Some new inequalities for the Hadamard product of M-matrices

Fu-bin Chen*

Correspondence:
chenfubinyn@163.com
Department of Engineering, Oxbridge College, Kunming University of Science and Technology, Kunming, Yunnan 650106, P.R. China

Abstract

If A and B are $n \times n$ nonsingular M-matrices, a new lower bound for the minimum eigenvalue $\tau\left(B \circ A^{-1}\right)$ for the Hadamard product of B and A^{-1} is derived. As a consequence, a new lower bound for the minimum eigenvalue $\tau\left(A \circ A^{-1}\right)$ for the Hadamard product of A and its inverse A^{-1} is given. Theoretical results and an example demonstrate that the new bounds are better than some existing ones. MSC: 15A06; 15A18; 15A48 Keywords: M-matrix; lower bounds; Hadamard product; minimum eigenvalue

1 Introduction

For convenience, for any positive integer n, let $N=\{1,2, \ldots, n\}$ throughout. The set of all $n \times n$ real matrices is denoted by $\mathbb{R}^{n \times n}$ and $\mathbb{C}^{n \times n}$ denotes the set of all $n \times n$ complex matrices.

A matrix $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ is called a nonnegative matrix if $a_{i j} \geq 0$. The spectral radius of A is denoted by $\rho(A)$. If A is a nonnegative matrix, the Perron-Frobenius theorem guarantees that $\rho(A)$ is an eigenvalue of A.
Z_{n} denotes the class of all $n \times n$ real matrices all of whose off-diagonal entries are nonpositive. An $n \times n$ matrix A is called an M-matrix if there exists an $n \times n$ nonnegative matrix B and a nonnegative real number λ such that $A=\lambda I-B$ and $\lambda \geq \rho(B), I$ is the identity matrix; if $\lambda>\rho(B)$, we call A a nonsingular M-matrix; if $\lambda=\rho(B)$, we call A a singular M-matrix. Denote by M_{n} the set of nonsingular M-matrices.

Let $A \in Z_{n}$, and let $\tau(A)=\min \{\operatorname{Re}(\lambda): \lambda \in \sigma(A)\}$. Basic for our purpose are the following simple facts (see Problems 16, 19 and 28 in Section 2.5 of [1]):
(1) $\tau(A) \in \sigma(A) ; \tau(A)$ is called the minimum eigenvalue of A.
(2) If $A, B \in M_{n}$, and $A \geq B$, then $\tau(A) \geq \tau(B)$.
(3) If $A \in M_{n}$, then $\rho\left(A^{-1}\right)$ is the Perron eigenvalue of the nonnegative matrix A^{-1}, and $\tau(A)=\frac{1}{\rho\left(A^{-1}\right)}$ is a positive real eigenvalue of A.
For two matrices $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$, the Hadamard product of A and B is the matrix $A \circ B=\left(a_{i j} b_{i j}\right)$. If A and B are two nonsingular M-matrices, then $B \circ A^{-1}$ is also a nonsingular M-matrix [2].
Let $A, B \in M_{n}$ and $A^{-1}=\left(\beta_{i j}\right)$, in [1, Theorem 5.7.31] the following classical result is given:

$$
\begin{equation*}
\tau\left(B \circ A^{-1}\right) \geq \tau(B) \min _{1 \leq i \leq n} \beta_{i i} . \tag{1.1}
\end{equation*}
$$

Huang [3, Theorem 9] improved this result and obtained the following result:

$$
\begin{equation*}
\tau\left(B \circ A^{-1}\right) \geq \frac{1-\rho\left(J_{A}\right) \rho\left(J_{B}\right)}{1+\rho^{2}\left(J_{A}\right)} \min _{1 \leq i \leq n} \frac{b_{i i}}{a_{i i}}, \tag{1.2}
\end{equation*}
$$

where $\rho\left(J_{A}\right), \rho\left(J_{B}\right)$ are the spectral radii of J_{A} and J_{B}.
The lower bound (1.1) is simple, but not accurate enough. The lower bound (1.2) is difficult to evaluate.

Recently, Li [4, Theorem 2.1] improved these two results and gave a new lower bound for $\tau\left(B \circ A^{-1}\right)$, that is,

$$
\begin{equation*}
\tau\left(B \circ A^{-1}\right) \geq \min _{i}\left\{\frac{b_{i i}-s_{i} \sum_{k \neq i}\left|b_{k i}\right|}{a_{i i}}\right\}, \tag{1.3}
\end{equation*}
$$

