# RESEARCH

**Open Access** 

# Multivalued fixed point theorems in cone *b*-metric spaces

Akbar Azam<sup>1</sup>, Nayyar Mehmood<sup>1</sup>, Jamshaid Ahmad<sup>1\*</sup> and Stojan Radenović<sup>2</sup>

Correspondence: jamshaid\_jasim@yahoo.com <sup>1</sup>Department of Mathematics, COMSATS Institute of Information Technology, Chak Shahzad, Islamabad, 44000, Pakistan Full list of author information is available at the end of the article

# Abstract

In this paper we extend the Banach contraction for multivalued mappings in a cone *b*-metric space without the assumption of normality on cones and generalize some attractive results in literature.

MSC: 47H10; 54H25

**Keywords:** cone *b*-metric space; non-normal cones; multivalued contraction; fixed points

# **1** Introduction

The analysis on existence of linear and nonlinear operators was developed after the Banach contraction theorem [1] presented in 1922. Many generalizations are available with applications in the literature [2–13]. Nadler [14] gave its set-valued form in his classical paper in 1969 on multivalued contractions. A real generalization of Nadler's theorem was presented by Mizoguchi and Takahashi [15] as follows.

**Theorem 1.1** [15] Let (X, d) be a complete metric space and let  $T : X \to 2^X$  be a multivalued map such that Tx is a closed bounded subset of X for all  $x \in X$ . If there exists a function  $\varphi : (0, \infty) \to [0, 1)$  such that  $\lim_{r \to t^+} \sup \varphi(r) < 1$  for all  $t \in [0, \infty)$  and if

 $H(Tx, Ty) \le \varphi(d(x, y))(d(x, y))$  for all  $x, y \in X$ ,

then T has a fixed point in X.

Huang and Zhang [10] introduced a cone metric space with normal cone as a generalization of a metric space. Rezapour and Hamlbarani [16] presented the results of [10] for the case of a cone metric space without normality in cone. Many authors worked on it (see [17]). Cho and Bae [18] presented the result of [15] for multivalued mappings in cone metric spaces with normal cone.

Recently Hussain and Shah [19] introduced the notion of cone *b*-metric spaces as a generalization of *b*-metric and cone metric spaces. In [20] the authors presented some fixed point results in cone *b*-metric spaces without assumption of normality on cone.

In this article we present the generalized form of Cho and Bae [18] for the case of cone *b*-metric spaces without normality on cone. We also give an example to support our main theorem.



©2013 Azam et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

## 2 Preliminaries

Let  $\mathbb{E}$  be a real Banach space and *P* be a subset of  $\mathbb{E}$ . By  $\theta$  we denote the zero element of  $\mathbb{E}$  and by int *P* the interior of *P*. The subset *P* is called a cone if and only if:

- (i) *P* is closed, nonempty, and  $P = \{\theta\}$ ;
- (ii)  $a, b \in \mathbb{R}, a, b \ge 0, x, y \in P \Rightarrow ax + by \in P$ ;
- (iii)  $P \cap (-P) = \{\theta\}.$

For a given cone  $P \subseteq \mathbb{E}$ , we define a partial ordering  $\leq$  with respect to P by  $x \leq y$  if and only if  $y - x \in P$ ;  $x \prec y$  will stand for  $x \leq y$  and  $x \neq y$ , while  $x \ll y$  will stand for  $y - x \in \text{int } P$ , where int P denotes the interior of P. The cone P is said to be solid if it has a nonempty interior.

**Definition 2.1** [19] Let *X* be a nonempty set and  $r \ge 1$  be a given real number. A function  $d: X \times X \to \mathbb{E}$  is said to be a cone *b*-metric if the following conditions hold:

- (C1)  $\theta \leq d(x, y)$  for all  $x, y \in X$  and  $d(x, y) = \theta$  if and only if x = y;
- (C2) d(x, y) = d(y, x) for all  $x, y \in X$ ;
- (C3)  $d(x,z) \leq r[d(x,y) + d(y,z)]$  for all  $x, y, z \in X$ .

The pair (X, d) is then called a cone *b*-metric space.

