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Abstract
In this paper, we prove that for a transcendental entire function f (z) of finite order
such that λ(f – a(z)) < σ (f ), where a(z) is an entire function and satisfies σ (a(z)) < 1, n
is a positive integer and if �n

ηf (z) and f (z) share the function a(z) CM, where η (∈C)
satisfies �n

ηf (z) �≡ 0, then

a(z)≡ 0 and f (z) = cec1z ,

where c, c1 are two nonzero constants.
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1 Introduction and results
In this paper, we assume that the reader is familiar with the fundamental results and the
standard notations of Nevanlinna’s value distribution theory of meromorphic functions
(see [–]). In addition, we use the notation λ(f ) for the exponent of convergence of the
sequence of zeros of a meromorphic function f , and σ (f ) to denote the order growth of f .
For a nonzero constant η, the forward differences �n

ηf (z) are defined (see [, ]) by

�ηf (z) = �
ηf (z) = f (z + η) – f (z) and

�n+
η f (z) = �n

ηf (z + η) –�n
ηf (z), n = , , . . . .

Throughout this paper, we denote by S(r, f ) any function satisfying S(r, f ) = o(T(r, f )) as
r → ∞, possibly outside a set of r of finite logarithmic measure. A meromorphic function
α(z) is said to be a small function of f (z) if T(r,α(z)) = S(r, f ), and we denote by S(f ) the
set of functions which are small compared to f (z).
Let f and g be two nonconstant meromorphic functions, and let a ∈ C. We say that

f and g share the value a CM (IM) provided that f – a and g – a have the same zeros
counting multiplicities (ignoring multiplicities), that f and g share the value ∞ CM (IM)
provided that f and g have the same poles counting multiplicities (ignoring multiplici-
ties). Using the same method, we can define that f and g share the function a(z) CM (IM),
where a(z) ∈ S(f )∩S(g). Nevanlinna’s four values theorem [] says that if two nonconstant
meromorphic functions f and g share four values CM, then f ≡ g or f is a Möbius trans-
formation of g . The condition ‘f and g share four values CM’ has been weakened to ‘f and
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g share two values CM and two values IM’ by Gundersen [, ], as well as by Mues [].
But whether the condition can be weakened to ‘f and g share three values IM and another
value CM’ is still an open question.
In the special case, we recall a well-known conjecture by Brück [].

Conjecture Let f be a nonconstant entire function such that hyper order σ(f ) < ∞ and
σ(f ) is not a positive integer. If f and f ′ share the finite value a CM, then

f ′ – a = c(f – a),

where c is a nonzero constant.

The notation σ(f ) denotes hyper-order (see []) of f (z) which is defined by

σ(f ) = lim
r→∞

log logT(r, f )
log r

.

The conjecture has been verified in the special cases when a =  [], or when f is of
finite order [], or when σ(f ) < 

 [].
Recently, many authors [–] started to consider sharing values ofmeromorphic func-

tions with their shifts. Heittokangas et al. proved the following theorems.

TheoremA (See []) Let f be a meromorphic function with σ (f ) < , and let c ∈C. If f (z)
and f (z + c) share the values a (∈C) and ∞ CM, then

f (z + c) – a = τ
(
f (z) – a

)

for some constant τ .

In [], Heittokangas et al. give the example f (z) = ez +  which shows that σ (f ) < 
cannot be relaxed to σ (f ) ≤ .

Theorem B (See []) Let f be a meromorphic function of finite order, let c ∈ C. If f (z)
and f (z+ c) share three distinct periodic functions a,a,a ∈ Ŝ(f ) with period c CM (where
Ŝ(f ) = S(f )∪ {∞}), then f (z) = f (z + c) for all z ∈C.

Recently, many results of complex difference equations have been rapidly obtained
(see [–]). In the present paper, we utilize a complex difference equation to consider
uniqueness problems.
Themain purpose of this paper is to utilize a complex difference equation to study prob-

lems concerning sharing values of meromorphic functions and their differences. It is well
known that�ηf (z) = f (z+η)– f (z) (where η (∈C) is a constant satisfying f (z+η)– f (z) �≡ )
is regarded as the difference counterpart of f ′. So, Chen and Yi [] considered the prob-
lem that �ηf (z) and f (z) share one value a CM and proved the following theorem.

Theorem C (See []) Let f be a finite order transcendental entire function which has a
finite Borel exceptional value a, and let η (∈ C) be a constant such that f (z + η) �≡ f (z). If

http://www.journalofinequalitiesandapplications.com/content/2013/1/587
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�ηf (z) = f (z + η) – f (z) and f (z) share the value a CM, then

a =  and
f (z + η) – f (z)

f (z)
= A,

where A is a nonzero constant.

Question  What can be said if we consider the forward difference �n
ηf (z) and f (z) share

one value or one small function?

In this paper, we answer Question  and prove the following theorem.

Theorem. Let f (z) be a finite order transcendental entire function such that λ(f –a(z)) <
σ (f ), where a(z) is an entire function and satisfies σ (a) < . Let n be a positive integer. If
�n

ηf (z) and f (z) share a(z) CM, where η (∈C) satisfies �n
ηf (z) �≡ , then

a(z) ≡  and f (z) = cecz,

where c, c are two nonzero constants.