where $r_{l i}=\frac{\left|a_{l i}\right|}{\left|a_{l l}\right|-\sum_{k \neq l, i}\left|a_{l k}\right|}, l \neq i ; r_{i}=\max _{l \neq i}\left\{r_{l i}\right\}, i \in N ; s_{j i}=\frac{\left|a_{j i l}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| r_{k}}{a_{j j}}, j \neq i, j \in N ; s_{i}=$ $\max _{j \neq i}\left\{s_{i j}\right\}, i \in N$.
For an M-matrix A, Fiedler et al. showed in [5] that $\tau\left(A \circ A^{-1}\right) \leq 1$. Subsequently, Fiedler and Markham [2, Theorem 3] gave a lower bound on $\tau\left(A \circ A^{-1}\right)$,

$$
\begin{equation*}
\tau\left(A \circ A^{-1}\right) \geq \frac{1}{n}, \tag{1.4}
\end{equation*}
$$

and proposed the following conjecture:

$$
\begin{equation*}
\tau\left(A \circ A^{-1}\right) \geq \frac{2}{n} . \tag{1.5}
\end{equation*}
$$

Yong [6] and Song [7] have independently proved this conjecture.
Li [8, Theorem 3.1] obtained the following result:

$$
\begin{equation*}
\tau\left(A \circ A^{-1}\right) \geq \min _{i}\left\{\frac{a_{i i}-t_{i} R_{i}}{1+\sum_{j \neq i} t_{j i}}\right\} \tag{1.6}
\end{equation*}
$$

which only depends on the entries of $A=\left(a_{i j}\right)$, where $R_{i}=\sum_{k \neq i}\left|a_{i k}\right| ; d_{i}=\frac{R_{i}}{\left|a_{i i}\right|}, i \in N ; t_{j i}=$ $\frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| d_{k}}{\left|a_{j j}\right|}, j \neq i, j \in N ; t_{i}=\max _{j \neq i}\left\{t_{i j}\right\}, i \in N$.
Li [9, Theorem 3.2] improved the bound (1.6) and obtained the following result:

$$
\begin{equation*}
\tau\left(A \circ A^{-1}\right) \geq \min _{i}\left\{\frac{a_{i i}-m_{i} R_{i}}{1+\sum_{j \neq i} m_{j i}}\right\}, \tag{1.7}
\end{equation*}
$$

where $r_{l i}=\frac{\left|a_{l i}\right|}{\left|a_{l l}\right|-\sum_{k \neq l, i}\left|a_{l k}\right|}, l \neq i ; r_{i}=\max _{l \neq i}\left\{r_{l i}\right\}, i \in N ; m_{j i}=\frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| r_{i}}{\left|a_{j j}\right|}, j \neq i, j \in N ; m_{i}=$ $\max _{j \neq i}\left\{m_{i j}\right\}, i \in N$.
Recently, Li [10, Theorem 3.2] improved the bound (1.7) and gave a new lower bound for $\tau\left(A \circ A^{-1}\right)$, that is,

$$
\begin{equation*}
\tau\left(A \circ A^{-1}\right) \geq \min _{i}\left\{\frac{a_{i i}-T_{i} R_{i}}{1+\sum_{j \neq i} T_{j i}}\right\}, \tag{1.8}
\end{equation*}
$$

where $T_{j i}=\min \left\{m_{j i}, s_{j i}\right\}, j \neq i ; T_{i}=\max _{j \neq i}\left\{T_{i j}\right\}, i \in N$.

In the present paper, we present a new lower bound on $\tau\left(B \circ A^{-1}\right)$. As a consequence, we present a new lower bound on $\tau\left(A \circ A^{-1}\right)$. These bounds improve several existing results. The following is the list of notations that we use throughout: For $i, j, k, l \in N$,

$$
\begin{aligned}
& R_{i}=\sum_{k \neq i}\left|a_{i k}\right|, \quad C_{i}=\sum_{k \neq i}\left|a_{k i}\right|, \quad d_{i}=\frac{R_{i}}{\left|a_{i i}\right|}, \quad \hat{c}_{i}=\frac{C_{i}}{\left|a_{i i}\right|} ; \\
& r_{l i}=\frac{\left|a_{l i}\right|}{\left|a_{l l}\right|-\sum_{k \neq l, i}\left|a_{l k}\right|}, \quad l \neq i ; \quad r_{i}=\max _{l \neq i}\left\{r_{l i}\right\}, \quad i \in N ; \\
& c_{i l}=\frac{\left|a_{i l}\right|}{\left|a_{l l}\right|-\sum_{k \neq l, i}\left|a_{k l}\right|}, \quad l \neq i ; \quad c_{i}=\max _{l \neq i}\left\{c_{i l}\right\}, \quad i \in N ; \\
& m_{j i}=\frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| r_{i}}{\left|a_{j j}\right|}, \quad j \neq i ; \quad m_{i}=\max _{j \neq i}\left\{m_{i j}\right\}, \quad i \in N ; \\
& s_{j i}=\frac{\left|a_{j i}\right|+\sum_{k \neq j, i}\left|a_{j k}\right| r_{k}}{\left|a_{j j}\right|}, \quad j \neq i ; \quad s_{i}=\max _{j \neq i}\left\{s_{i j}\right\}, \quad i \in N ; \\
& T_{j i}=\min \left\{m_{j i}, s_{j i}\right\}, \quad j \neq i ; \quad T_{i}=\max _{j \neq i}\left\{T_{i j}\right\}, \quad i \in N .
\end{aligned}
$$

2 Some lemmas and the main results

In order to prove our results, we first give some lemmas.