**Example 2.1** [20] Let  $X = l^p$  with  $0 , where <math>l^p = \{\{x_n\} \subset \mathbb{R} : \sum_{n=1}^{+\infty} |x_n|^p < \infty\}$ . Let  $d: X \times X \to \mathbb{R}$  be defined as

$$d(x,y) = \left(\sum_{n=1}^{+\infty} |x_n - y_n|^p\right)^{\frac{1}{p}},$$

where  $x = \{x_n\}, y = \{y_n\} \in l^p$ . Then (X, d) is a *b*-metric space. Put  $E = l^1, P = \{\{x_n\} \in E : x_n \ge 0 \text{ for all } n \ge 1\}$ . Letting the map  $d' : X \times X \to E$  be defined by  $d'(x, y) = \{\frac{d(x, y)}{2^n}\}_{n \ge 1}$ , we conclude that (X, d') is a cone *b*-metric space with the coefficient  $r = 2^{\frac{1}{p}} > 1$ , but is not a cone metric space.

**Example 2.2** [20] Let  $X = \{1, 2, 3, 4\}$ ,  $E = \mathbb{R}^2$ ,  $P = \{(x, y) \in E : x \ge 0, y \ge 0\}$ . Define  $d : X \times X \to E$  by

$$d(x,y) = \begin{cases} (|x-y|^{-1}, |x-y|^{-1}) & \text{if } x \neq y, \\ \theta & \text{if } x = y. \end{cases}$$

Then (*X*, *d*) is a cone *b*-metric space with coefficient  $r = \frac{6}{5}$ . But it is not a cone metric space, because

$$d(1,2) > d(1,4) + d(4,2),$$
  
 $d(3,4) > d(3,1) + d(1,4).$ 

**Remark 2.1** [19] The class of cone *b*-metric spaces is larger than the class of cone metric spaces since any cone metric space must be a cone metric *b*-metric space. Therefore, it is obvious that cone *b*-metric spaces generalize *b*-metric spaces and cone metric spaces.

**Definition 2.2** [19] Let (X, d) be a cone *b*-metric space,  $x \in X$ , let  $\{x_n\}$  be a sequence in *X*. Then

- (i)  $\{x_n\}$  converges to x whenever for every  $c \in \mathbb{E}$  with  $\theta \ll c$  there is a natural number  $n_0$  such that  $d(x_n, x) \ll c$  for all  $n \ge n_0$ . We denote this by  $\lim_{n \to \infty} x_n = x$ ;
- (ii)  $\{x_n\}$  is a Cauchy sequence whenever for every  $c \in \mathbb{E}$  with  $\theta \ll c$  there is a natural number  $n_0$  such that  $d(x_n, x_m) \ll c$  for all  $n, m \ge n_0$ ;
- (iii) (X, d) is complete cone *b*-metric if every Cauchy sequence in *X* is convergent.

**Remark 2.2** [17] The results concerning fixed points and other results, in case of cone spaces with non-normal solid cones, cannot be provided by reducing to metric spaces, because in this case neither of the conditions of Lemmas 1-4 in [10] hold. Further, the vector cone metric is not continuous in the general case, *i.e.*, from  $x_n \rightarrow x$ ,  $y_n \rightarrow y$  it need not follow that  $d(x_n, y_n) \rightarrow d(x, y)$ .

Let  $\mathbb{E}$  be an ordered Banach space with a positive cone *P*. The following properties hold [17, 19]:

- (PT1) If  $u \leq v$  and  $v \ll w$ , then  $u \ll w$ .
- (PT2) If  $u \ll v$  and  $v \preceq w$ , then  $u \ll w$ .
- (PT3) If  $u \ll v$  and  $v \ll w$ , then  $u \ll w$ .
- (PT4) If  $\theta \leq u \ll c$  for each  $c \in int P$ , then  $u = \theta$ .
- (PT5) If  $a \leq b + c$  for each  $c \in int P$ , then  $a \leq b$ .
- (PT6) Let  $\{a_n\}$  be a sequence in  $\mathbb{E}$ . If  $c \in \operatorname{int} P$  and  $a_n \to \theta$  (as  $n \to \infty$ ), then there exists  $n_0 \in \mathbb{N}$  such that for all  $n \ge n_0$ , we have  $a_n \ll c$ .

