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Abstract
In this paper, we present some properties of generalized proximity operators and
propose an iterative method of approximating solutions for a class of generalized
variational inequalities and show its convergence in uniformly convex and smooth
Banach spaces.
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1 Introduction
Let f be a lower semi-continuous proper convex function from a Hilbert space H to
(–∞, +∞]. The Moreau envelope of the function f is defined as

ef (x) = inf
y∈H

{
f (y) +



‖x – y‖

}
. (.)

It is well known that ef (x) is a continuous convex function, and for every x ∈ H , the in-
fimum in (.) is achieved at a unique point proxf (x). The operator proxf from H to H ,
i.e.,

proxf x = argmin
y∈H

{
f (y) +



‖x – y‖

}
(.)

thus defined, is called the proximity operator of f . When f = ιK is the indicator function of
a closed convex set K in H , then proxf (x) = PK (x) becomes the metric projection operator
on K .
In , Alber extended the metric projection operator to uniformly convex and uni-

formly smooth Banach spaces. Let K be a closed convex subset of a uniformly convex
and uniformly smooth Banach space X, Alber [] introduced the generalized projections
πK : X∗ → K and �K : X → K ,

πK
(
x∗) = argmin

x∈K

{∥∥x∗∥∥ – 
〈
x∗,x

〉
+ ‖x‖}

and

�K (x) = argmin
y∈K

{‖Jx‖ – 〈Jx, y〉 + ‖y‖},
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where J is the duality mapping from X to X∗, and studied their properties in detail. In [],
Alber presented some applications of the generalized projections to approximately solv-
ing variational inequalities in Banach spaces. Recently, Li [] extended the generalized
projection operator πK from uniformly convex and uniformly smooth Banach spaces to
reflexive Banach spaces and studied some properties of the generalized projection opera-
tor with applications to solving the variational inequality in Banach spaces. By employing
the generalized projection operators, Zeng and Yao [] established some existence results
for the variational inequality problem in uniformly convex and uniformly smooth Banach
spaces and convergence results for the variational inequality. In [],Wu andHuang further
introduced and studied a class of generalized f -projection operators in Banach spaces. As
applications, they proposed an iterative method of approximating solutions for the varia-
tional inequality problem: find x̄ ∈ K such that

〈Ax̄, y – x̄〉 + f (y) – f (x̄) ≥ , ∀y ∈ K , (.)

where K is a nonempty closed convex subset of X, A : K → X∗ is a mapping and f : X →
(–∞, +∞] is a proper convex, lower semicontinuous and positively homogeneous func-
tion, via

xn+ = π
f
K
(
Jxn – αnJ

(
xn – π

f
K (Jxn – ρAxn)

))
, (.)

where

π
f
K
(
x∗) = argmin

x∈K

{
ρf (x) +

∥∥x∗∥∥ – 
〈
x∗,x

〉
+ ‖x‖},

and the parameter sequence {αn} satisfies

 ≤ αn ≤ ,
+∞∑
n=

αn( – αn) = +∞, ρ > ,

and they proved that {xn} has a subsequence converging to a solution of (.) when K is
a nonempty compact convex subset of a uniformly convex and uniformly smooth Banach
space.
Motivated and inspired by the above works, we continue to study some properties of

generalized proximity operators and propose an iterative method of approximating so-
lutions for the following generalized variational inequality problem: find x̄ ∈ dom f such
that

〈Ax̄, y – x̄〉 + f (y) – f (x̄) ≥ , ∀y ∈ dom f , (.)

where f : X → (–∞, +∞] is a proper convex and lower semicontinuous function, A : X →
X∗ is a norm-to-weak continuous operator. Our iterative method is different from that
given in []. We also prove a convergence result for this iterative method in smooth and
uniformly convexBanach spaces. LetK be a nonempty closed convex set ofX. If we replace
f by f + IK in (.), where IK is the indicator function of K , then (.) reduces to (.).
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2 Preliminaries
Let X be a reflexive, smooth and strictly convex Banach space with the dual space X∗. We
denote by xn → x and xn ⇀ x the strong and the weak convergence to x of a sequence {xn}
in a Banach space X, respectively. Let �(X) denote the class of all lower semi-continuous
proper convex functions from X to (–∞, +∞]. Let B(x, δ) denote the closed ball of x ∈ X
and radius δ > . Let S(X) = {x ∈ X : ‖x‖ = } be the unit sphere.
A Banach space X is said to be strictly convex if 