Lemma 2.1 [11] If $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ is an M-matrix, then there exists a diagonal matrix D with positive diagonal entries such that $D^{-1} A D$ is a strictly row diagonally dominant M matrix.

Lemma 2.2 [1] Let $A, B=\left(a_{i j}\right) \in \mathbb{C}^{n \times n}$ and suppose that $D \in \mathbb{C}^{n \times n}$ and $E \in \mathbb{C}^{n \times n}$ are diagonal matrices. Then

$$
D(A \circ B) E=(D A E) \circ B=(D A) \circ(B E)=(A E) \circ(D B)=A \circ(D B E) .
$$

Lemma 2.3 [10] If $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ is a strictly row diagonally dominant M-matrix, then $A^{-1}=\left(\beta_{i j}\right)$ satisfies

$$
\beta_{j i} \leq T_{j i} \beta_{i i}, \quad i, j \in N, i \neq j
$$

Lemma 2.4 [12] If A^{-1} is a doubly stochastic matrix, then $A e=e, A^{T} e=e$, where $e=$ $(1,1, \ldots, 1)^{T}$.

Lemma 2.5 [9] Let $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ be a strictly row diagonally dominant M-matrix. Then, for $A^{-1}=\left(\beta_{i j}\right)$, we have

$$
\beta_{i i} \geq \frac{1}{a_{i i}}, \quad i \in N
$$

Lemma 2.6 [10] If $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ is an M-matrix and $A^{-1}=\left(\beta_{i j}\right)$ is a doubly stochastic matrix, then

$$
\beta_{i i} \geq \frac{1}{1+\sum_{j \neq i} T_{j i}}, \quad i \in N
$$

Lemma 2.7 [13] Let $A=\left(a_{i j}\right) \in \mathbb{C}^{n \times n}$, and let $x_{1}, x_{2}, \ldots, x_{n}$ be positive real numbers. Then all the eigenvalues of A lie in the region

$$
\bigcup_{\substack{i, j=1 \\ i \neq j}}^{n}\left\{z \in \mathbb{C}:\left|z-a_{i i}\right|\left|z-a_{j j}\right| \leq\left(x_{i} \sum_{k \neq i} \frac{1}{x_{k}}\left|a_{k i}\right|\right)\left(x_{j} \sum_{k \neq j} \frac{1}{x_{k}}\left|a_{k j}\right|\right)\right\} .
$$

Theorem 2.1 Let $A, B=\left(b_{i j}\right) \in \mathbb{R}^{n \times n}$ be two nonsingular M-matrices, and let $A^{-1}=\left(\beta_{i j}\right)$. Then

$$
\begin{align*}
\tau\left(B \circ A^{-1}\right) \geq & \min _{i \neq j} \frac{1}{2}\left\{b_{i i} \beta_{i i}+b_{j j} \beta_{j j}-\left[\left(b_{i i} \beta_{i i}-b_{j j} \beta_{j j}\right)^{2}\right.\right. \\
& \left.\left.+4\left(T_{i} \sum_{k \neq i}\left|b_{k i}\right| \beta_{i i}\right)\left(T_{j} \sum_{k \neq j}\left|b_{k j}\right| \beta_{j j}\right)\right]^{\frac{1}{2}}\right\} . \tag{2.1}
\end{align*}
$$

Proof It is evident that (2.1) is an equality for $n=1$.
We next assume that $n \geq 2$.
If A is an M-matrix, then by Lemma 2.1 we know that there exists a diagonal ma$\operatorname{trix} D$ with positive diagonal entries such that $D^{-1} A D$ is a strictly row diagonally dominant M-matrix and satisfies

$$
\tau\left(B \circ A^{-1}\right)=\tau\left(D^{-1}\left(B \circ A^{-1}\right) D\right)=\tau\left(B \circ\left(D^{-1} A D\right)^{-1}\right) .
$$

So, for convenience and without loss of generality, we assume that A is a strictly row diagonally dominant M-matrix. Therefore, $0<T_{i}<1, i \in N$.
If $B \circ A^{-1}$ is irreducible, then B and A are irreducible. Let $\tau\left(B \circ A^{-1}\right)=\lambda$, so that $0<\lambda<$ $b_{i i} \beta_{i i}, \forall i \in N$. Thus, by Lemma 2.7, there is a pair (i, j) of positive integers with $i \neq j$ such that

$$
\left|\lambda-b_{i i} \beta_{i i}\right|\left|\lambda-b_{i j} \beta_{j j}\right| \leq\left(T_{i} \sum_{k \neq i} \frac{1}{T_{k}}\left|b_{k i} \beta_{k i}\right|\right)\left(T_{j} \sum_{k \neq j} \frac{1}{T_{k}}\left|b_{k j} \beta_{k j}\right|\right) .
$$