## 3 Main result

According to [18], we denote by  $\Lambda$  a family of nonempty closed and bounded subsets of *X*, and

$$s(p) = \{q \in \mathbb{E} : p \leq q\} \quad \text{for } q \in \mathbb{E},$$
  
$$s(a, B) = \bigcup_{b \in B} s(d(a, b)) = \bigcup_{b \in B} \{x \in \mathbb{E} : d(a, b) \leq x\} \quad \text{for } a \in X \text{ and } B \in \Lambda.$$

For  $A, B \in \Lambda$ , we define

$$s(A,B) = \left(\bigcap_{a \in A} s(a,B)\right) \cap \left(\bigcap_{b \in B} s(b,A)\right).$$

**Remark 3.1** Let (X, d) be a cone *b*-metric space. If  $\mathbb{E} = \mathbb{R}$  and  $P = [0, +\infty)$ , then (X, d) is a *b*-metric space. Moreover, for  $A, B \in CB(X)$ ,  $H(A, B) = \inf s(A, B)$  is the Hausdorff distance induced by *d*.

Now, we start with the main result of this paper.

**Theorem 3.1** Let (X,d) be a complete cone b-metric space with the coefficient  $r \ge 1$  and cone P, and let  $T: X \to \Lambda$  be a multivalued mapping. If there exists a function  $\varphi: P \to [0, \frac{1}{r})$  such that

$$\lim_{n \to \infty} \sup \varphi(a_n) < \frac{1}{r}$$
 (a)

for any decreasing sequence  $\{a_n\}$  in *P*. If for all  $x, y \in X$ ,

$$\varphi(d(x,y))d(x,y) \in s(Tx,Ty),$$
 (b)

then T has a fixed point in X.

*Proof* Let  $x_0$  be an arbitrary point in X, then  $Tx_0 \in \Lambda$ , so  $Tx_0 \neq \phi$ . Let  $x_1 \in Tx_0$  and consider

$$\varphi(d(x_0,x_1))d(x_0,x_1)\in s(Tx_0,Tx_1).$$

By definition we have

$$\varphi(d(x_0,x_1))d(x_0,x_1)\in \left(\bigcap_{x\in Tx_0}s(x,Tx_1)\right)\cap \left(\bigcap_{y\in Tx_1}s(y,Tx_0)\right),$$

which implies

$$\varphi(d(x_0, x_1))d(x_0, x_1) \in s(x, Tx_1)$$
 for all  $x \in Tx_0$ .

Since  $x_1 \in Tx_0$ , so we have

$$\varphi(d(x_0,x_1))d(x_0,x_1)\in s(x_1,Tx_1).$$

We have

$$\varphi\big(d(x_0,x_1)\big)d(x_0,x_1)\in\bigcup_{x\in Tx_1}s\big(d(x_1,x)\big).$$

So there exists some  $x_2 \in Tx_1$  such that

$$\varphi(d(x_0,x_1))d(x_0,x_1)\in s(d(x_1,x_2)).$$

It gives

$$d(x_1,x_2) \preceq \varphi(d(x_0,x_1))d(x_0,x_1).$$

By induction we can construct a sequence  $\{x_n\}$  in X such that

$$d(x_n, x_{n+1}) \leq \varphi \left( d(x_{n-1}, x_n) \right) d(x_{n-1}, x_n), \quad x_{n+1} \in Tx_n \text{ for } n \in \mathbb{N}.$$
(c)

If  $x_n = x_{n+1}$  for some  $n \in \mathbb{N}$ , then *T* has a fixed point. Assume that  $x_n \neq x_{n+1}$ , then from (c) the sequence  $\{d(x_n, x_{n+1})\}$  is decreasing in *P*. Hence from (a) there exists  $a \in (0, \frac{1}{r})$  such that

 $\lim_{n\to\infty}\sup\varphi\bigl(d(x_n,x_{n+1})\bigr)< a.$ 

Thus, for any  $k \in (a, \frac{1}{r})$ , there exists some  $n_0 \in \mathbb{N}$  such that for all  $n \ge n_0$ , implies  $\varphi(d(x_n, x_{n+1})) < k$ . Now consider, for all  $n \ge n_0$ ,

$$d(x_n, x_{n+1}) \leq \varphi(d(x_{n-1}, x_n)) d(x_{n-1}, x_n) \prec k d(x_{n-1}, x_n) \prec k^{n-n_0} d(x_{n_0}, x_{n_0+1})$$
  
=  $k^n v_0$ ,

where  $v_0 = k^{-n_0} d(x_{n_0}, x_{n_0+1})$ .

