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Abstract
Azam et al. (Numer. Funct. Anal. Optim. 33(5):590-600, 2012) introduced the notion of
complex-valued metric spaces and established a common fixed point result in the
context of complex-valued metric spaces. In this paper, the existence of common
fixed points is established for multi-valued mappings on the complex-valued metric
spaces. Our results unify, generalize and complement the comparable results from
the current literature.
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1 Introduction
It is a well-known fact that themathematical results regarding fixed points of contraction-
type mappings are very useful for determining the existence and uniqueness of solutions
to various mathematical models. Over the last  years, the theory of fixed points has
been developed regarding the results that are related to finding the fixed points of self and
nonself nonlinear mappings in a metric space.
The study of fixed points for multi-valued contractionmappings was initiated by Nadler

[] and Markin []. Several authors proved fixed point results in different types of gener-
alized metric spaces [–].
Azam et al. [] introduced the concept of complex-valued metric space and obtained

sufficient conditions for the existence of common fixed points of a pair of mappings sat-
isfying a contractive-type condition. Subsequently, Rouzkard and Imdad [] established
some common fixed point theorems satisfying certain rational expressions in complex-
valued metric spaces to generalize the results of []. In the same way, Sintunavarat and
Kumam [, ] obtained common fixed point results by replacing the constant of con-
tractive condition to control functions. Recently, Sitthikul and Saejung [] and Klin-eam
and Suanoom [] established some fixed point results by generalizing the contractive
conditions in the context of complex-valued metric spaces. Very recently, Ahmad et al.
[] obtained some new fixed point results for multi-valued mappings in the setting of
complex-valued metric spaces.
The purpose of this paper is to study common fixed points of two multi-valued map-

pings satisfying a rational inequality without exploiting any type of commutativity con-
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dition in the framework of a complex-valued metric space. The results presented in this
paper substantially extend and strengthen the results given in [, ] for the multi-valued
mappings.

2 Preliminaries
Let C be the set of complex numbers and z, z ∈ C. Define a partial order � on C as
follows:

z � z if and only if Re(z) ≤ Re(z), Im(z) ≤ Im(z).

It follows that

z � z

if one of the following conditions is satisfied:
(i) Re(z) = Re(z), Im(z) < Im(z),
(ii) Re(z) < Re(z), Im(z) = Im(z),
(iii) Re(z) < Re(z), Im(z) < Im(z),
(iv) Re(z) = Re(z), Im(z) = Im(z).

In particular, we will write z � z if z �= z and one of (i), (ii) and (iii) is satisfied and we
will write z ≺ z if only (iii) is satisfied. Note that

� z � z �⇒ |z| < |z|,
z � z, z ≺ z �⇒ z ≺ z.

Definition  Let X be a nonempty set. Suppose that the mapping

d : X ×X →C

satisfies:
. � d(x, y) for all x, y ∈ X and d(x, y) =  if and only if x = y;
. d(x, y) = d(y,x) for all x, y ∈ X ;
. d(x, y)� d(x, z) + d(z, y) for all x, y, z ∈ X .
Then d is called a complex-valued metric on X, and (X,d) is called a complex-valued

metric space. A point x ∈ X is called an interior point of a set A⊆ X whenever there exists
 ≺ r ∈C such that

B(x, r) =
{
y ∈ X : d(x, y) ≺ r

} ⊆ A.

A point x ∈ X is called a limit point of A whenever, for every  ≺ r ∈C,

B(x, r)∩ (
A\{x}) �= φ.