In the special case, if we take a(z) ≡ a in Theorem ., we can get the following corollary.

Corollary . Let f (z) be a finite order transcendental entire function which has a finite
Borel exceptional value a. Let n be a positive integer. If �n

ηf (z) and f (z) share value a CM,
where η (∈C) satisfies �n

ηf (z) �≡ , then

a =  and f (z) = cecz,

where c, c are two nonzero constants.

Remark . From Corollary ., we know that �n
η f (z)
f (z) = (ecη – )n and it shows that the

quotient of �n
ηf (z) and f (z) is related to η, n and c, but not related to c. On the other

hand, Corollary . shows that if f has a nonzero finite Borel exceptional value b∗, then,
for any constant η satisfying �n

ηf (z) �≡ , the value b∗ is not shared CM by �n
ηf (z) and f (z).

See the following example.

Example . Suppose that f (z) = ez + b∗, where b∗ is a nonzero finite value. Then f has
a nonzero finite Borel exceptional value b∗. For any η �= kπ i, k ∈ Z, the value b∗ is not
shared CM by �n

ηf (z) and f (z). Observe that �n
ηf (z) =

∑n
j=(–)jC

j
nf (z+ (n– j)η), where Cj

n

are the binomial coefficients. Thus, for any η �= kπ i, k ∈ Z, we have �n
ηf (z) = (eη – )n · ez .

Thus, we can see that f (z) – b∗ = ez has no zero, but �n
ηf (z) – b∗ = (eη – )nez – b∗ has

infinitely many zeros. Hence, the value b∗ is not shared CM by �n
ηf (z) and f (z).

In the special case, if we take n =  in Theorem . and n =  in Corollary ., we can
obtain the following corollaries.

Corollary . Let f (z) be a finite order transcendental entire function such that λ(f –
a(z)) < σ (f ),where a(z) is an entire function and satisfies σ (a) < . If �ηf (z) = f (z+η) – f (z)

http://www.journalofinequalitiesandapplications.com/content/2013/1/587
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and f (z) share a(z) CM, where η (∈C) satisfies f (z + η) �≡ f (z), then

a(z) ≡  and f (z) = cecz,

where c, c are two nonzero constants.

Corollary . Let f (z) be a finite order transcendental entire function which has a finite
Borel exceptional value a. If �ηf (z) = f (z + η) – f (z) and f (z) share value a CM, where η

(∈C) satisfies f (z + η) �≡ f (z), then

a =  and f (z) = cecz,

where c, c are two nonzero constants.

Remark . The Corollary . shows that if a nonzero polynomial a(z) satisfies λ(f – a) <
σ (f ), then a(z) is not shared CM by �f (z) and f (z). For example, if we take a(z) ≡ z, and
λ(f – z) < σ (f ) holds, then �f (z) and f (z) do not have any common fixed point (counting
multiplicities). See the following example.

Example . Suppose that f (z) = ez + z. Then f (z) satisfies λ(f (z) – z) =  <  = σ (f ) and
has no fixed point. But for any η �= kπ i, k ∈ Z, the function �ηf (z) = f (z + η) – f (z) =
(eη – )ez + η has infinitely many fixed points by Milloux’s theorem (see [, ]). Hence, the
nonzero polynomial a(z)≡ z is not shared CM by �ηf (z) and f (z).

Remark . From Corollary ., we can see that under the hypothesis of Theorem C,
we can get the expression of f (z), that is, f (z) = cecz . Thus, we know that the constant
A in Theorem C is related to η and c, but not related to c. Actually, from the proof of
Lemma ., we have A = ecη –  (obviously, we can obtain A �= –). Hence, Corollary .
contains and improves Theorem C. Obviously, Theorem . generalizes Theorem C.

2 Lemmas for the proof of theorems
Lemma. (See []) Let f be ameromorphic function with a finite order σ , η be a nonzero
constant. Let ε >  be given, then there exists a subset E ⊂ (,∞) with finite logarithmic
measure such that for all z satisfying |z| = r /∈ E ∪ [, ], we have

exp
{
–rσ–+ε

} ≤
∣∣∣∣ f (z + η)

f (z)

∣∣∣∣ ≤ exp
{
rσ–+ε

}
.

Lemma . (See [, ]) Suppose that n ≥  and let f(z), . . . , fn(z) be meromorphic func-
tions and g(z), . . . , gn(z) be entire functions such that

(i)
∑n

j= fj(z) exp{gj(z)} = ;
(ii) when ≤ j < k ≤ n, gj(z) – gk(z) is not constant;
(iii) when ≤ j ≤ n, ≤ h < k ≤ n,

T(r, fj) = o
{
T

(
r, exp{gh – gk}

)}
(r → ∞, r /∈ E),

where E ⊂ (,∞) has finite linear measure or logarithmic measure.
Then fj(z) ≡ , j = , . . . ,n.

http://www.journalofinequalitiesandapplications.com/content/2013/1/587
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ε-set Following Hayman [], we define an ε-set to be a countable union of open discs
not containing the origin and subtending angles at the origin whose sum is finite. If E is
an ε-set, then the set of r ≥ , for which the circle S(, r) meets E, has finite logarithmic
measure, and for almost all real θ , the intersection of E with the ray arg z = θ is bounded.