Observe that

$$
\begin{aligned}
& \left(T_{i} \sum_{k \neq i} \frac{1}{T_{k}}\left|b_{k i} \beta_{k i}\right|\right)\left(T_{j} \sum_{k \neq j} \frac{1}{T_{k}}\left|b_{k j} \beta_{k j}\right|\right) \\
& \quad \leq\left(T_{i} \sum_{k \neq i} \frac{1}{T_{k}}\left|b_{k i}\right| T_{k i} \beta_{i i}\right)\left(T_{j} \sum_{k \neq j} \frac{1}{T_{k}}\left|b_{k j}\right| T_{k j} \beta_{j j}\right) \\
& \quad \leq\left(T_{i} \sum_{k \neq i}\left|b_{k i}\right| \beta_{i i}\right)\left(T_{j} \sum_{k \neq j}\left|b_{k j}\right| \beta_{j j}\right) .
\end{aligned}
$$

Thus, we have

$$
\left|\lambda-b_{i i} \beta_{i i}\right|\left|\lambda-b_{j j} \beta_{j j}\right| \leq\left(T_{i} \sum_{k \neq i}\left|b_{k i}\right| \beta_{i i}\right)\left(T_{j} \sum_{k \neq j}\left|b_{k j}\right| \beta_{j j}\right) .
$$

Then we have

$$
\lambda \geq \frac{1}{2}\left\{b_{i i} \beta_{i i}+b_{j j} \beta_{j j}-\left[\left(b_{i i} \beta_{i i}-b_{j j} \beta_{j j}\right)^{2}+4\left(T_{i} \sum_{k \neq i}\left|b_{k i}\right| \beta_{i i}\right)\left(T_{j} \sum_{k \neq j}\left|b_{k j}\right| \beta_{j j}\right)\right]^{\frac{1}{2}}\right\} .
$$

That is,

$$
\begin{aligned}
\tau\left(B \circ A^{-1}\right) \geq & \frac{1}{2}\left\{b_{i i} \beta_{i i}+b_{j j} \beta_{j j}-\left[\left(b_{i i} \beta_{i i}-b_{i j} \beta_{j j}\right)^{2}\right.\right. \\
& \left.\left.+4\left(T_{i} \sum_{k \neq i}\left|b_{k i}\right| \beta_{i i}\right)\left(T_{j} \sum_{k \neq j}\left|b_{k j}\right| \beta_{j j}\right)\right]^{\frac{1}{2}}\right\} \\
\geq & \min _{i \neq j} \frac{1}{2}\left\{b_{i i} \beta_{i i}+b_{j j} \beta_{j j}-\left[\left(b_{i i} \beta_{i i}-b_{j j} \beta_{j j}\right)^{2}\right.\right. \\
& \left.\left.+4\left(T_{i} \sum_{k \neq i}\left|b_{k i}\right| \beta_{i i}\right)\left(T_{j} \sum_{k \neq j}\left|b_{k j}\right| \beta_{j j}\right)\right]^{\frac{1}{2}}\right\} .
\end{aligned}
$$

Now, assume that $B \circ A^{-1}$ is reducible. It is known that a matrix in Z_{n} is a nonsingular M-matrix if and only if all its leading principal minors are positive (see condition (E17) of Theorem 6.2.3 of [14]). If we denote by $D=\left(d_{i j}\right)$ the $n \times n$ permutation matrix with $d_{12}=d_{23}=\cdots=d_{n-1, n}=d_{n 1}=1$, then both $A-t D$ and $B-t D$ are irreducible nonsingular M-matrices for any chosen positive real number t, sufficiently small such that all the leading principal minors of both $A-t D$ and $B-t D$ are positive. Now we substitute $A-t D$ and $B-t D$ for A and B, respectively in the previous case, and then letting $t \longrightarrow 0$, the result follows by continuity.