‖x + y‖ <  for all x, y ∈ S(X) and x �= y.
The Banach space X is said to be smooth provided

lim
t→

‖x + ty‖ – ‖x‖
t

exists for each x, y ∈ S(X). We recall that uniform convexity of X means that for any given
ε > , there exists δ >  such that for all x, y ∈ X with ‖x‖ ≤ , ‖y‖ ≤ , and ‖x – y‖ = ε, the
inequality

‖x + y‖ ≤ ( – δ)

holds.
A subset C of X is called boundedly compact if for any δ >  the intersection C ∩B(, δ)

is empty or compact.
The duality mapping J : X ⇒ X∗ is defined by

J(x) =
{
x∗ ∈ X∗|〈x∗,x

〉
=

∥∥x∗∥∥ = ‖x‖}, ∀x ∈ X.

The following basic results concerning the duality mapping are well known [, , ]:
() X is reflexive if and only if J is surjective;
() X is strictly convex if and only if J is injective;
() X is smooth if and only if J is single-valued;
() if X is smooth, then J is norm-to-weak star continuous;
() J is monotone, i.e., 〈Jx – Jy,x – y〉 ≥ , ∀x, y ∈ X ;
() if X is strictly convex and smooth, then 〈Jx – Jy,x – y〉 =  ⇒ x = y, ∀x, y ∈ X ;
() if a Banach space X is reflexive strictly convex and smooth, then the duality mapping

J∗ from X∗ into X is the inverse of J , that is, J– = J∗.
Consider the following envelope function:

efV
(
x∗) = inf

x∈X

{
f (x) +



V

(
x∗,x

)}
, (.)

where V (x∗,x) = ‖x∗‖ – 〈x∗,x〉 + ‖x‖. Since the function (x,x∗) → f (x) + 
V (x∗,x) is

lower semicontinuous convex, one sees that efV (x∗) is lower semicontinuous and convex
by Proposition . in [].
For every x∗ ∈ X∗, the infimum in (.) is achieved at a unique point πf (x∗), i.e.,

πf
(
x∗) := argmin

x∈K

{
f (x) +



V

(
x∗,x

)}
.
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The operator πf is called the generalized proximity operator. It can be characterized by
the inclusion

x∗ – Jπf
(
x∗) ∈ ∂f

(
πf

(
x∗)), (.)

equivalently,

πf = (J + ∂f )–. (.)

From (.), we easily know that πf is maximalmonotone by Theorem .. in []. Observe
that when ρ = ,

π
f
K
(
x∗) = πf +IK

(
x∗).

If, in addition, dom f = K , then π
f
K (x∗) = πf (x∗).

Lemma . ([]) Let X be a smooth, strictly convex and reflexive Banach space, let {xn} be
a sequence in X, and x ∈ X. If 〈xn –x, Jxn – Jx〉 → , then xn ⇀ x, Jxn ⇀ Jx and ‖xn‖ → ‖x‖.

Lemma . ([]) Let r >  be a fixed real number. Then a Banach space X is uniformly
convex if and only if there is a continuous, strictly increasing and convex function g : R+ →
R+ with g() =  such that

∥∥λx + ( – λ)y
∥∥ ≤ λ‖x‖ + ( – λ)‖y‖ – λ( – λ)g

(‖x – y‖), ∀x, y ∈ Br , ≤ λ ≤ ,

where Br = {x ∈ X : ‖x‖ ≤ r}.

3 Main results
Proposition . Let f ∈ �(X). Then the following hold:

(i) 〈πf (x∗) – πf (y∗), (x∗ – Jπf (x∗)) – (y∗ – Jπf (y∗))〉 ≥ , ∀x∗, y∗ ∈ X∗;
(ii) πf is bounded on each nonempty bounded subset of C ⊂ X∗;
(iii) if {x∗

n} is a sequence in X∗ such that x∗
n → x∗, then πf (x∗

n) ⇀ πf (x∗),
Jπf (x∗

n) ⇀ Jπf (x∗) and ‖πf (x∗
n)‖ → ‖πf (x∗)‖;

(iv) if dom f is a nonempty boundedly compact convex subset, then πf is weak-to-norm
continuous, that is, if x∗

n ⇀ x∗, then πf (x∗
n)→ πf (x∗).