Lemma . (See []) Let f be a function transcendental and meromorphic in the plane of
order < . Let h > . Then there exists an ε-set E such that

f (z + c) – f (z) = cf ′(z)
(
 + o()

)
as z → ∞ in C\E,

uniformly in c for |c| ≤ h.

Lemma . (See []) Let f be a transcendental meromorphic solution of finite order ρ of
a difference equation of the form

U(z, f )P(z, f ) =Q(z, f ),

where U(z, f ), P(z, f ), Q(z, f ) are difference polynomials such that the total degree
degU(z, f ) = n in f (z) and its shifts, and degQ(z, f ) ≤ n. Moreover, we assume that U(z, f )
contains just one term of maximal total degree in f (z) and its shifts. Then, for each ε > ,

m
(
r,P(z, f )

)
=O

(
rρ–+ε

)
+ S(r, f ),

possibly outside of an exceptional set of finite logarithmic measure.

Remark . From the proof of Lemma . in [], we can see that if the coefficients of
U(z, f ), P(z, f ),Q(z, f ), namely αλ(z), satisfym(r,αλ) = S(r, f ), then the same conclusion still
holds.

Lemma . (See []) Let Pn(z), . . . ,P(z) be polynomials such that PnP �≡  and satisfy

Pn(z) + · · · + P(z) �≡ . (.)

Then every finite order transcendental meromorphic solution f (z) ( �≡ ) of the equation

Pn(z)f (z + n) + Pn–(z)f (z + n – ) + · · · + P(z)f (z) =  (.)

satisfies σ (f )≥ , and f (z) assumes every nonzero value a ∈C infinitely often and λ(f –a) =
σ (f ).

Remark . If equation (.) satisfies condition (.) and all Pj(z) are constants, we can
easily see that equation (.) does not possess any nonzero polynomial solution.

Lemma . (See []) Let F(z),Pn(z), . . . ,P(z) be polynomials such that FPnP �≡ . Then
every finite order transcendental meromorphic solution f (z) ( �≡ ) of the equation

Pn(z)f (z + n) + Pn–(z)f (z + n – ) + · · · + P(z)f (z) = F (.)

satisfies λ(f ) = σ (f )≥ .

http://www.journalofinequalitiesandapplications.com/content/2013/1/587
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Remark . From the proof of Lemma . in [], we can see that if we replace f (z + j)
by f (z + jη) (j = , . . . ,n) in equation (.) or (.), then the corresponding conclusion still
holds.

Lemma . (See []) Let f be a function transcendental and meromorphic in the plane
which satisfies limr→∞

T(r,f )
r = . Then g(z) = f (z + ) – f (z) and G(z) = f (z+)–f (z)

f (z) are both
transcendental.

Remark . From the proof of Lemma . in [], we can see that, under the same hy-
potheses of Lemma ., we can obtain the following conclusion: �ηf (z) = f (z + η) – f (z)
and G(z) = �η f (z)

f (z) = f (z+η)–f (z)
f (z) are both transcendental.

Lemma . Let f (z) =H(z)ecz , where H(z) ( �≡ ) is an entire function such that σ (H) < 
and c is a nonzero constant. If �n

ηf (z) �≡  for some constant η, and

�n
ηf (z)
f (z)

= A (.)

holds, where A is a constant, then H(z) is a constant.

Proof From �n
ηf (z) �≡ , we can see that A �= . In order to prove that H(z) is a constant,

we only need to prove H ′(z) ≡ . Substituting f (z) =H(z)ecz into (.), we can obtain

n–∑
j=

(–)jCj
ne

(n–j)cηH
(
z + (n – j)η

)
+

(
(–)n –A

)
H(z) = . (.)

First, we assert that the sum of all coefficients of equation (.) is equal to zero, that is,

encη –C
ne

(n–)cη + · · · + (–)n–Cn–
n ecη +

(
(–)n –A

)
= . (.)

On the contrary, we suppose that

encη –C
ne

(n–)cη + · · · + (–)n–Cn–
n ecη +

(
(–)n –A

) �= .

Thus, applying Lemma. andRemarks .-. to (.), we have σ (H)≥ , a contradiction.
Hence, (.) holds. Thus, by (.) and (.), we have

n–∑
j=

(–)jCj
ne

(n–j)cη
(
H

(
z + (n – j)η

)
–H(z)

)
= . (.)

By Lemma ., we see that there exists an ε-set E such that for j = , , . . . ,n,

H(z + jη) –H(z) = jηH ′(z)
(
 + o()

)
as z → ∞ in C\E. (.)

Substituting (.) into (.), we can get

ηH ′(z) ·K + ηH ′(z) ·K · o() =  as z → ∞ in C\E, (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/587
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where K is a constant and satisfies

K = nencη –C
n(n – )e(n–)cη + · · · + (–)n–Cn–

n ecη + (–)n–Cn–
n ecη.

Secondly, we assert that K �= . If n = , then K = ecη �= ; if n ≥ , on the contrary, we
suppose that K = . Then, for j = , , . . . ,n – , noting that

Cj
n · (n – j) =

n! · (n – j)
(n – j)!j!

=
(n – )! · n
(n –  – j)!j!