Let  $m > n \ge n_0$ . Applying (C3) to triples  $\{x_n, x_{n+1}, x_m\}, \{x_{n+1}, x_{n+2}, x_m\}, \dots, \{x_{m-2}, x_{m-1}, x_m\}$ , we obtain

$$\begin{aligned} d(x_n, x_m) &\leq r \Big[ d(x_n, x_{n+1}) + d(x_{n+1}, x_m) \Big] \\ &\leq r d(x_n, x_{n+1}) + r^2 \Big[ d(x_{n+1}, x_{n+2}) + d(x_{n+2}, x_m) \Big] \\ &\leq \cdots \\ &\leq r d(x_n, x_{n+1}) + r^2 d(x_{n+1}, x_{n+2}) + \cdots + r^{m-n-1} \Big[ d(x_{m-2}, x_{m-1}) + d(x_{m-1}, x_m) \Big] \\ &\leq r d(x_n, x_{n+1}) + r^2 d(x_{n+1}, x_{n+2}) + \cdots + r^{m-n-1} d(x_{m-2}, x_{m-1}) + r^{m-n} d(x_{m-1}, x_m). \end{aligned}$$

Now  $d(x_n, x_{n+1}) \leq k^n v_0$  and kr < 1 imply that

$$d(x_n, x_m) \leq (rk^n + r^2k^{n+1} + \dots + r^{m-n}k^{m-1})v_0$$
  
=  $rk^n (1 + (rk) + \dots + (rk)^{m-n-1})v_0$   
$$\leq \frac{rk^n}{1 - rk}v_0 \rightarrow \theta \quad \text{when } n \rightarrow \infty.$$

Now, according to (PT6) and (PT1), we obtain that for a given  $\theta \ll c$  there exists  $m_0 \in \mathbb{N}$  such that

$$d(x_n, x_m) \ll c$$
 for all  $m, n > m_0$ ,

that is,  $\{x_n\}$  is Cauchy sequence in (X, d). Since (X, d) is a complete cone *b*-metric space, so there exists some  $u \in X$  such that  $x_n \to u$ . Take  $k_0 \in \mathbb{N}$  such that  $d(x_n, u) \ll \frac{c}{2r}$  for all  $n \ge k_0$ . Now we will prove  $u \in Tu$ . For this let us consider

$$\varphi(d(x_n, u))d(x_n, u) \in s(Tx_n, Tu).$$

By definition we have

$$\varphi(d(x_n, u))d(x_n, u) \in \left(\bigcap_{x \in Tx_n} s(x, Tu)\right) \cap \left(\bigcap_{v \in Tu} s(y, Tx_n)\right),$$

which implies

$$\varphi(d(x_n, u))d(x_n, u) \in \left(\bigcap_{x \in Tx_n} s(x, Tu)\right),$$
  
$$\varphi(d(x_n, u))d(x_n, u) \in s(x, Tu) \quad \text{for all } x \in Tx_n.$$

Since  $x_{n+1} \in Tx_n$ , so we have

$$\varphi(d(x_n, u))d(x_n, u) \in s(x_{n+1}, Tu).$$

So there exists some  $v_n \in Tu$  such that

$$\varphi(d(x_n,u))d(x_n,u)\in s(d(x_{n+1},v_n)).$$

It gives

$$d(x_{n+1},v_n) \leq \varphi(d(x_n,u))d(x_n,u) \leq d(x_n,u).$$
(d)

Now consider

$$d(u, v_n) \leq r \left[ d(u, x_{n+1}) + d(x_{n+1}, v_n) \right]$$
  
$$\leq r d(u, x_{n+1}) + r d(x_n, u)$$
  
$$\ll \frac{c}{2} + \frac{c}{2} = c \quad \text{for all } n \geq k_0,$$

which means  $v_n \rightarrow u$ , since Tu is closed so  $u \in Tu$ .

**Corollary 3.1** [18] Let (X, d) be a complete cone metric space with a normal cone P, and let  $T: X \to CB(X)$  be a multivalued mapping. If there exists a function  $\varphi: P \to [0,1)$  such that

 $\lim_{n\to\infty}\sup\varphi(a_n)<1$ 

for any decreasing sequence  $\{a_n\}$  in *P*. If for all  $x, y \in X$ ,

 $\varphi(d(x, y))d(x, y) \in s(Tx, Ty),$ 

then T has a fixed point in X.

