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Abstract
In this paper, we show by means of an example that the results of Babačev (Appl.
Anal. Discrete Math. 6:257-264, 2012) do not hold for the class of t-norms T ≤ Tp.
Further, we prove a fixed point theorem for quasi-type contraction involving altering
distance functions which is weaker than that proposed by Babačev but for any
continuous t-norm in a complete Menger space.
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1 Introduction
Probabilistic metric spaces (in short PM-spaces) are a probabilistic generalization of met-
ric spaces which are appropriate to carry out the study of those situations wherein dis-
tances aremeasured in terms of distribution functions rather than non-negative real num-
bers. The study of PM-spaces was initiated byMenger []. Schweizer and Sklar [] further
enriched this concept and provided a new impetus by proving some fundamental results
on this theme.
The first result on fixed point theory in PM-spaces was given by Sehgal and Bharueha-

Reid [] wherein the notion of probabilistic B-contraction was introduced and a general-
ization of the classical Banach fixed point principle to complete Menger PM-spaces was
given. In [], it was proved that any B-contraction on a complete Menger space (S,F ,TM),
where t-norm TM is defined by TM(x, y) = min{x, y}, has a unique fixed point. In ,
Hadžić [] extended the result contained in [] for a more general class of t-norms called
H-type t-norms (see also []).
After that several types of contractions and associated fixed point theorems have been

established in PM-spaces by various authors, e.g., [–] (see also [–]). We also refer
to a nice book on this topic by Hadžić and Pap []. In this continuation, Choudhury and
Das [] extended the classical metric fixed point result of Khan et al. [] by introducing
the idea of altering distance functions in PM-spaces. In [], it was proved that any prob-
abilistic φ-contraction on a complete Menger space (S,F ,TM) has a unique fixed point.
An open problem that remains to be investigated is whether the results are valid in the

cases of any arbitrary continuous t-norm. (However, in [] Miheţ gave an affirmative an-
swer to the question raised in [] using the idea of probabilistic boundedness andH-type
t-norms along with some additional conditions.) Very recently, Babačev in [] extended

©2013 Došenović et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://www.journalofinequalitiesandapplications.com/content/2013/1/576
mailto:poom.kum@kmutt.ac.th
http://creativecommons.org/licenses/by/2.0
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and improved the results of Choudhury and Das [] for a nonlinear generalized contrac-
tion wherein she used the associated t-norm as a min norm.
In this paper, we show by means of an example that Babačev’s [] results do not hold

for the class of t-norms T ≤ Tp. Further, we prove a fixed point theorem for quasi-type
contraction involving altering distance functions in a completeMenger space for any con-
tinuous t-norm T .

2 Preliminaries
Consistent with Choudhury and Das [], Choudhury et al. [] and Babačev [], the
following definitions and results will be needed in the sequel.
In the standard notation, let D+ be the set of all distribution functions F : R → [, ]

such that F is a nondecreasing, left-continuous mapping which satisfies F() =  and
supx∈R F(x) = . The spaceD+ is partially ordered by the usual point-wise ordering of func-
tions, i.e., F ≤G if and only if F(t)≤G(t) for all t ∈R. The maximal element forD+ in this
order is the distribution function given by

ε(t) =

{
, t ≤ ,
, t > .

Definition . [] A binary operation T : [, ]× [, ] → [, ] is a continuous t-norm if
it satisfies the following conditions:
(a) T is commutative and associative,
(b) T is continuous,
(c) T(a, ) = a for all a ∈ [, ],
(d) T(a,b)≤ T(c,d) whenever a≤ c and b ≤ d, and a,b, c,d ∈ [, ].

The following are the three basic continuous t-norms:
(i) The minimum t-norm, TM , is defined by TM(a,b) =min{a,b}.
(ii) The product t-norm, Tp, is defined by Tp(a,b) = a · b.
(iii) The Lukasiewicz t-norm, TL, is defined by TL(a,b) =max{a + b – , }.

Regarding the pointwise ordering, the following inequalities hold:

TL < Tp < TM.