= nCj
n–,

we have

n–∑
j=

(–)jCj
n(n – j)e(n–j)cη = necη

(
ecη – 

)n– = .

Thus, we can obtain from the equality above that ecη =  since n –  ≥ . By (.) we have
A = (ecη –)n = , which contradictsA �= . HenceK �=  and (.) impliesH ′(z) �≡ . Thus,
we can know that H(z) is a nonzero constant.
Thus, Lemma . is proved. �

Lemma . Suppose that f (z) is a finite order transcendental entire function such that
λ(f – a(z)) < σ (f ), where a(z) is an entire function and satisfies σ (a) < . Let n be a positive
integer. If �n

ηf (z) �≡  for some constant η (∈C), and

�n
ηf (z) – a(z)
f (z) – a(z)

= A (.)

holds, where A is a constant, then

a(z) ≡ , A �=  and f (z) = cecz,

where c, c are two nonzero constants.

Proof Since f (z) is a transcendental entire function of finite order and satisfies λ(f –a(z)) <
σ (f ), we can write f (z) in the form

f (z) = a(z) +H(z)eh(z), (.)

where H ( �≡ ) is an entire function, h is a polynomial with degh = k (k ≥ ), H and h
satisfy

λ(H) = σ (H) = λ
(
f – a(z)

)
< σ (f ) = degh. (.)

First, we assert that a(z) ≡ . Substituting (.) into (.), we can get that

�n
ηf (z) – a(z)
f (z) – a(z)

=
∑n

j=(–)jC
j
nH(z + (n – j)η)eh(z+(n–j)η) + b(z)

H(z)eh(z)
= A, (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/587
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where b(z) = �n
ηa(z) – a(z). Rewrite (.) in the form

n–∑
j=

(–)jCj
nH

(
z + (n – j)η

)
eh(z+(n–j)η)–h(z) +

(
(–)n –A

)
H(z) = –b(z)e–h(z). (.)

Suppose that b(z) �≡ . Then, from σ (H(z + (n – j)η)) = σ (H(z)) < degh(z) = k (j =
, , . . . ,n – ), deg(h(z + (n – j)η) – h(z)) = k –  and σ (b(z)) ≤ σ (a(z)) <  ≤ k, we can
see that the order of growth of the left-hand side of (.) is less than k, and the order
of growth of the right-hand side of (.) is equal to k. This is a contradiction. Hence,
b(z) ≡ �n

ηa(z) – a(z) ≡ . Namely,

a(z + nη) –C
na

(
z + (n – )η

)
+ · · · + (–)n–Cn–

n a(z + η) +
(
(–)n – 

)
a(z) = . (.)

Suppose that a(z) �≡ . Note that the sum of all coefficients of (.) does not vanish. Then
we can apply Lemma . and Remarks .-. to (.) and obtain σ (a(z))≥ , which con-
tradicts our hypothesis. Hence, a(z) ≡ . Thus, (.) can be rewritten as

�n
ηf (z)
f (z)

=
∑n

j=(–)jC
j
nH(z + (n – j)η)eh(z+(n–j)η)–h(z)

H(z)
= A. (.)

Secondly, we prove that A �= . In fact, if A = , we obtain from (.) that �n
ηf (z) ≡ ,

which contradicts our hypothesis.
Thirdly, we prove that σ (f ) = k = . On the contrary, we suppose that σ (f ) = k ≥ . Thus,

we will deduce a contradiction for cases A = (–)n and A �= (–)n, respectively.
Case . Suppose that A = (–)n. Thus, for a positive integer n, there are three subcases:

() n = ; () n = ; () n≥ .
Subcase .. Suppose that n = . Then, by A = –, we can obtain from (.) that

eh(z+η)–h(z) = ( +A) · H(z)
H(z + η)

≡ ,

a contradiction.
Subcase .. Suppose that n = . Then, by A = (–) =  and (.), we have

eh(z+η)–h(z+η) =
H(z + η)
H(z + η)

. (.)

Set Q(z) = H(z+η)
H(z+η) . Then, from (.), we can know that Q(z) is a nonconstant entire

function. Set σ (H) = σ. Then σ < σ (f ) = k. By Lemma ., we see that for any given ε

( < ε < k – σ), there exists a set E ⊂ (,∞) of finite logarithmic measure such that for
all z satisfying |z| = r /∈ [, ]∪ E, we have

exp
{
–rσ–+ε

} ≤
∣∣∣∣H(z + η)
H(z + η)

∣∣∣∣ ≤ exp
{
rσ–+ε

}
. (.)

Since Q(z) is an entire function, by (.), we have

T
(
r,Q(z)

)
=m

(
r,Q(z)

) ≤m
(
r,
H(z + η)
H(z + η)

)
+O()≤ rσ–+ε ,

http://www.journalofinequalitiesandapplications.com/content/2013/1/587
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so that σ (Q(z)) ≤ σ –  + ε < k – . Thus, by deg(h(z + η) – h(z)) = k –  and σ (Q) < k – ,
we can see that the order of growth of the left-hand side of (.) is equal to k – , and the
order of growth of the right-hand side of (.) is less than k – . This is a contradiction.
Subcase .. Suppose that n ≥ . Then we can obtain from (.) that

n–∑
j=

(–)jCj
n
H(z + (n – j)η)

H(z + η)
eh(z+(n–j)η)–h(z+η) + (–)n–Cn–

n = . (.)