**Corollary 3.2** [15] Let (X, d) be a complete metric space and let  $T : X \to 2^X$  be a multivalued map such that Tx is a closed bounded subset of X for all  $x \in X$ . If there exists a function  $\varphi : (0, \infty) \to [0, 1)$  such that  $\limsup_{r \to t^+} \varphi(r) < 1$  for all  $t \in [0, \infty)$  and if

 $H(Tx, Ty) \le \varphi(d(x, y))(d(x, y))$  for all  $x, y \in X$ ,

then T has a fixed point in X.

The following is Nadler's theorem for multivalued mappings in a complete metric space.

**Corollary 3.3** [14] Let (X, d) be a complete metric space and let  $T : X \to 2^X$  be a multivalued map such that Tx is a closed bounded subset of X for all  $x \in X$ . If there exists  $k \in [0, 1)$ such that

 $H(Tx, Ty) \le kd(x, y)$  for all  $x, y \in X$ ,

then T has a fixed point in X.

**Example 3.1** Let X = [0,1] and  $\mathbb{E}$  be the set of all real-valued functions on X which also have continuous derivatives on X. Then  $\mathbb{E}$  is a vector space over  $\mathbb{R}$  under the following operations:

$$(x+y)(t) = x(t) + y(t), \qquad (\alpha x)(t) = \alpha x(t)$$

for all  $x, y \in \mathbb{E}$ ,  $\alpha \in \mathbb{R}$ . That is,  $E = C_R^1[0,1]$  with the norm  $||f|| = ||f||_{\infty} + ||f'||_{\infty}$  and

$$P = \{x \in \mathbb{E} : \theta \leq x\}, \text{ where } \theta(t) = 0 \text{ for all } t \in X,$$

then *P* is a non-normal cone. Define  $d: X \times X \to \mathbb{E}$  as follows:

$$(d(x,y))(t) = |x-y|^p e^t \quad \text{for } p > 1.$$

Then (X, d) is a cone *b*-metric space but not a cone metric space. For  $x, y, z \in X$ , set u = x - z, v = z - y, so x - y = u + v. From the inequality

$$(a+b)^p \le \left(2\max\{a,b\}\right)^p \le 2^p \left(a^p + b^p\right) \quad \text{for all } a,b \ge 0,$$

we have

$$\begin{aligned} |x-y|^p &= |u+v|^p \le \left(|u|+|v|\right)^p \le 2^p \left(|u|^p+|v|^p\right) = 2^p \left(|x-z|^p+|z-y|^p\right),\\ |x-y|^p e^t \le 2^p \left(|x-z|^p e^t+|z-y|^p e^t\right),\end{aligned}$$

which implies that

$$d(x,y) \preccurlyeq r[d(x,z) + d(y,z)] \quad \text{with } r = 2^p > 1.$$

But

$$|x - y|^p e^t \le |x - z|^p e^t + |z - y|^p e^t$$

is impossible for all x > z > y. Indeed, taking advantage of the inequality

$$(a+b)^p > a^p + b^p,$$

we have

$$\begin{split} |x-y|^p &> |x-z|^p + |z-y|^p, \\ |x-y|^p e^t &> |x-z|^p e^t + |z-y|^p e^t \end{split}$$

for all x > z > y. Thus the triangular inequality in a cone metric space is not satisfied, so (X, d) is not a cone metric space but is a cone *b*-metric space.

Let  $T: X \to \Lambda$  be such that

$$Tx = \left[0, \frac{x}{30}\right],$$

then we have, for x < y,

$$s(Tx, Ty) = s\left(\left|\frac{x}{30} - \frac{y}{30}\right|^p e^t\right).$$

Since

$$\left|\frac{x}{30} - \frac{y}{30}\right|^p e^t \le \frac{1}{3^p} |x - y|^p e^t,$$

so

$$\frac{1}{3^p}\left(|x-y|^p e^t\right) \in s\left(\left|\frac{x}{30} - \frac{y}{30}\right|^p e^t\right).$$

Hence, for  $\varphi(d(x, y)) = \frac{1}{3^p}$ , we have

$$\varphi(d(x, y))d(x, y) \in s(Tx, Ty).$$

All conditions of our main theorems are satisfied, so T has a fixed point.