A is called openwhenever each element ofA is an interior point ofA. Moreover, a subset
B ⊆ X is called closed whenever each limit point of B belongs to B. The family

F =
{
B(x, r) : x ∈ X, ≺ r

}
is a sub-basis for a Hausdorff topology τ on X.
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Let xn be a sequence inX and x ∈ X. If for every c ∈Cwith  ≺ c there is n ∈ N such that
for all n > n, d(xn,x) ≺ c, then {xn} is said to be convergent, {xn} converges to x and x is
the limit point of {xn}. We denote this by limn→∞ xn = x, or xn → x, as n→ ∞. If for every
c ∈ C with  ≺ c there is n ∈ N such that for all n > n, d(xn,xn+m) ≺ c, where m ∈ N,
then {xn} is called a Cauchy sequence in (X,d). If every Cauchy sequence is convergent
in (X,d), then (X,d) is called a complete complex-valued metric space. We require the
following lemmas.

Lemma  [] Let (X,d) be a complex-valued metric space and let {xn} be a sequence in X.
Then {xn} converges to x if and only if |d(xn,x)| →  as n → ∞.

Lemma  [] Let (X,d) be a complex-valued metric space and let {xn} be a sequence in X.
Then {xn} is a Cauchy sequence if and only if |d(xn,xn+m)| →  as n→ ∞, where m ∈N.

3 Main result
Let (X,d) be a complex-valued metric space.
We denote the family of nonempty, closed and bounded subsets of a complex valued

metric space by CB(X).
From now on, we denote s(z) = {z ∈ C : z � z} for z ∈ C, and s(a,B) =

⋃
b∈B s(d(a,

b)) =
⋃

b∈B{z ∈ C : d(a,b)� z} for a ∈ X and B ∈ CB(X).
For A,B ∈ CB(X), we denote

s(A,B) =
(⋂
a∈A

s(a,B)
)

∩
(⋂
b∈B

s(b,A)
)
.

Remark  [] Let (X,d) be a complex-valuedmetric space. IfC = R, then (X,d) is a metric
space. Moreover, for A,B ∈ CB(X), H(A,B) = inf s(A,B) is the Hausdorff distance induced
by d.

Definition  [] Let (X,d) be a complex-valued metric space. Let T : X → CB(X) be a
multi-valued map. For x ∈ X and A ∈ CB(X), define

Wx(A) =
{
d(x,a) : a ∈ A

}
.

Thus, for x, y ∈ X,

Wx(Ty) =
{
d(x,u) : u ∈ Ty

}
.

Definition  [] Let (X,d) be a complex-valued metric space. A subset A of X is called
bounded from below if there exists some z ∈ X such that z � a for all a ∈ A.

Definition  [] Let (X,d) be a complex-valued metric space. A multi-valued mapping
F : X → C is called bounded from below if for each x ∈ X there exists zx ∈C such that

zx � u

for all u ∈ Fx.
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Definition  [] Let (X,d) be a complex-valued metric space. The multi-valued mapping
T : X → CB(X) is said to have the lower bound property (l.b property) on (X,d) if the for
any x ∈ X, the multi-valued mapping Fx : X → C defined by

Fx(y) =Wx(Ty)

is bounded from below. That is, for x, y ∈ X, there exists an element lx(Ty) ∈ C such that

lx(Ty) � u

for all u ∈Wx(Ty), where lx(Ty) is called a lower bound of T associated with (x, y).

Definition  [] Let (X,d) be a complex-valued metric space. The multi-valued mapping
T : X → CB(X) is said to have the greatest lower bound property (g.l.b property) on (X,d)
if a greatest lower bound of Wx(Ty) exists in C for all x, y ∈ X. We denote d(x,Ty) by the
g.l.b ofWx(Ty). That is,

d(x,Ty) = inf
{
d(x,u) : u ∈ Ty

}
.

Theorem  Let (X,d) be a complete complex-valued metric space and let S,T : X →
CB(X) be multi-valued mappings with g.l.b property such that

ad(x,Ty) + bd(y,Sx) + c
d(x,Ty)d(y,Sx)

 + d(x, y)
∈ s(Sx,Ty) (.)

for all x, y ∈ X and a + b + c < . Then S and T have a common fixed point.

Proof Let x be an arbitrary point in X and x ∈ Sx. From (.), we have

ad(x,Tx) + bd(x,Sx) + c
d(x,Tx)d(x,Sx)

 + d(x,x)
∈ s(Sx,Tx).