Set Q(z) = eh(z+η)–h(z+η). Then Q(z) is a transcendental entire function since σ (Q(z)) =
k –  ≥ . For j = ,, . . . ,n, we have

eh(z+jη)–h(z+η) =Q
(
z + (j – )η

)
Q

(
z + (j – )η

) · · ·Q(z).

Thus, (.) can be rewritten as

U
(
z,Q(z)

) ·Q(z) = (–)nCn–
n , (.)

where

U
(
z,Q(z)

)
=
H(z + nη)
H(z + η)

Q
(
z + (n – )η

)
Q

(
z + (n – )η

) · · ·Q(z + η)

–C
n
H(z + (n – )η)

H(z + η)
Q

(
z + (n – )η

)
Q

(
z + (n – )η

) · · ·Q(z + η)

+ · · · + (–)n–Cn–
n

H(z + η)
H(z + η)

.

Noting that (–)nCn–
n �= , we can see that U(z,Q(z)) �≡ . Set σ (H) = σ. Then σ < k.

Since Q(z) is of regular growth and σ (Q(z)) = k – , for any given ε ( < ε < k – σ)
and all r > r (> ), we have

T
(
r,Q(z)

)
> rk––ε . (.)

By Lemma ., we see that for ε, there exists a set E ⊂ (,∞) of finite logarithmicmeasure
such that for all z satisfying |z| = r /∈ [, ]∪ E, we have

exp
{
–rσ–+ε

} ≤
∣∣∣∣H(z + jη)
H(z + η)

∣∣∣∣ ≤ exp
{
rσ–+ε

}
(j = , , . . . ,n). (.)

Thus, from (.) and (.), we can get that for j = , , . . . ,n,

m(r, H(z+jη)
H(z+η) )

T(r,Q(z))
≤ rσ–+ε

rk––ε
→ 

(
r → ∞ and r /∈ [, ]∪ E

)
,

that is,

m
(
r,
H(z + jη)
H(z + η)

)
= S(r,Q) (j = , , . . . ,n). (.)
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Noting that degQ U(z,Q) = n –  ≥  and by Lemma . and Remark ., we have

T(r,Q) =m(r,Q) = S(r,Q),

a contradiction.
Case . Suppose that A �= (–)n. Thus, for a positive integer n, there are two subcases:

() n = ; () n ≥ .
Subcase .. Suppose that n = . Thus, (.) can be rewritten as

H(z + η)
H(z)

=
(
A – (–)n

)
eh(z)–h(z+η) = (A + )eh(z)–h(z+η).

Noting theA+ �= , we can use the samemethod as in the proof of Subcase . and deduce
a contradiction.
Subcase .. Suppose that n≥ . Then we can obtain from (.) that

n–∑
j=

(–)jCj
n
H(z + (n – j)η)

H(z)
eh(z+(n–j)η)–h(z) + (–)n –A = . (.)

Set Q(z) = eh(z+η)–h(z). Then Q(z) is a transcendental entire function since σ (Q(z)) = k –
≥ . For j = , , . . . ,n, we have

eh(z+jη)–h(z) =Q
(
z + (j – )η

)
Q

(
z + (j – )η

) · · ·Q(z).

Thus, (.) can be rewritten as

U
(
z,Q(z)

) ·Q(z) = A – (–)n, (.)

where

U
(
z,Q(z)

)
=
H(z + nη)

H(z)
Q

(
z + (n – )η

)
Q

(
z + (n – )η

) · · ·Q(z + η)

–C
n
H(z + (n – )η)

H(z)
Q

(
z + (n – )η

)
Q

(
z + (n – )η

) · · ·Q(z + η)

+ · · · + (–)n–Cn–
n

H(z + η)
H(z)

.

We can see that U(z,Q(z)) �≡  since A – (–)n �= . Noting that degQ U(z,Q(z)) =
n–  ≥ , we can use the same method as in the proof of Subcase . and deduce a contra-
diction.
Thus, we have proved that σ (f ) = k = . And f (z) can be written as

f (z) =H(z)ecz+c =H∗(z)ecz, (.)

where c, c ( �= ) are two constants and H∗(z) = ecH(z) ( �≡ ) is an entire function and
satisfies

σ
(
H∗(z)

)
= λ

(
H∗(z)

)
= λ(f ) < σ (f ) = . (.)
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Thus, by (.), (.), (.) and Lemma ., we can get thatH∗(z) is a nonzero constant,
and so, f (z) can be written as

f (z) = cecz,

where c, c are two nonzero constants.
Thus, Lemma . is proved. �

Remark . From the proof of Lemma . or Remark ., we can see that A �= – in
Lemma . when n =  and Theorem C. Unfortunately, we cannot obtain A �= (–)n

when n ≥  in Lemma .. This is because we can get a contradiction from the equal-
ity ecη –  = –, but we cannot obtain a contradiction from the equality (ecη – )n = (–)n

when n≥ .