Definition . AMenger probabilisticmetric space (briefly,Menger PM-space) is a triple
(X,F ,T), where X is a nonempty set, T is a continuous t-norm, and F is a mapping from
X × X into D+ such that if Fxy denotes the value of F at the pair (x, y), the following con-
ditions hold:
(PM) Fxy(t) = ε(t) if and only if x = y,
(PM) Fxy(t) = Fyx(t),
(PM) Fxy(t + s) ≥ T(Fxz(t),Fzy(s)) for all x, y, z ∈ X and s, t ≥ .

Remark . [] Every metric space is a PM-space. Let (X,d) be a metric space and
T(a,b) = min{a,b} be a continuous t-norm. Define Fxy(t) = ε(t – d(x, y)) for all x, y ∈ X
and t > . The triple (X,F ,T) is a PM-space induced by the metric d.

Definition . Let (X,F ,T) be a Menger PM-space.
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() A sequence {xn}n in X is said to be convergent to x in X if for every ε >  and λ > ,
there exists a positive integer N such that Fxnx(ε) >  – λ whenever n ≥N .

() A sequence {xn}n in X is called a Cauchy sequence if for every ε >  and λ > , there
exists a positive integer N such that Fxnxm (ε) >  – λ whenever n,m ≥N .

() The space X is said to be complete if every Cauchy sequence in X is convergent to a
point in X .

The (ε,λ)-topology [] in a Menger space (X,F ,T) is introduced by the family of neigh-
borhoods Nx of a point x ∈ X given by

Nx =
{
Nx(ε,λ) : ε > ,λ ∈ (, )

}
,

where

Nx(ε,λ) =
{
y ∈ X : Fxy(ε) >  – λ

}
.

The (ε,λ)-topology is a Hausdorff topology. In this topology the function f is continuous
in x ∈ X if and only if for every sequence xn → x it holds that f (xn) → f (x).

Definition . (Altering distance function []) The control functionψ : [,∞)→ [,∞)
is called an altering distance function if it has the following properties:

(i) ψ is monotone increasing and continuous,
(ii) ψ(t) =  if and only if t = .

The following category of functions was introduced in [].

Definition . [] A function φ : [,∞)→ [,∞) is said to be a �-function if it satisfies
the following conditions:

(i) φ(t) =  if and only if t = ,
(ii) φ(t) is strictly monotone increasing and φ(t) → ∞ as t → ∞,
(iii) φ is left continuous in (,∞),
(iv) φ is continuous at .

The class of all �-functions will be denoted by �.

Lemma . [] Let (X,F ,T) be a Menger PM-space. Let φ : [,∞) → [,∞) be a �-
function. Then the following statement holds.
If for x, y ∈ X,  < c < , we have Fxy(φ(t))≥ Fxy(φ(t/c)) for all t > , then x = y.

Theorem . [] Let (X,F ,T) be a complete Menger PM-space with a continuous t-norm
T which satisfies T(a,a)≥ a for every a ∈ [, ]. Let c ∈ (, ) be fixed. If for a �-function φ

and a self-mapping f on X,

Ffxfy
(
φ(t)

) ≥ min

{
Fxy

(
φ

(
t
c

))
,Fxfx

(
φ

(
t
c

))
,Fyfy

(
φ

(
t
c

))
,

Fxfy
(
φ

(
t
c

))
,Fyfx

(
φ

(
t
c

))}
(.)

holds for every x, y ∈ X and all t > , then f has a unique fixed point in X .
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3 Main results
We begin with the following example.

Example . Let X = [,∞) and T = Tp. For each t ∈ (,∞), define

Fxy(t) =

{
min{x,y}
max{x,y} , ∀t > ,x �= y,
, ∀t > ,x = y.

It is clear that (X,F ,Tp) is a complete Menger PM-space (see []) (but here (X,F ,TM)
is not a PM-space). Let us consider the function

f : X → X, fx = x + , ∀x ∈ X.

Then it can be easily seen that the above example satisfies Theorem . for Tp. Indeed,
• Case I. If x = y, then inequality (.) is obviously true.
• Case II. If x �= y and x < y, then we have x +  < y + , x < x + , y < y + , x < y + .
For any function φ ∈ � and c ∈ (, ), inequality (.) becomes

x + 
y + 

≥min

{
x
y
,

x
x + 

,
y

y + 
,

x
y + 

,
min{y,x + }
max{y,x + }

}
.