This implies that

ad(x,Tx) + bd(x,Sx) + c
d(x,Tx)d(x,Sx)

 + d(x,x)
∈

( ⋂
x∈Sx

s(x,Tx)
)

and

ad(x,Tx) + bd(x,Sx) + c
d(x,Tx)d(x,Sx)

 + d(x,x)
∈ s(x,Tx) for all x ∈ Sx.

Since x ∈ Sx, so we have

ad(x,Tx) + bd(x,Sx) + c
d(x,Tx)d(x,Sx)

 + d(x,x)
∈ s(x,Tx)

and

ad(x,Tx) + bd(x,Sx) + c
d(x,Tx)d(x,Sx)

 + d(x,x)
∈ s(x,Tx) =

⋃
x∈Tx

s
(
d(x,x)

)
.
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So there exists some x ∈ Tx such that

ad(x,Tx) + bd(x,Sx) + c
d(x,Tx)d(x,Sx)

 + d(x,x)
∈ s

(
d(x,x)

)
.

That is,

d(x,x)� ad(x,Tx) + bd(x,Sx) + c
d(x,Tx)d(x,Sx)

 + d(x,x)
.

By using the greatest lower bound property (g.l.b property) of S and T , we get

d(x,x)� ad(x,x) + bd(x,x) + c
d(x,x)d(x,x)
 + d(x,x)

,

which implies that

∣∣d(x,x)∣∣ ≤ a
∣∣d(x,x)∣∣ + b

∣∣d(x,x)∣∣ + c
|d(x,x)||d(x,x)|

| + d(x,x)| .

So, we have

∣∣d(x,x)∣∣ ≤ a
∣∣d(x,x)∣∣ + a

∣∣d(x,x)∣∣.
Thus, we have

∣∣d(x,x)∣∣ ≤
(

a
 – a

)∣∣d(x,x)∣∣.
Since a, b, c are nonnegative reals and a + b + c < , so ρ = a

–a < , so we have

∣∣d(x,x)∣∣ ≤ ρ
∣∣d(x,x)∣∣.

Inductively, we can construct a sequence {xn} in X such that for n = , , , . . . ,

∣∣d(xn,xn+)∣∣ ≤ ρn∣∣d(x,x)∣∣, (.)

with ρ = a
–a < , xn+ ∈ Sxn and xn+ ∈ Txn+. Now, form > n, we get

∣∣d(xn,xm)∣∣ ≤ ∣∣d(xn,xn+)∣∣ + ∣∣d(xn+,xn+)∣∣ + · · · + ∣∣d(xm–,xm)
∣∣

≤ [
ρn + ρn+ + · · · + ρm–]∣∣d(x,x)∣∣

≤
[

ρn

 – ρ

]∣∣d(x,x)∣∣,
and so

∣∣d(xn,xm)∣∣ ≤ ρn

 – ρ

∣∣d(x,x)∣∣ →  asm,n→ ∞.
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This implies that {xn} is a Cauchy sequence in X. Since X is complete, there exists ν ∈ X
such that xn → ν as n→ ∞. We now show that ν ∈ Tν and ν ∈ Sν . From (.), we get

ad(xn,Tν) + bd(ν,Sxn) + c
d(xn,Tν)d(ν,Sxn)

 + d(xn,ν)
∈ s(Sxn,Tν).

This implies that

ad(xn,Tν) + bd(ν,Sxn) + c
d(xn,Tν)d(ν,Sxn)

 + d(xn,ν)
∈

( ⋂
x∈Sxn

s(x,Tv)
)
,

and we have

ad(xn,Tν) + bd(ν,Sxn) + c
d(xn,Tν)d(ν,Sxn)

 + d(xn,ν)
∈ s(x,Tv) for all x ∈ Sxn .

Since xn+ ∈ Sxn , so we have

ad(xn,Tν) + bd(ν,Sxn) + c
d(xn,Tν)d(ν,Sxn)

 + d(xn,ν)
∈ s(xn+ ,Tv).