Theorem 2.2 Let $A, B=\left(b_{i j}\right) \in \mathbb{R}^{n \times n}$ be two nonsingular M-matrices, and let $A^{-1}=\left(\beta_{i j}\right)$ Then

$$
\begin{aligned}
& \min _{i \neq j} \frac{1}{2}\left\{b_{i i} \beta_{i i}+b_{j j} \beta_{j j}-\left[\left(b_{i i} \beta_{i i}-b_{j j} \beta_{j j}\right)^{2}+4\left(T_{i} \sum_{k \neq i}\left|b_{k i}\right| \beta_{i i}\right)\left(T_{j} \sum_{k \neq j}\left|b_{k j}\right| \beta_{j j}\right)\right]^{\frac{1}{2}}\right\} \\
& \quad \geq \min _{1 \leq i \leq n}\left\{\frac{b_{i i}-s_{i} \sum_{k \neq i}\left|b_{k i}\right|}{a_{i i}}\right\} .
\end{aligned}
$$

Proof Since $T_{j i}=\min \left\{m_{j i}, s_{j i}\right\}, j \neq i, T_{i}=\max _{j \neq i}\left\{T_{i j}\right\}$, so $T_{i} \leq s_{i}, i \in N$. Without loss of generality, for $i \neq j$, assume that

$$
\begin{equation*}
b_{i i} \beta_{i i}-T_{i} \sum_{k \neq i}\left|b_{k i}\right| \beta_{i i} \leq b_{i j} \beta_{i j}-T_{j} \sum_{k \neq j}\left|b_{k j}\right| \beta_{i j} . \tag{2.2}
\end{equation*}
$$

Thus, (2.2) is equivalent to

$$
\begin{equation*}
T_{j} \sum_{k \neq j}\left|b_{k j}\right| \beta_{j j} \leq T_{i} \sum_{k \neq i}\left|b_{k i}\right| \beta_{i i}+b_{j j} \beta_{j j}-b_{i i} \beta_{i i} . \tag{2.3}
\end{equation*}
$$

From (2.1) and (2.3), we have

$$
\begin{aligned}
& \frac{1}{2}\left\{b_{i i} \beta_{i i}+b_{j j} \beta_{i j}-\left[\left(b_{i i} \beta_{i i}-b_{j j} \beta_{j j}\right)^{2}+4\left(T_{i} \sum_{k \neq i}\left|b_{k i}\right| \beta_{i i}\right)\left(T_{j} \sum_{k \neq j}\left|b_{k j}\right| \beta_{j j}\right)\right]^{\frac{1}{2}}\right\} \\
& \geq \frac{1}{2}\left\{b_{i i} \beta_{i i}+b_{j j} \beta_{j j}-\left[\left(b_{i i} \beta_{i i}-b_{j j} \beta_{j j}\right)^{2}\right.\right. \\
& \left.\left.+4\left(T_{i} \sum_{k \neq i}\left|b_{k i}\right| \beta_{i i}\right)\left(T_{i} \sum_{k \neq i}\left|b_{k i}\right| \beta_{i i}+b_{j j} \beta_{j j}-b_{i i} \beta_{i i}\right)\right]^{\frac{1}{2}}\right\} \\
& =\frac{1}{2}\left\{b_{i i} \beta_{i i}+b_{i j} \beta_{j j}-\left[\left(b_{i i} \beta_{i i}-b_{j j} \beta_{j j}\right)^{2}\right.\right. \\
& \left.+4\left(T_{i} \sum_{k \neq i}\left|b_{k i}\right| \beta_{i i}\right)^{2}+4\left(T_{i} \sum_{k \neq i}\left|b_{k i}\right| \beta_{i i}\right)\left(b_{j j} \beta_{j j}-b_{i i} \beta_{i i}\right]^{\frac{1}{2}}\right\} \\
& =\frac{1}{2}\left\{b_{i i} \beta_{i i}+b_{j j} \beta_{j j}-\left[\left(b_{i j} \beta_{j j}-b_{i i} \beta_{i i}+2 T_{i} \sum_{k \neq i}\left|b_{k i}\right| \beta_{i i}\right)^{2}\right]^{\frac{1}{2}}\right\} \\
& =\frac{1}{2}\left\{b_{i i} \beta_{i i}+b_{j j} \beta_{j j}-\left(b_{i j} \beta_{j j}-b_{i i} \beta_{i i}+2 T_{i} \sum_{k \neq i}\left|b_{k i}\right| \beta_{i i}\right)\right\} \\
& =b_{i i} \beta_{i i}-T_{i} \sum_{k \neq i}\left|b_{k i}\right| \beta_{i i} \\
& =\beta_{i i}\left(b_{i i}-T_{i} \sum_{k \neq i}\left|b_{k i}\right|\right) \\
& \geq \beta_{i i}\left(b_{i i}-s_{i} \sum_{k \neq i}\left|b_{k i}\right|\right) \\
& \geq \frac{b_{i i}-s_{i} \sum_{k \neq i}\left|b_{k i}\right|}{a_{i i}} .
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
\tau\left(B \circ A^{-1}\right) \geq & \min _{i \neq j} \frac{1}{2}\left\{b_{i i} \beta_{i i}+b_{j j} \beta_{j j}-\left[\left(b_{i i} \beta_{i i}-b_{j j} \beta_{j j}\right)^{2}\right.\right. \\
& \left.\left.+4\left(T_{i} \sum_{k \neq i}\left|b_{k i}\right| \beta_{i i}\right)\left(T_{j} \sum_{k \neq j}\left|b_{k j}\right| \beta_{j j}\right)\right]^{\frac{1}{2}}\right\} \\
\geq & \min _{1 \leq i \leq n}\left\{\frac{b_{i i}-s_{i} \sum_{k \neq i}\left|b_{k i}\right|}{a_{i i}}\right\} .
\end{aligned}
$$

This proof is completed.