If x +  < y, then we have

x + 
y + 

≥min

{
x
y
,

x
x + 

,
y

y + 
,

x
y + 

,
x + 
y

}
.

Clearly, the inequality holds with the minimum value x/(y + ).
If x +  = y, then we have

x + 
y + 

≥min

{
x
y
,

x
x + 

,
y

y + 
,

x
y + 

, 
}
.

Then the inequality holds with the minimum value x/(y + ).
And if x +  > y, then we have

x + 
y + 

≥min

{
x
y
,

x
x + 

,
y

y + 
,

x
y + 

,
y

x + 

}
.

The inequality holds with the minimum value x/(y + ).
• Case III. If x �= y and x > y, then we have x +  > y + , x +  > y.
By inequality (.), we have

y + 
x + 

≥min

{
y
x
,

x
x + 

,
y

y + 
,
min{x, y + }
max{x, y + } ,

y
x + 

}
.

If x > y + , then we have

y + 
x + 

≥min

{
y
x
,

x
x + 

,
y

y + 
,
y + 
x

,
y

x + 

}
.
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The inequality holds with the minimum value y/(x + ).
If x = y + , then we have

y + 
x + 

≥min

{
y
x
,

x
x + 

,
y

y + 
, ,

y
x + 

}
.

The inequality holds with the minimum value y/(x + ).
Finally, if x < y + , then we have

y + 
x + 

≥min

{
y
x
,

x
x + 

,
y

y + 
,

x
y + 

,
y

x + 

}
.

Again inequality holds with the minimum value y/(x + ).
Thus the above example satisfies all the conditions of Theorem . with the t-norm Tp,

but here the mapping f has no fixed point. Therefore, Theorem . cannot be generalized
for T ≤ Tp.

Now, we are motivated to introduce our result.

Theorem. Let (X,F ,T) be a completeMenger PM-space with a continuous t-norm, and
let c ∈ (, ) be fixed. If for a �-function φ and a self-mapping f on X,

Ffxfy
(
φ(t)

) ≥ min

{
Fxy

(
φ

(
t
c

))
,Fxfx

(
φ

(
t
c

))
,

Fyfy
(

φ

(
t
c

))
,Fyfx

(
φ

(
t
c

))}
(.)

holds for every x, y ∈ X and all t > , then f has a unique fixed point in X .

Proof Let x ∈ X. Now, construct a sequence {xn} in X as follows:

xn = fxn–, n = , , . . . .

Applying (.) for x = xn– and y = xn, we have

Fxnxn+
(
φ(t)

)
= Ffxn–fxn

(
φ(t)

)
≥min

{
Fxn–xn

(
φ(t/c)

)
,Fxn–xn

(
φ(t/c)

)
,Fxnxn+

(
φ(t/c)

)
,Fxnxn

(
φ(t/c)

)}
=min

{
Fxn–xn

(
φ(t/c)

)
,Fxnxn+

(
φ(t/c)

)}
for all t > .
We should prove that

min
{
Fxn–xn

(
φ(t/c)

)
,Fxnxn+

(
φ(t/c)

)}
= Fxn–xn

(
φ(t/c)

)
(.)

for all t > .
If it is not, there exists p >  such that

Fxn–xn
(
φ(p/c)

)
> Fxnxn+

(
φ(p/c)

)
. (.)
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Then, using (.), we have

Fxn+xn
(
φ(p)

) ≥ Fxnxn+
(
φ(p/c)

)
≥min

{
Fxn–xn

(
φ
(
p/c

))
,Fxnxn+

(
φ
(
p/c

))}
.

If

min
{
Fxn–xn

(
φ
(
p/c

))
,Fxnxn+

(
φ
(
p/c

))}
= Fxn–xn

(
φ
(
p/c

))
, (.)

then by (.) and (.)

Fxn–xn
(
φ(p/c)

)
> Fxnxn+

(
φ(p/c)

) ≥ Fxn–xn
(
φ
(
p/c

))
.

So, we get a contradiction.
Accordingly, min{Fxn–xn (φ(p/c)),Fxnxn+ (φ(p/c))} = Fxnxn+ (φ(p/c)).
Now, we have

Fxnxn+
(
φ(p)

) ≥ Fxnxn+
(
φ(p/c)

)
≥ Fxnxn+

(
φ
(
p/c

))
≥min

{
Fxn–xn

(
φ
(
p/c

))
,Fxnxn+

(
φ
(
p/c

))}
.