By definition, we obtain

ad(xn,Tν) + bd(ν,Sxn) + c
d(xn,Tν)d(ν,Sxn)

 + d(xn,ν)
∈ s(xn+ ,Tv) =

⋃
u′∈Tu

s
(
d
(
xn+ ,u

′)).

There exists some νn ∈ Tv such that

ad(xn,Tν) + bd(ν,Sxn) + c
d(xn,Tν)d(ν,Sxn)

 + d(xn,ν)
∈ s(xn+ ,Tv) ∈ s

(
d(xn+ ,νn)

)
,

that is,

d(xn+ ,νn) � ad(xn,Tν) + bd(ν,Sxn) + c
d(xn,Tν)d(ν,Sxn)

 + d(xn,ν)
.

By using the greatest lower bound property (g.l.b property) of S and T , we have

d(xn+ , vn)� ad(xn,νn) + bd(ν,xn+) + c
d(xn,νn)d(ν,xn+)

 + d(xn,ν)
. (.)

Now, by using the triangular inequality, we get

d(xn+,νn) � ad(xn,xn+) + ad(xn+,νn) + bd(ν,xn+) + c
d(xn,νn)d(ν,xn+)

 + d(xn,ν)
,

and it follows that

d(xn+,νn) � a
 – a

d(xn,xn+) +
b

 – a
d(ν,xn+) +

c
 – a

d(xn,νn)d(ν,xn+)
 + d(xn,ν)

.
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By using again the triangular inequality, we get

d(ν,νn) � d(ν,xn+) + d(xn+,νn)

� d(ν,xn+) +
a

 – a
d(xn,xn+) +

b
 – a

d(ν,xn+)

+
c

 – a
d(xn,νn)d(ν,xn+)

 + d(xn,ν)
,

it follows that

∣∣d(ν,νn)∣∣ ≤ ∣∣d(ν,xn+)∣∣ + a
 – a

∣∣d(xn,xn+)∣∣ + b
 – a

∣∣d(ν,xn+)∣∣
+

c
 – a

|d(xn,νn)||d(ν,xn+)|
| + d(xn,ν)| .

By letting n → ∞ in the above inequality, we get |d(ν,νn)| →  as n → ∞. By Lemma 
[], we have νn → ν as n → ∞. Since Tν is closed, so ν ∈ Tν . Similarly, it follows that
ν ∈ Sν . Thus S and T have a common fixed point. �

Corollary  Let (X,d) be a complete complex-valued metric space and let S,T : X →
CB(X) be multi-valued mappings with g.l.b property such that

α
(
d(x,Ty) + d(y,Sx)

) ∈ s(Sx,Ty)

for all x, y ∈ X and  ≤ α < . Then S and T have a common fixed point.

Proof By taking a = b and c =  in Theorem . �

Corollary  Let (X,d) be a complete complex-valuedmetric space and let T : X → CB(X)
be a multi-valued mapping with g.l.b property such that

ad(x,Ty) + bd(y,Tx) + c
d(x,Ty)d(y,Tx)

 + d(x, y)
∈ s(Tx,Ty)

for all x, y ∈ X and a + b + c < . Then T has a fixed point.

Proof By taking S = T in Theorem . �

Now we obtain a common fixed point result discussed by Khan [] in the setting of
complex-valued metric spaces.

Theorem  Let (X,d) be a complete complex-valued metric space and let S,T : X →
CB(X) be multi-valued mappings with g.l.b property such that

α
[d(x,Sx)d(x,Ty) + d(y,Ty)d(y,Sx)]

d(x,Ty) + d(y,Sx)
∈ s(Sx,Ty) (.)

for all x, y ∈ X and  ≤ α < . Then S and T have a common fixed point.
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Proof Let x ∈ X and x ∈ Sx. From (.), we get

a[d(x,Sx)d(x,Tx) + d(x,Tx)d(x,Sx)]
d(x,Tx) + d(x,Sx)

∈ s(Sx,Tx).