Remark 2.1 Theorem 2.2 shows that the result of Theorem 2.1 is better than the result of Theorem 2.1 in [4].

If $A=B$, according to Theorem 2.1, we can obtain the following corollary.

Corollary 2.1 Let $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ be an M-matrix, and let $A^{-1}=\left(\beta_{i j}\right)$ be a doubly stochastic matrix. Then

$$
\begin{align*}
\tau\left(A \circ A^{-1}\right) \geq & \min _{i \neq j} \frac{1}{2}\left\{a_{i i} \beta_{i i}+a_{j j} \beta_{j j}-\left[\left(a_{i i} \beta_{i i}-a_{j j} \beta_{j j}\right)^{2}\right.\right. \\
& \left.\left.+4\left(T_{i} \sum_{k \neq i}\left|a_{k i}\right| \beta_{i i}\right)\left(T_{j} \sum_{k \neq j}\left|a_{k j}\right| \beta_{j j}\right)\right]^{\frac{1}{2}}\right\} . \tag{2.4}
\end{align*}
$$

Theorem 2.3 Let $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ be an M-matrix, and let $A^{-1}=\left(\beta_{i j}\right)$ be a doubly stochastic matrix. Then

$$
\begin{aligned}
& \min _{i \neq j} \frac{1}{2}\left\{a_{i i} \beta_{i i}+a_{j j} \beta_{j j}-\left[\left(a_{i i} \beta_{i i}-a_{i j} \beta_{j j}\right)^{2}+4\left(T_{i} \sum_{k \neq i}\left|a_{k i}\right| \beta_{i i}\right)\left(T_{j} \sum_{k \neq j}\left|a_{k j}\right| \beta_{j j}\right)\right]^{\frac{1}{2}}\right\} \\
& \quad \geq \min _{i}\left\{\frac{a_{i i}-T_{i} R_{i}}{1+\sum_{j \neq i} T_{j i}}\right\} .
\end{aligned}
$$

Proof Since A is an irreducible M-matrix and A^{-1} is a doubly stochastic matrix by Lemma 2.4, we have

$$
a_{i i}=\sum_{k \neq i}\left|a_{i k}\right|+1=\sum_{k \neq i}\left|a_{k i}\right|+1, \quad i \in N .
$$

Without loss of generality, for $i \neq j$, assume that

$$
\begin{equation*}
a_{i i} \beta_{i i}-T_{i} \sum_{k \neq i}\left|a_{k i}\right| \beta_{i i} \leq a_{j j} \beta_{j j}-T_{j} \sum_{k \neq j}\left|a_{k j}\right| \beta_{j j} . \tag{2.5}
\end{equation*}
$$

Thus, (2.5) is equivalent to

$$
\begin{equation*}
T_{j} \sum_{k \neq j}\left|a_{k j}\right| \beta_{j j} \leq a_{j j} \beta_{j j}-a_{i i} \beta_{i i}+T_{i} \sum_{k \neq i}\left|a_{k i}\right| \beta_{i i} . \tag{2.6}
\end{equation*}
$$