Proof (i) Take x∗, y∗ ∈ X∗. Then (.) yields

〈
x∗ – Jπf

(
x∗),πf

(
y∗) – πf

(
x∗)〉 ≤ f

(
πf

(
y∗)) – f

(
πf

(
x∗))

and

〈
y∗ – Jπf

(
y∗),πf

(
x∗) – πf

(
y∗)〉 ≤ f

(
πf

(
x∗)) – f

(
πf

(
y∗)).

Adding these two inequalities, we obtain

〈
πf

(
x∗) – πf

(
y∗), (x∗ – Jπf

(
x∗)) – (

y∗ – Jπf
(
y∗))〉 ≥ .

http://www.journalofinequalitiesandapplications.com/content/2013/1/574
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(ii) Suppose that πf is not bounded on some nonempty bounded subset ofC. Then there
exists a bounded sequence {x∗

n} ⊂ C such that ‖πf (x∗
n)‖ → ∞. Fix x∗ ∈ X∗. From (i), we

obtain the following:

∥∥πf
(
x∗
n
)
– πf

(
x∗)∥∥∥∥x∗

n – x∗∥∥ ≥ 〈
πf

(
x∗
n
)
– πf

(
x∗),x∗

n – x∗〉
≥ 〈

πf
(
x∗
n
)
– πf

(
x∗), Jπf

(
x∗
n
)
– Jπf

(
x∗)〉

=


(
V

(
Jπf

(
x∗
n
)
,πf

(
x∗)) +V

(
Jπf

(
x∗),πf

(
x∗
n
)))

≥ (∥∥πf
(
x∗
n
)∥∥ –

∥∥πf
(
x∗)∥∥).

So, we have ‖x∗
n‖ → ∞. This is a contradiction.

(iii) Let {x∗
n} be a sequence in X∗ such that x∗

n → x∗. It follows from (ii) that {πf (x∗
n)} is

bounded. From (i), we have

 ≤ 〈
πf

(
x∗
n
)
– πf

(
x∗), Jπf

(
x∗
n
)
– Jπf

(
x∗)〉 ≤ ∥∥πf

(
x∗
n
)
– πf

(
x∗)∥∥∥∥x∗

n – x∗∥∥ → .

Thus, Lemma . implies that πf (x∗
n) ⇀ πf (x∗), Jπf (x∗

n) ⇀ Jπf (x∗) and ‖πf (x∗
n)‖ →

‖πf (x∗)‖.
(iv) From (.), we know that

〈
x∗
n – Jπf

(
x∗
n
)
, y – πf

(
x∗
n
)〉 ≤ f (y) – f

(
πf

(
x∗
n
))
, ∀y ∈ dom f . (.)

Since x∗
n ⇀ x∗, {x∗

n} is bounded. It follows from (ii) that {πf (x∗
n)} is bounded. Since dom f

is boundedly compact, there exists a subsequence {x∗
ni} of {x∗

n} such that

πf
(
x∗
ni

) → x̄ ∈ dom f as i→ +∞.

Since J is norm-to-weak star continuous and f is lower semicontinuous, we obtain that

〈
x∗ – Jx̄, y – x̄

〉 ≤ f (y) – f (x̄), ∀y ∈ dom f . (.)

Then, by (.), we have x̄ = πf (x∗). Similar to the above arguments, we know that πf (x∗) is
the unique limit point of {πf (x∗

n)}. Hence, πf (x∗
n) → πf (x∗). �

With the help of the operator πf , we can show that the envelope function efV is Gâteaux
differentiable.

Proposition . Let f ∈ �(X). Then efV is Gâteaux differentiable and ∇efV (x∗) = J∗x∗ –
πf (x∗).

Proof For any h ∈ X∗, by definitions of efV and πf , we have

efV (x∗ + th) – efV (x∗)
t

=
f (πf (x∗ + th)) + 

V (πf (x∗ + th),x∗ + th) – f (πf (x∗)) – 
V (πf (x∗),x∗)

t

http://www.journalofinequalitiesandapplications.com/content/2013/1/574
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≤ f (πf (x∗)) + 
V (πf (x∗),x∗ + th) – f (πf (x∗)) – 

V (πf (x∗),x∗)
t

=

‖x∗ + th‖ – 

‖x∗‖ – 〈πf (x∗), th〉
t

.