Repeating the same procedure, we conclude that

Fxn–xn
(
φ(p/c)

)
> Fxnxn+

(
φ(p/c)

) ≥ Fxnxn+
(
φ
(
p/c

)) ≥ · · · ≥ Fxnxn+
(
φ
(
p/ck

))
.

Since Fxnxn+ (φ(p/ck)) → , k → ∞, we get a contradiction. Accordingly, (.) is true.
Therefore,

Fxnxn+
(
φ(t)

) ≥ Fxn–xn
(
φ(t/c)

) ≥ Fxx
(
φ
(
t/cn

)) → 

as n→ ∞.
By the property of φ, given s > , there exists t >  such that s > φ(t). Thus,

Fxnxn+ (s)→  as n→ ∞ (.)

for all s > .
Now, we claim that {xn} is a Cauchy sequence. If not, then ∃ε >  and λ > , and subse-

quences {xm(k)} and {xn(k)} such that m(k) < n(k) and

Fxm(k)xn(k) (ε) <  – λ, (.)

Fxm(k)xn(k)– (ε)≥  – λ. (.)

Since F is non-decreasing, we have

{
x : Fxp

(
ε′′) ≥  – λ

} ⊆ {
x : Fxp(ε) ≥  – λ

}
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for all p ∈ X, λ > , and  < ε′′ < ε. It follows that whenever the above construction is
possible for ε > , λ > , it is also possible to construct {xm(k)} and {xn(k)} satisfying (.)
and (.) corresponding to ε′′ > , λ >  whenever ε′′ < ε.
Since φ is continuous at  and strictly monotonic increasing with φ() = , it is possible

to obtain ε >  such that φ(ε) < ε. Then, by the above argument, it is possible to obtain
increasing sequences of integers m(k) and n(k) withm(k) < n(k) such that

Fxm(k)xn(k)
(
φ(ε)

)
<  – λ, (.)

Fxm(k)xn(k)–
(
φ(ε)

) ≥  – λ. (.)

Since  < c <  and φ ∈ �, we can choose η >  such that  < η < φ(ε/c) – φ(ε). Since φ

is strictly increasing, therefore

φ(ε/c) – η > φ(ε).

From (.), we get

Fxm(k)xn(k)–
(
φ(ε/c) – η

)
> Fxm(k)xn(k)–φ(ε) ≥  – λ. (.)

By (.), for λ < λ < , it is possible to find a positive integer N such that for all k >N,

Fxm(k)xm(k)–φ(η) ≥  – λ,
Fxn(k)xn(k)–φ(η) ≥  – λ.

}
(.)

By (PM), we have

Fxm(k)–xn(k)–
(
φ(ε/c)

) ≥ T
(
Fxm(k)–xm(k) (η),Fxm(k)xn(k)–

(
φ(ε/c) – η

))
. (.)

Let  < λ < λ < λ <  be arbitrary. Then by (.) there exists a positive integer N such
that for all k >N,

Fxm(k)–xm(k) (η)≥  – λ. (.)

Now, using (.), (.), and (.), we have, for all k >max{N,N},

Fxm(k)–xn(k)–
(
φ(ε/c)

) ≥ T( – λ,  – λ).

As λ is arbitrary and T is continuous, we have

Fxm(k)–xn(k)–
(
φ(ε/c)

) ≥ T(,  – λ) =  – λ. (.)

Now, using (.), (.), (.), and (.), we have

 – λ > Fxm(k)xn(k)
(
φ(ε)

)
= Ffxm(k)–fxn(k)–

(
φ(ε)

)
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≥ min
{
Fxm(k)–xn(k)–

(
φ(ε/c)

)
,Fxm(k)–xm(k)

(
φ(ε/c)

)
,

Fxn(k)–xn(k)
(
φ(ε/c)

)
,Fxn(k)–xm(k)

(
φ(ε/c)

)}
≥ min{ – λ,  – λ,  – λ,  – λ}
=  – λ,

which is a contradiction. Therefore {xn} is a Cauchy sequence in a complete Menger PM-
space X, thus there exists z ∈ X such that z = limn→∞ xn.
Now, we will show that z is a fixed point of f . Since φ ∈ �, we have that for every x, y ∈ X

and all s > , there exists r >  such that s > φ(r) and n ∈N such that for all n≥ n,

Ffzz(s) ≥ T
(
Ffzxn

(
φ(r)

)
,Fxnz

(
s – φ(r)

))
. (.)