From (2.4) and (2.6), we have

$$
\begin{aligned}
& \frac{1}{2}\left\{a_{i i} \beta_{i i}+a_{i j} \beta_{j j}-\left[\left(a_{i i} \beta_{i i}-a_{i j} \beta_{j j}\right)^{2}+4\left(T_{i} \sum_{k \neq i}\left|a_{k i}\right| \beta_{i i}\right)\left(T_{j} \sum_{k \neq j}\left|a_{k j}\right| \beta_{j j}\right)\right]^{\frac{1}{2}}\right\} \\
& \geq \geq \frac{1}{2}\left\{a_{i i} \beta_{i i}+a_{j j} \beta_{j j}-\left[\left(a_{i i} \beta_{i i}-a_{i j} \beta_{j j}\right)^{2}\right.\right. \\
& \left.\left.\quad+4\left(T_{i} \sum_{k \neq i}\left|a_{k i}\right| \beta_{i i}\right)\left(a_{j j} \beta_{j j}-a_{i i} \beta_{i i}+T_{i} \sum_{k \neq i}\left|a_{k i}\right| \beta_{i i}\right)\right]^{\frac{1}{2}}\right\} \\
& \quad=\frac{1}{2}\left\{a_{i i} \beta_{i i}+a_{j j} \beta_{j j}-\left[\left(a_{i i} \beta_{i i}-a_{i j} \beta_{j j}\right)^{2}\right.\right. \\
& \left.\quad+4\left(T_{i} \sum_{k \neq i}\left|a_{k i}\right| \beta_{i i}\right)^{2}+4\left(T_{i} \sum_{k \neq i}\left|a_{k i}\right| \beta_{i i}\right)\left(a_{i j} \beta_{j j}-a_{i i} \beta_{i i}\right)^{\frac{1}{2}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left\{a_{i i} \beta_{i i}+a_{j j} \beta_{j j}-\left[\left(a_{i j} \beta_{j j}-a_{i i} \beta_{i i}+2 T_{i} \sum_{k \neq i}\left|a_{k i}\right| \beta_{i i}\right)^{2}\right]^{\frac{1}{2}}\right\} \\
& =\frac{1}{2}\left\{a_{i i} \beta_{i i}+a_{j j} \beta_{j j}-\left(a_{j j} \beta_{j j}-a_{i i} \beta_{i i}+2 T_{i} \sum_{k \neq i}\left|a_{k i}\right| \beta_{i i}\right)\right\} \\
& =a_{i i} \beta_{i i}-T_{i} \sum_{k \neq i}\left|a_{k i}\right| \beta_{i i} \\
& =\beta_{i i}\left(a_{i i}-T_{i} \sum_{k \neq i}\left|a_{k i}\right|\right) \\
& \geq \frac{a_{i i}-T_{i} R_{i}}{1+\sum_{j \neq i} T_{j i}} .
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
\tau\left(A \circ A^{-1}\right) \geq & \min _{i \neq j} \frac{1}{2}\left\{a_{i i} \beta_{i i}+a_{j j} \beta_{j j}-\left[\left(a_{i i} \beta_{i i}-a_{j j} \beta_{j j}\right)^{2}\right.\right. \\
& \left.\left.+4\left(T_{i} \sum_{k \neq i}\left|a_{k i}\right| \beta_{i i}\right)\left(T_{j} \sum_{k \neq j}\left|a_{k j}\right| \beta_{j j}\right)\right]^{\frac{1}{2}}\right\} \\
\geq & \min _{i}\left\{\frac{a_{i i}-T_{i} R_{i}}{1+\sum_{j \neq i} T_{j i}}\right\} .
\end{aligned}
$$

This proof is completed.

Remark 2.2 Theorem 2.3 shows that the result of Corollary 2.1 is better than the result of Theorem 3.2 in [10].

3 Example

For convenience, we consider that the M-matrices A and B are the same as the matrices of [4].

$$
A=\left[\begin{array}{cccc}
4 & -1 & -1 & -1 \\
-2 & 5 & -1 & -1 \\
0 & -2 & 4 & -1 \\
-1 & -1 & -1 & 4
\end{array}\right], \quad B=\left[\begin{array}{cccc}
1 & -0.5 & 0 & 0 \\
-0.5 & 1 & -0.5 & 0 \\
0 & -0.5 & 1 & -0.5 \\
0 & 0 & -0.5 & 1
\end{array}\right]
$$

(1) We consider the lower bound for $\tau\left(B \circ A^{-1}\right)$.

If we apply (1.1), we have

$$
\tau\left(B \circ A^{-1}\right) \geq \tau(B) \min _{1 \leq i \leq n} \beta_{i i}=0.07
$$

If we apply (1.2), we have

$$
\tau\left(B \circ A^{-1}\right) \geq \frac{1-\rho\left(J_{A}\right) \rho\left(J_{B}\right)}{1+\rho^{2}\left(J_{A}\right)} \min _{1 \leq i \leq n} \frac{b_{i i}}{a_{i i}}=0.048 .
$$

If we apply (1.3), we have

$$
\tau\left(B \circ A^{-1}\right) \geq \min _{i}\left\{\frac{b_{i i}-s_{i} \sum_{k \neq i}\left|b_{k i}\right|}{a_{i i}}\right\}=0.08
$$

If we apply Theorem 2.1, we have

$$
\begin{aligned}
\tau\left(B \circ A^{-1}\right) \geq & \min _{i \neq j} \frac{1}{2}\left\{b_{i i} \beta_{i i}+b_{i j} \beta_{j j}-\left[\left(b_{i i} \beta_{i i}-b_{j j} \beta_{j j}\right)^{2}\right.\right. \\
& \left.\left.+4\left(T_{i} \sum_{k \neq i}\left|b_{k i}\right| \beta_{i i}\right)\left(T_{j} \sum_{k \neq j}\left|b_{k j}\right| \beta_{i j}\right)\right]^{\frac{1}{2}}\right\}=0.1753 .
\end{aligned}
$$

In fact, $\tau\left(B \circ A^{-1}\right)=0.2148$.
(2) We consider the lower bound for $\tau\left(A \circ A^{-1}\right)$.