3 Proof of Theorem 1.1
By the hypotheses of Theorem ., we can write f (z) in the form (.), and (.) holds.
Since �n

ηf (z) and f (z) share an entire function a(z) CM, then

�n
ηf (z) – a(z)
f (z) – a(z)

=
∑n

j=(–)n–jC
j
nH(z + jη)eh(z+jη) + b(z)
H(z)eh(z)

= eP(z), (.)

where P(z) is a polynomial and b(z) = �n
ηa(z) – a(z). Obviously, σ (b(z))≤ σ (a(z)) < .

First step. We prove

�n
ηf (z) – a(z)
f (z) – a(z)

= A, (.)

where A ( �= ) is a constant. If P(z) ≡ , then, by (.), we see that (.) holds and A = .
Now suppose that P(z) �≡  and degP(z) = s. Set

h(z) = akzk + ak–zk– + · · · + a, P(z) = bszs + bs–zs– + · · · + b, (.)

where k = σ (f ) ≥ , ak (�= ),ak–, . . . ,a, bs (�= ),bs–, . . . ,b are constants. By (.), we can
see that  ≤ degP = s ≤ degh = k.
In this case, we prove that P(z) is a constant, that is, s = . To this end, we will deduce a

contradiction for the cases s = k and  ≤ s < k, respectively.
Case . Suppose that  ≤ s = k. Thus, there are two subcases: () a(z) �≡ ; () a(z) ≡ .
Subcase .. Suppose that a(z) �≡ . First we suppose that bk �= –ak . Then (.) is rewritten

as

g(z)eP(z) + ge–h(z) + geh(z) = , (.)

where h(z) ≡  and

g(z) = –H(z); g(z) = b(z); g(z) =
n∑
j=

(–)n–jCj
nH(z + jη)eh(z+jη)–h(z).
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Since σ (H) < k, σ (b) <  ≤ k and deg(h(z+ jη) – h(z)) = k –  (j = , , . . . ,n), we can see that
σ (gm(z)) < k (m = , , ). On the other hand, by bk �= –ak , we can see that deg(P – (–h)) =
deg(P – h) = deg(–h – h) = k. Since eP–(–h), eP–h and e–h–h are of regular growth, and
σ (gm) < k (m = , , ), we can see that form = , , ,

T(r, gm) = o
(
T

(
r, eP–(–h)

))
= o

(
T

(
r, eP–h

))
= o

(
T

(
r, e–h–h

))
. (.)

Thus, applying Lemma . to (.), by (.), we can obtain gm(z) ≡  (m = , , ). Clearly,
this is a contradiction.
Now we suppose that bk = –ak . Then (.) is rewritten as

[
H(z)eP(z)+h(z) – b(z)

]
e–h(z) =

n∑
j=

(–)n–jCj
nH(z + jη)eh(z+jη)–h(z). (.)

We affirm thatH(z)eP(z)+h(z) – b(z) �≡ . In fact, if H(z)eP(z)+h(z) – b(z) ≡ , then, by (.), we
can obtain

n∑
j=

(–)n–jCj
nH(z + jη)eh(z+jη)–h(z) + (–)nH(z) ≡ , (.)

this is the special case of (.) when b(z) ≡  and A = . Hence, using the same method
as in the proof of Case  in the proof of Lemma ., we can get that σ (f ) = k = . Hence,
substituting h(z) = cz + c into (.), we have

n∑
j=

(–)jCj
ne

(n–j)cηH
(
z + (n – j)η

)
= . (.)

On this occasion, we assert that (ecη – )n = . On the contrary, we suppose that (ecη –
)n �= . Then the sum of all coefficients of (.) is (eη – )n, which does not vanish. By
Lemma . and Remarks .-., we have σ (H)≥ , a contradiction. Hence, (ecη –)n = .
Thus, ecη = . Substituting it into (.), we have

n∑
j=

(–)jCj
nH

(
z + (n – j)η

)
= . (.)

First, we suppose that H(z) is transcendental. Then, noting that σ (H) <  implies
limr→∞

T(r,H)
r = , by Lemma . and Remark ., we know that�ηH(z) =H(z+η)–H(z) is

transcendental. Moreover, σ (�ηH(z)) ≤ σ (H(z)) <  implies limr→∞
T(r,�ηH)

r = . Repeat-
ing the process above n –  times, we can see that �n

ηH(z) is transcendental. That is, the
left-hand side of (.) is a transcendental function. Hence (.) is impossible.
Secondly, we suppose that H(z) is a nonzero polynomial. Then, noting that bk = –ak ,

we can see that ep(z)+h(z) is a nonzero constant. Thus, from b(z) = H(z)ep(z)+h(z), we can
know that b(z) is a nonzero polynomial. Thus, applying Lemma . to the equation
�n

ηa(z) – a(z) = b(z) and by Remark ., we have σ (a) ≥ , a contradiction. Hence,
H(z)eP(z)+h(z) – b(z) �≡ . Thus, since deg(P + h) ≤ k – , deg(–h) = k, deg(h(z + jη) – h(z)) =
k –  (j = , , . . . ,n) and σ (H) < k, we see that the order of growth of the left-hand side of

http://www.journalofinequalitiesandapplications.com/content/2013/1/587
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(.) is equal to k, and the order of growth of the right-hand side of (.) is less than k.
This is a contradiction.
Subcase .. Suppose that a(z) ≡ . Then (.) is rewritten as

H(z)eP(z) =
n∑
j=

(–)n–jCj
nH(z + jη)eh(z+jη)–h(z). (.)