Since s > φ(r), thus (s–φ(r)) > . Also, since z = limn→∞ xn, for arbitrary δ ∈ (, ), we have

Fxnz
(
s – φ(r)

)
>  – δ. (.)

Hence, from (.) and (.), we get

Ffzz(s) ≥ T
(
Ffzxn

(
φ(r)

)
,  – δ

)
.

Since δ >  is arbitrary and the t-norm T is continuous, we get

Ffzz(s) ≥ Ffzxn
(
φ(r)

)
≥ Ffzfxn–

(
φ(r)

)
≥min

{
Fzxn–

(
φ(r/c)

)
,Fzfz

(
φ(r/c)

)
,Fxn–fxn–

(
φ(r/c)

)
,Fxn–fz

(
φ(r/c)

)}
.

Letting n→ ∞ in the above inequality and using the fact that the t-norm T is continuous,
we obtain

Ffzz
(
φ(r)

) ≥ Fzfz
(
φ(r/c)

)
and applying Lemma ., we get z = fz.
Next, we prove the uniqueness of a fixed point. Let w ∈ X be another fixed point of f ,

i.e., fw = w. Since φ ∈ �, for all s > , there exists r >  such that s > φ(r). Then we have

Fzw(s)≥ Fzw
(
φ(r)

)
= Ffzfw

(
φ(r)

)
≥min

{
Fzw

(
φ(r/c)

)
,Fzfz

(
φ(r/c)

)
,Fwfw

(
φ(r/c)

)
,Fwfz

(
φ(r/c)

)}
=min

{
Fzw

(
φ(r/c)

)
,Fzz

(
φ(r/c)

)
,Fww

(
φ(r/c)

)
,Fwz

(
φ(r/c)

)}
= Fzw

(
φ(r/c)

)
.

From Lemma ., it follows that z = w, i.e., z is the unique fixed point of f . �

http://www.journalofinequalitiesandapplications.com/content/2013/1/576
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4 Connection withmetric spaces
It is well known that every metric space (X,d) is also a Menger space (X,F ,TM) if F is
defined in the following way:

Fxy(t) =

{
, d(x, y) < t,
, d(x, y) ≥ t.

If ψ is an altering distance function defined in Definition . with additional property
ψ(t)→ ∞ as t → ∞, then the function

φ(t) =

{
inf{α :ψ(α)≥ t}, t > ,
, t = 

is a �-function (see []).
We will present that (.) in this case implies

ψ
(
d(fx, fy)

) ≤ cmax
{
ψ

(
d(fx,x)

)
,ψ

(
d(fy, y)

)
,ψ

(
d(x, y)

)
,ψ

(
d(fx, y)

)}
,

c ∈ (, ) and x, y ∈ X in a metric space.
Suppose the contrary, i.e., there exists t >  such that Ffxfy(φ(t)) =  and all of

Fxfx
(
φ(t/c)

)
= , Fyfy

(
φ(t/c)

)
= , Fx,y

(
φ(t/c)

)
= , and Ffxy

(
φ(t/c)

)
= .

So, Ffxfy(φ(t)) =  implies that d(fx, fy) ≥ φ(t), and since ψ is continuous, we have

ψ
(
d(fx, fy)

) ≥ t.

Similarly, since Fxfx(φ(t/c)) = , we have that d(fx,x) < φ(t/c), which implies

ψ
(
d(fx,x)

)
<
t
c
.

Also, we have the following:

ψ
(
d(fy, y)

)
<
t
c
, ψ

(
d(x, y)

)
<
t
c
, and ψ

(
d(fx, y)

)
<
t
c
.

Thus, we have

ψ
(
d(fx, fy)

)
> cmax

{
ψ

(
d(fx,x)

)
,ψ

(
d(fy, y)

)
,ψ

(
d(x, y)

)
,ψ

(
d(fx, y)

)}
,

and we get a contradiction.
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