem (.)-(.) with λ∗ instead of λ. The proof is complete. �

Finally, we prove the main result in this paper.
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Proof of Theorem  The arguments are based on fixed point index theory. Exactly speak-
ing, we apply Lemma  to calculate the indexes of the corresponding operator in different
two domains, and then complete the proof by the index theory.
Let K be the set defined in the previous section, namely

K =
{
u ∈ P; min

t∈[  θ ,  θ ]
u(t) ≥ /‖u‖

}
.

To calculate the index of the operator T 
λ on some subset of K , we need to check the

validity of the conditions in Lemma .
Let α(t)≡ h̄ for t ∈ [, ]. It is obvious that for any fixed λ ∈ (,λ∗), α(t) is a lower solution

of the operatorT h̄
λ . On the other hand, by Lemma, there existsR(λ) >  such that ‖uλ′ ‖ ≤

R(λ), where λ′ ∈ [λ,λ∗] and uλ′ is a positive solution of problem (.)-(.) with λ′ instead
of λ. By Lemma , there exist λ ∈ (λ,λ∗) and h ∈ (, ) satisfying

λf (u + h̄) < λf (u), u ∈ [
,R(λ)

]
, h̄ ∈ (,h).

Let uλ be a positive solution of problem (.)-(.) with λ instead of λ, and uλ(t) = uλ + h̄,
h̄ ∈ (,h). Then

uλ(t) = uλ + h̄

= h̄ +
∫ 


k(t, τ )ϕq

(∫ 


k(τ , s)λg(s)f

(
uλ(s)

)
ds

)
dτ

≥ h̄ + λ


p–

∫ 


k(t, τ )ϕq

(∫ 


k(τ , s)g(s)f

(
uλ(s) + h̄

)
ds

)
dτ

=T h̄
λ uλ(t),

which implies that uλ(t) is an upper solution of the operator T h̄
λ . Then, by Lemma ,

Lemma  and Lemma , problem (.)-(.) has a positive solution. Let vλ(t) be a solution
of problem (.)-(.). Let � = {u(t) < vλ(t), t ∈ [, ]}. It is clear that � ⊂ K is a bounded
open set. If u ∈ ∂�, then there exists t ∈ [, ] such that u(t) = vλ(t). Therefore, for any
μ ≥ , h ∈ (,h), u ∈ ∂�, we have

T 
λ u(t) < h +T 

λ u(t) ≤ h +T 
λ vλ(t) =T h

λ vλ(t),

and by Lemma , it follows

T h
λ vλ(t) = vλ(t) = u(t) ≤ μu(t).

Hence, for any μ ≥ , we have T 
λ u 	= μu, u ∈ ∂�. Therefore, Lemma  implies that

i
(
T 

λ ,�,K
)
= . (.)

Now, we calculate the index of the operatorT 
λ on another relevant subset ofK . For this

purpose, we check the conditions of Lemma . Firstly, we check if condition () of Lemma 

http://www.journalofinequalitiesandapplications.com/content/2013/1/588
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is fulfilled. In fact, for any u ∈ K , by (H) and Lemma , we have

∥∥T 
λ u(t)

∥∥ = λ


p–

∫ 


k(τ , τ )ϕq

(∫ 


k(τ , s)g(s)f

(
u(s)

)
ds

)
dτ

≥ λ


p–

∫ 
 θ


 θ

k(τ , τ )ϕq

((



)m (θ/)–N – 
(θ/)–N – 

‖uλ‖m
∫ 

 θ


 θ

k(s, s)g(s)δ ds
)
dτ

≥ λ


p– ‖uλ‖m/(p–)
∫ 

 θ


 θ

k(τ , τ )ϕq

((



)m (θ/)–N – 
(θ/)–N – 

×
∫ 

 θ


 θ

k(s, s)g(s)δ ds
)
dτ

≥ ‖u‖m–p+
p– λ


p–

∫ 
 θ


 θ

k(τ , τ )ϕq

((



)m (θ/)–N – 
(θ/)–N – 

×
∫ 

 θ


 θ

k(s, s)g(s)δ ds
)
dτ‖u‖. (.)

Choose R >  such that

R
m–p+
p– λ


p–

∫ 
 θ


 θ

k(τ , τ )ϕq

((



)m (θ/)–N – 
(θ/)–N – 

∫ 
 θ


 θ

k(s, s)g(s)δ ds
)
dτ > .

Therefore, for any R > R >  and BR ⊂ K , by (.) we have

∥∥T 
λ u

∥∥ > ‖u‖ > , u ∈ ∂BR, (.)

where BR = {u ∈ K |‖u‖ < R}. If there exist u ∈ K ∩ ∂BR and  < μ ≤  such that T 
λ u =

μu, then we can obtain ‖T 
λ u‖ ≤ ‖u‖, which conflicts with (.). Therefore μ /∈ (, ].

By using Lemma , we have

i
(
T 

λ ,BR,K
)
= . (.)

Consequently, by the additivity of the fixed point index, we get

 = i
(
T 

λ ,BR,K
)
= i

(
T 

λ ,�,K
)
+ i

(
T 

λ ,BR\�,K
)
.

Since i(T 
λ ,�,K ) = , i(T 

λ ,BR\�,K ) = –. Therefore, there is a fixed point of T 
λ in �

and a fixed point ofT 
λ in BR\�, respectively. Finally, by utilizing Lemma , it follows that

(.)-(.) has at least two positive solutions for the case λ ∈ (,λ∗), which combined with
Proposition  yields Theorem . �
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