Since H(z) �≡ , σ (H) < k, degP = s = k and deg(h(z + jη) – h(z)) = k –  (j = , , . . . ,n), we
can see that the order of growth of the left-hand side of (.) is equal to k, and the order
of growth of the right-hand side of (.) is less than k. This is a contradiction.
Case . Suppose that  ≤ s < k. Thus, there are two subcases: () a(z) �≡ ; () a(z) ≡ .
Subcase .. Suppose that a(z) �≡ . Then, by (.), we can obtain

n∑
j=

(–)n–jCj
nH(z + jη)eh(z+jη)–h(z) –H(z)eP(z) = b(z)e–h(z). (.)

We assert that b(z) �≡ . In fact, if b(z) ≡ , then (.) obviously holds. Hence, using the
samemethod as in the proof of Lemma ., by Lemma . and Remarks .-., we can get
that σ (a)≥ , a contradiction. Hence, b(z) �≡ . Since degh = k, deg(h(z+ jη) – h(z)) = k – 
(j = , , . . . ,n), degP = s < k and σ (H) < k, we see that the order of growth of the left-hand
side of (.) is less than k, and the order of growth of the right-hand side of (.) is equal
to k. This is a contradiction.
Subcase .. Suppose that a(z)≡ . Then, by (.), we obtain

n∑
j=

(–)n–jCj
n
H(z + jη)
H(z)

eh(z+jη)–h(z) + (–)n = eP(z). (.)

Thus, there are two subcases: () n = ; () n≥ .
Subcase ... Suppose that n = . Then (.) can be rewritten as

H(z + η)
H(z)

eh(z+η)–h(z) –  = eP(z). (.)

By (.), we see that H(z+η)
H(z) is a nonzero entire function. Set σ (H) = σ. Then σ < σ (f ) = k.

By Lemma ., we see that for any given ε ( < ε < k – σ), there exists a set E ⊂ (,∞)
of finite logarithmic measure such that for all z satisfying |z| = r /∈ [, ]∪ E, we have

exp
{
–rσ–+ε

} ≤
∣∣∣∣H(z + η)

H(z)

∣∣∣∣ ≤ exp
{
rσ–+ε

}
. (.)

Since H(z+η)
H(z) is an entire function, by (.), we have

T
(
r,
H(z + η)
H(z)

)
=m

(
r,
H(z + η)
H(z)

)
≤ rσ–+ε ,

so that

σ

(
H(z + η)
H(z)

)
≤ σ –  + ε < k – . (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/587
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Since s < k, we can see that degP ≤ k – . If degP < k – , then, by (.) and deg(h(z + η) –
h(z)) = k – , we can see that the order of growth of the left-hand side of (.) is equal to
k –, and the order of growth of the right-hand side of (.) is equal to degP which is less
than k – . This is a contradiction.
If degP = k–, then since H(z+η)

H(z) is an entire function and deg(h(z+η)–h(z)) = k– ≥ , by
(.), we can see that the entire function H(z+η)

H(z) eh(z+η)–h(z) has a Borel exceptional value ,
thus the value  must be not its Borel exceptional value. Hence, the left-hand side of (.),
H(z+η)
H(z) eh(z+η)–h(z) – , has infinitely many zeros, but the right-hand side of (.), eP(z), has

no zero. This is a contradiction.
Subcase ... Now we suppose that n≥ . Thus, for s (= degP), there are two subcases:

() s < k – ; () s = k – .
Subcase .... Now we suppose that s < k – . Set Q(z) = eh(z+η)–h(z). Since σ (Q) =

k –  ≥ , Q(z) is a transcendental entire function. Thus, (.) can be rewritten as

U
(
z,Q(z)

) ·Q(z) = eP(z) – (–)n, (.)

where

U
(
z,Q(z)

)
=
H(z + nη)

H(z)
Q

(
z + (n – )η

)
Q

(
z + (n – )η

) · · ·Q(z + η)

–C
n
H(z + (n – )η)

H(z)
Q

(
z + (n – )η

)
Q

(
z + (n – )η

) · · ·Q(z + η)

+ · · · + (–)n–Cn–
n

H(z + η)
H(z)

. (.)

Thus, using the samemethod as in the proof of Subcase . in the proof of Lemma . and
noting that σ (eP(z) – (–)n) = degP < k – , we have

m
(
r, eP(z) – (–)n

)
= S(r,Q).

Noting that n≥  and so degU(z,Q) = n –  ≥ . Using the same method as in the proof
of Subcase . in the proof of Lemma ., we can obtain

T(r,Q) =m(r,Q) = S(r,Q).

Clearly, this is a contradiction.
Subcase .... Now we suppose that s = k – . Thus, (.) is written as

n∑
j=

(–)n–jCj
n
H(z + jη)
H(z)

eTj(z) + (–)n – eP(z) = , (.)

where Tj(z) = h(z + jη) – h(z) (j = , , . . . ,n). Thus, by (.), we have

Tj(z) = jkηakzk– + Pk–,j(z), (.)

where Pk–,j(z) is a polynomial with degree at most k – . Thus, we have

Tj(z) – Tt(z) = (j – t)kηakzk– + Pj,t(z) (≤ j �= t ≤ n),

where Pj,t(z) is a polynomial with degree at most k – .
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First, we suppose that there is some j ( ≤ j ≤ n) such that jkηak = bk–, that is,
deg(Tj (z) – P(z)) ≤ k – . Thus, (.) can be written as

∑
≤j≤n,j �=j

(–)n–jCj
n
H(z + jη)
H(z)

eh(z+jη)–h(z) + Bj (z)e
h(z+jη)–h(z) = (–)n+, (.)

where

Bj (z) = (–)n–jCn–j
n

H(z + jη)
H(z)

– eP(z)+h(z)–h(z+jη).