#### **Competing interests**

The authors declare that they have no competing interests.

#### Authors' contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

#### Author details

<sup>1</sup>Department of Mathematics, COMSATS Institute of Information Technology, Chak Shahzad, Islamabad, 44000, Pakistan. <sup>2</sup>Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, Beograd, 11120, Serbia.

#### Acknowledgements

The authors thank the editors and the referees for their valuable comments and suggestions which improved greatly the quality of this paper.

#### Received: 16 August 2013 Accepted: 21 November 2013 Published: 12 Dec 2013

#### References

- Banach, S: Sur les opérations dans les ensembles abstrait et leur application aux équations intégrales. Fundam. Math. 3, 133-181 (1922)
- Arshad, M, Ahmad, J: On multivalued contractions in cone metric spaces with out normality. Sci. World J. 2013, Article ID 481601 (2013)
- 3. Azam, A, Arshad, M: Common fixed points of generalized contractive maps in cone metric spaces. Bull. Iran. Math. Soc. 35(2), 255-264 (2009)
- Azam, A, Arshad, M, Beg, I: Common fixed points of two maps in cone metric spaces. Rend. Circ. Mat. Palermo 57, 433-441 (2008)
- Azam, A, Mehmood, N: Multivalued fixed point theorems in tvs-cone metric spaces. Fixed Point Theory Appl. 2013, 184 (2013). doi:10.1186/1687-1812-2013-184
- Arshad, M, Azam, A, Vetro, P: Some common fixed point results in cone metric spaces. Fixed Point Theory Appl. 2009, Article ID 493965 (2009)
- 7. Boriceanu, M, Bota, M, Petrusel, A: Multivalued fractals in *b*-metric spaces. Cent. Eur. J. Math. 8(2), 367-377 (2010)
- 8. Czerwik, S: Nonlinear set-valued contraction mappings in *b*-metric spaces. Atti Semin. Mat. Fis. Univ. Modena 46, 263-276 (1998)
- 9. Deimling, K: Nonlinear Functional Analysis. Springer, Berlin (1985)
- Huang, L-G, Zhang, X: Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl. 332(2), 1468-1476 (2007)
- Kutbi, MA, Ahmad, J, Azam, A: On fixed points of α-ψ-contractive multi-valued mappings in cone metric spaces. Abstr. Appl. Anal. 2013, Article ID 313782 (2013)
- 12. Kutbi, MA, Ahmad, J, Hussain, N, Arshad, M: Common fixed point results for mappings with rational expressions. Abstr. Appl. Anal. **2013**, Article ID 549518 (2013)
- 13. Shatanawi, W, Rajić, VĆ, Radenović, S, Al-Rawashdeh, A: Mizoguchi-Takahashi-type theorems in tvs-cone metric spaces. Fixed Point Theory Appl. **2012**, 106 (2012)

- 14. Nadler, SB Jr.: Multi-valued contraction mappings. Pac. J. Math. 30, 475-478 (1969)
- 15. Mizoguchi, N, Takahashi, W: Fixed point theorems for multi-valued mappings on complete metric spaces. J. Math. Anal. Appl. **141**, 177-188 (1989)
- 16. Rezapour, S, Hamlbarani, R: Some notes on the paper 'Cone metric spaces and fixed point theorems of contractive mappings'. J. Math. Anal. Appl. **345**, 719-724 (2008)
- 17. Janković, S, Kadelburg, Z, Radenović, S: On cone metric spaces: a survey. Nonlinear Anal. 74, 2591-2601 (2011)
- Cho, SH, Bae, JS: Fixed point theorems for multivalued maps in cone metric spaces. Fixed Point Theory Appl. 2011, 87 (2011)
- 19. Hussain, N, Shah, MH: KKM mappings in cone b-metric spaces. Comput. Math. Appl. 62, 1677-1684 (2011)
- 20. Huang, H, Xu, S: Fixed point theorems of contractive mappings in cone *b*-metric spaces and applications. Fixed Point Theory Appl. **2013**, 112 (2013)

10.1186/1029-242X-2013-582

Cite this article as: Azam et al.: Multivalued fixed point theorems in cone *b*-metric spaces. Journal of Inequalities and Applications 2013, 2013:582

# Submit your manuscript to a SpringerOpen<sup>®</sup> journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com