If we apply (1.5), we have

$$
\tau\left(A \circ A^{-1}\right) \geq \frac{2}{n}=\frac{1}{2}=0.5 .
$$

If we apply (1.6), we have

$$
\tau\left(A \circ A^{-1}\right) \geq \min _{i}\left\{\frac{a_{i i}-t_{i} R_{i}}{1+\sum_{j \neq i} t_{j i}}\right\}=0.6624 .
$$

If we apply (1.7), we have

$$
\tau\left(A \circ A^{-1}\right) \geq \min _{i}\left\{\frac{a_{i i}-m_{i} R_{i}}{1+\sum_{j \neq i} m_{j i}}\right\}=0.7999 .
$$

If we apply (1.8), we have

$$
\tau\left(A \circ A^{-1}\right) \geq \min _{i}\left\{\frac{a_{i i}-T_{i} R_{i}}{1+\sum_{j \neq i} T_{j i}}\right\}=0.85 .
$$

If we apply Corollary 2.1, we have

$$
\begin{aligned}
\tau\left(A \circ A^{-1}\right) \geq & \min _{i \neq j} \frac{1}{2}\left\{a_{i i} \beta_{i i}+a_{j j} \beta_{i j}-\left[\left(a_{i i} \beta_{i i}-a_{i j} \beta_{j j}\right)^{2}\right.\right. \\
& \left.\left.+4\left(T_{i} \sum_{k \neq i}\left|a_{k i}\right| \beta_{i i}\right)\left(T_{j} \sum_{k \neq j}\left|a_{k j}\right| \beta_{j j}\right)\right]^{\frac{1}{2}}\right\}=0.9755 .
\end{aligned}
$$

In fact, $\tau\left(A \circ A^{-1}\right)=0.9755$.

Remark 3.1 The numerical example shows that the bounds of Theorem 2.1 and Corollary 2.1 are sharper than those of Theorem 2.1 in [4] and Theorem 3.2 in [10].

Competing interests

The author declares that he has no competing interests.

Acknowledgements

This work is supported by the Natural Science Foundation of China (No: 71161020).
Received: 13 July 2013 Accepted: 20 November 2013 Published: 11 Dec 2013

References

1. Horn, RA, Johnson, CR: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)
2. Fiedler, M, Markham, TL: An inequality for the Hadamard product of an M-matrix and inverse M-matrix. Linear Algebra Appl. 101, 1-8 (1988)
3. Huang, R: Some inequalities for the Hadamard product and the Fan product of matrices. Linear Algebra Appl. 428, 1551-1559 (2008)
4. Li, YT, Li, YY, Wang, RW, Wang, YQ: Some new bounds on eigenvalues of the Hadamard product and the Fan product of matrices. Linear Algebra Appl. 432, 536-545 (2010)
5. Fiedler, M, Johnson, CR, Markham, TL, Neumann, M : A trace inequality for M-matrix and the symmetrizability of a real matrix by a positive diagonal matrix. Linear Algebra Appl. 71, 81-94 (1985)
6. Yong, XR: Proof of a conjecture of Fiedler and Markham. Linear Algebra Appl. 320, 167-171 (2000)
7. Song, YZ: On an inequality for the Hadamard product of an M-matrix and its inverse. Linear Algebra Appl. 305, 99-105 (2000)
8. Li, HB, Huang, TZ, Shen, SQ, Li, H: Lower bounds for the minimum eigenvalue of Hadamard product of an M-matrix and its inverse. Linear Algebra Appl. 420, 235-247 (2007)
9. Li, YT, Chen, FB, Wang, DF: New lower bounds on eigenvalue of the Hadamard product of an M-matrix and its inverse. Linear Algebra Appl. 430, 1423-1431 (2009)
10. Li, YT, Liu, X, Yang, XY, Li, CQ: Some new lower bounds for the minimum eigenvalue of the Hadamard product of an M-matrix and its inverse. Electron. J. Linear Algebra 22, 630-643 (2011)
11. Chen, JL: Special Matrices. Qing Hua University Press, Beijing (2000)
12. Yong, XR, Wang, Z: On a conjecture of Fiedler and Markham. Linear Algebra Appl. 288, 259-267 (1999)
13. Horn, RA, Johnson, CR: Matrix Analysis. Cambridge University Press, Cambridge (1985)
14. Berman, A, Plemmons, RJ: Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia (1979)

> 10.1186/1029-242X-2013-581
> Cite this article as: Chen: Some new inequalities for the Hadamard product of M-matrices. Journal of Inequalities and Applications 2013, 2013:581

Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

Convenient online submission

- Rigorous peer review
- Immediate publication on acceptance

Open access: articles freely available online

- High visibility within the field
- Retaining the copyright to your article