This implies that

a[d(x,Sx)d(x,Tx) + d(x,Tx)d(x,Sx)]
d(x,Tx) + d(x,Sx)

∈
( ⋂
x∈Sx

s(x,Tx)
)
,

that is,

a[d(x,Sx)d(x,Tx) + d(x,Tx)d(x,Sx)]
d(x,Tx) + d(x,Sx)

∈ s(x,Tx) for all x ∈ Sx.

Since x ∈ Sx, so we have

a[d(x,Sx)d(x,Tx) + d(x,Tx)d(x,Sx)]
d(x,Tx) + d(x,Sx)

∈ s(x,Tx),

a[d(x,Sx)d(x,Tx) + d(x,Tx)d(x,Sx)]
d(x,Tx) + d(x,Sx)

∈ s(x,Tx) =
⋃
x∈Tx

s
(
d(x,x)

)
.

So there exists some x ∈ Tx such that

a[d(x,Sx)d(x,Tx) + d(x,Tx)d(x,Sx)]
d(x,Tx) + d(x,Sx)

∈ s
(
d(x,x)

)
.

That is,

d(x,x)� a[d(x,Sx)d(x,Tx) + d(x,Tx)d(x,Sx)]
d(x,Tx) + d(x,Sx)

.

By using the greatest lower bound property (g.l.b property) of S and T , we get

d(x,x)� a
d(x,x)d(x,x) + d(x,x)d(x,x)

d(x,x) + d(x,x)
,

which implies that

d(x,x) ≤ a
|d(x,x)||d(x,x)|

|d(x,x)|
= a

∣∣d(x,x)∣∣.
Inductively, we can construct a sequence {xn} inX such that for n = , ,  . . . , |d(xn,xn+)| ≤
an|d(x,x)| with a < , xn+ ∈ Sxn and xn+ ∈ Txn+. Now, form > n, we get

∣∣d(xn,xm)∣∣ ≤ ∣∣d(xn,xn+)∣∣ + ∣∣d(xn+,xn+)∣∣ + · · · + ∣∣d(xm–,xm)
∣∣

≤ [
an + an+ + · · · + am–]∣∣d(x,x)∣∣

≤
[

an

 – a

]∣∣d(x,x)∣∣,

http://www.journalofinequalitiesandapplications.com/content/2013/1/578
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and so

∣∣d(xn,xm)∣∣ ≤ an

 – a
∣∣d(x,x)∣∣ →  asm,n→ ∞.

This implies that {xn} is a Cauchy sequence in X. Since X is complete, so there exists ν ∈ X
such that xn → ν as n→ ∞. We now show that ν ∈ Tν and ν ∈ Sν . From (.), we have

a[d(xn,Sxn)d(xn,Tν) + d(ν,Tν)d(ν,Sxn)]
d(xn,Tν) + d(ν,Sxn)

∈ s(Sxn,Tν).

This implies that

a[d(xn,Sxn)d(xn,Tν) + d(ν,Tν)d(ν,Sxn)]
d(xn,Tν) + d(ν,Sxn)

∈
( ⋂
x∈Sxn

s(x,Tv)
)
,

and so

a[d(xn,Sxn)d(xn,Tν) + d(ν,Tν)d(ν,Sxn)]
d(xn,Tν) + d(ν,Sxn)

∈ s(x,Tv) for all x ∈ Sxn .

Since xn+ ∈ Sxn , so we have

a[d(xn,Sxn)d(xn,Tν) + d(ν,Tν)d(ν,Sxn)]
d(xn,Tν) + d(ν,Sxn)

∈ s(xn+ ,Tv).