Set Q(z) = eh(z+η)–h(z) and σ (H) = σ. Then (.) can be rewritten as

U
(
z,Q(z)

) ·Q(z) = (–)n+, (.)

where

U
(
z,Q(z)

)

=
∑

≤j≤n,j �=j
(–)n–jCn–j

n
H(z + jη)
H(z)

Q
(
z + (j – )η

)
Q

(
z + (j – )η

) · · ·Q(z + η)

+ Bj (z)Q
(
z + (j – )η

)
Q

(
z + (j – )η

) · · ·Q(z + η) (j ≥ ), (.)

or

U
(
z,Q(z)

)

=
∑
≤j≤n

(–)n–jCn–j
n

H(z + jη)
H(z)

Q
(
z + (j – )η

)
Q

(
z + (j – )η

) · · ·Q(z + η)

+ Bj (z) (j = ). (.)

Noting that (–)n+ �= , we can see that U(z,Q(z)) �≡ . Since σ (H) < k and
σ (eP(z)+h(z)–h(z+jη))≤ k –  < k – , using the same method as in the proof of Subcase . in
the proof of Lemma ., we have

m
(
r,Bj (z)

)
= S(r,Q). (.)

Noting that n≥  and so degU(z,Q) = n– ≥ . Combining (.)-(.), using the same
method as in the proof of Subcase . in the proof of Lemma ., we can obtain

T(r,Q) =m(r,Q) = S(r,Q).

Clearly, this is a contradiction.
Secondly, we suppose that jkηak �= bk– for any  ≤ j ≤ n. Thus, equation (.) can be

rewritten as

eP(z) = ebk–z
k– · ePk–(z) =

n∑
j=

(–)n–jCj
n
H(z + jη)
H(z)

eh(z+jη)–h(z), (.)
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where Pk–(z) = P(z) – bk–zk– = bk–zk– + bk–zk– + · · · + b. For dealing with equation
(.), we just compare |bk–| with nk|ηak| since nk|ηak| > (n – )k|ηak| > · · · > k|ηak|.
Without loss of generality, we suppose that nk|ηak| ≤ |bk–|. Let argbk– = θ, arg(ηak) = θ

and σ (H) = σ < k. Take θ such that cos((k – )θ + θ) = . By Lemma ., we see that for
any given ε ( < ε < k – σ), there exists a set E ⊂ (,∞) of finite logarithmic measure
such that for all z = reiθ satisfying |z| = r /∈ [, ]∪ E, we have

exp
{
–rσ–+ε

} ≤
∣∣∣∣H(z + jη)

H(z)

∣∣∣∣ ≤ exp
{
rσ–+ε

}
(j = , . . . ,n). (.)

Thus, noting that ePk–(z) is of regular growth, we can deduce from (.) and (.) that

∣∣ebk–zk– ∣∣ =
∣∣∣∣ eP(z)

ePk–(z)

∣∣∣∣

≤ |∑n
j=(–)jC

j
n
H(z+(n–j)η)

H(z) eh(z+(n–j)η)–h(z)|
|ebk–zk–+bk–zk–+···+b |

≤ (n + )n! exp{rσ–+ε} exp{nk|ηak| cos((k – )θ + θ)rk– +O(rk–)}
exp{ |bk–|

 rk–} ,

that is,

exp
{|bk–|rk–}

≤ exp

{
nk|ηak| cos

(
(k – )θ + θ

)
rk– + rσ–+ε +O

(
rk–

)
–

|bk–|


rk–
}

≤ exp
{
nk|ηak| cos

(
(k – )θ + θ

)
rk– + o

(
rk–

)}
. (.)

We assert that

nk|ηak| cos
(
(k – )θ + θ

)
< |bk–|.

In fact, if nk|ηak| = |bk–|, then, by bk– �= nkηak , we know that cos((k–)θ +θ) �= , that is,
cos((k – )θ + θ) < , and hence nk|ηak| cos((k – )θ + θ) < nk|ηak| = |bk–|. If nk|ηak| <
|bk–|, then we have nk|ηak| cos((k – )θ + θ) ≤ nk|ηak| < |bk–|.
Thus, taking a positive constant ε ( < ε < |bk–|–nk|ηak | cos((k–)θ+θ)

 ), we can deduce
from (.) that

exp
{|bk–|rk–} ≤ exp

{
nk|ηak| cos

(
(k – )θ + θ

)
rk– + o

(
rk–

)}
≤ exp

{(|bk–| – ε
)
rk–

}
,

a contradiction. Thus, we have proved that P is only a constant and (.) holds.
Second step. Applying Lemma . to (.), we can obtain the conclusion.
Thus, Theorem . is proved.
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