By definition

a[d(xn,Sxn)d(xn,Tν) + d(ν,Tν)d(ν,Sxn)]
d(xn,Tν) + d(ν,Sxn)

∈ s(xn+ ,Tv) =
⋃
u′∈Tu

s
(
d
(
xn+ ,u

′)).
There exists some νn ∈ Tv such that

a[d(xn,Sxn)d(xn,Tν) + d(ν,Tν)d(ν,Sxn)]
d(xn,Tν) + d(ν,Sxn)

∈ s(xn+ ,Tv) ∈ s
(
d(xn+ ,νn)

)
,

that is,

d(xn+ ,νn) �
a[d(xn,Sxn)d(xn,Tν) + d(ν,Tν)d(ν,Sxn)]

d(xn,Tν) + d(ν,Sxn)
.

By using the greatest lower bound property (g.l.b property) of S and T , we get

d(xn+ ,νn) �
a[d(xn,xn+)d(xn,νn) + d(ν,νn)d(ν,xn+)]

d(xn,νn) + d(ν,xn+)
.

By using again the triangular inequality, we get

d(ν,νn) � d(ν,xn+) + d(xn+,νn).

Then we have

d(ν,νn) � d(ν,xn+) +
a[d(xn,xn+)d(xn,νn) + d(ν,νn)d(ν,xn+)]

d(xn,νn) + d(ν,xn+)
,

http://www.journalofinequalitiesandapplications.com/content/2013/1/578
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and we obtain

∣∣d(ν,νn)∣∣ ≤ ∣∣d(ν,xn+)∣∣ + a[|d(xn,xn+)||d(xn,νn)| + |d(ν,νn)||d(ν,xn+)|]
|d(xn,νn)| + |d(ν,xn+)| .

By letting n → ∞ in the above inequality, we get |d(ν,νn)| →  as n → ∞. By Lemma 
[], we have νn → ν as n → ∞. Since Tν is closed, so ν ∈ Tν . Similarly, it follows that
ν ∈ Sν . Thus S and T have a common fixed point. �

Corollary  Let (X,d) be a complete complex-valuedmetric space and let T : X → CB(X)
be a multi-valued mapping with g.l.b property such that

α
[d(x,Tx)d(x,Ty) + d(y,Ty)d(y,Tx)]

d(x,Ty) + d(y,Tx)
∈ s(Tx,Ty)

for all x, y ∈ X and  ≤ α < . Then T has a fixed point.

Proof By setting S = T in Theorem . �

Now we give an example which satisfies our main result.

Example  Let X = [, ]. Define d : X ×X →C as follows:

d(x, y) = |x – y|eiθ ,

where θ = tan– | yx |. Then (X,d) is a complex-valued metric space. Consider the mappings
S,T : X → CB(X) such that

Sx =
{
t ∈ X : ≤ t ≤ x



}

and

Tx =
{
t ∈ X : ≤ t ≤ x



}

for all x, y ∈ X. The contractive condition of the main theorem is trivial for the case when
x = y = . Suppose, without any loss of generality, that all x, y are nonzero and x < y. Then

d(y,Sx) =
∣∣∣∣y – x



∣∣∣∣eiθ ,
d(x,Ty) =

{
 if ≤ x ≤ y

 ,
|x – y

 |eiθ if x > y
 ,

and

s(Sx,Ty) = s
(∣∣∣∣x –

y


∣∣∣∣eiθ
)
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/578
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Clearly, for any value of a and c and b = 
 , we have

d(y,Sx) =
∣∣∣∣y – x



∣∣∣∣eiθ � 


∣∣∣∣y – x


∣∣∣∣eiθ �
∣∣∣∣ y –

x


∣∣∣∣eiθ = s(Sx,Ty).

Thus

ad(x,Ty) + bd(y,Sx) + c
d(x,Ty)d(y,Sx)

 + d(x, y)
∈ s(Sx,Ty).

Hence all the conditions of Theorem  are satisfied and  is a common fixed point of S
and T .

4 Conclusion
In this paper, we have established common fixed point results for Chatterjea-type con-
tractive mappings in the context of complex-valued metric spaces. Our results may be the
motivation for other authors to extend and improve these results to be suitable tools for
their applications.
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