Since ∇(‖z‖) = J∗(z), for any z ∈ X∗, we get that

lim sup
t→

efV (x∗ + th) – efV (x∗)
t

≤ lim
t→


‖x∗ + th‖ – 

‖x∗‖
t

–
〈
πf

(
x∗),h〉

=
〈
J∗x∗ – πf

(
x∗),h〉.

On the other hand,

efV (x∗ + th) – efV (x∗)
t

=
f (πf (x∗ + th)) + 

V (πf (x∗ + th),x∗ + th) – f (πf (x∗)) – 
V (πf (x∗),x∗)

t

≥ f (πf (x∗ + th)) + 
V (πf (x∗ + th),x∗ + th) – f (πf (x∗ + th)) – 

V (πf (x∗ + th),x∗)
t

=

‖x∗ + th‖ – 

‖x∗‖
t

–
〈
πf

(
x∗ + th

)
,h

〉
.

By Proposition .(iii), we have πf (x∗ + th) ⇀ πf (x∗) as t → . Hence, we get that

lim inf
t→

efV (x∗ + th) – efV (x∗)
t

≥ lim
t→


‖x∗ + th‖ – 

‖x∗‖
t

–
〈
πf

(
x∗ + th

)
,h

〉

=
〈
J∗x∗ – πf

(
x∗),h〉.

This implies that

lim
t→

efV (x∗ + th) – efV (x∗)
t

=
〈
J∗x∗ – πf

(
x∗),h〉.

Hence efV is Gâteaux differentiable and ∇efV (x∗) = J∗x∗ – πf (x∗). �

In the following, we propose a modification of the iterative method given in [] and
prove that the iterative sequence has a subsequence converging to a solution of (.) when
X is a smooth and uniformly convex Banach space and f is not necessarily positively ho-
mogeneous.
By (.), we can easily prove the following result.

Proposition . Let f ∈ �(X). Then the point x̄ ∈ dom f is a solution of the variational
inequality

〈Ax, y – x〉 + f (y) – f (x)≥ , ∀y ∈ dom f

if and only if x̄ ∈ dom f is a solution of the following inclusion:

x = πf (Jx –Ax).

http://www.journalofinequalitiesandapplications.com/content/2013/1/574
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The following lemma will be used in proving the convergence of the iterative method
for variational inequality problem (.).

Lemma . Let f ∈ �(X). If f (x) ≥  for all x ∈ dom f and f () = , then

∥∥πf
(
x∗)∥∥ ≤ ∥∥x∗∥∥. (.)

Proof From (.), we know that

〈
x∗ – Jπf

(
x∗), y – πf

(
x∗)〉 ≤ f (y) – f

(
πf

(
x∗)), ∀y ∈ dom f .

Noticing that f (x)≥  for all x ∈ dom f and f () = , it follows that

〈
x∗ – Jπf

(
x∗), –πf

(
x∗)〉 ≤ –f

(
πf

(
x∗)) ≤ .

Hence,

∥∥πf
(
x∗)∥∥ ≤ 〈

x∗,πf
(
x∗)〉,

and hence

∥∥πf
(
x∗)∥∥ ≤ ∥∥x∗∥∥. �

Proposition . Let X be a smooth and uniformly convex Banach space. Let A : X → X∗

be a norm-to-weak continuous operator. Suppose that f ∈ �(X) and dom f is nonempty
boundedly compact convex. Suppose that

(i) f (x) ≥  for all x ∈ dom f and f () = ;
(ii) for any x ∈ dom f ,

‖Jx –Ax‖ ≤ ‖x‖.

Let x ∈ dom f and the sequence {xn} be generated by the following iteration scheme:

xn+ = ( – αn)xn + αnπf (Jxn –Axn),

where {αn} satisfies the conditions:
(a)  ≤ αn ≤  for all n = , , , . . . ;
(b)

∑+∞
n= αn( – αn) = +∞.

Then generalized variational inequality (.) has a solution x̄ ∈ dom f , and there exists a
subsequence {xni} of {xn} such that xni → x̄ as i→ ∞.

Proof By (.), we have

∥∥πf (Jxn –Axn)
∥∥ ≤ ‖Jxn –Axn‖. (.)

By (.) and condition (ii), we obtain

‖xn+‖ ≤ ( – αn)‖xn‖ + αn
∥∥πf (Jxn –Axn)

∥∥ ≤ ‖xn‖.

http://www.journalofinequalitiesandapplications.com/content/2013/1/574
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Then {xn} and {πf (Jxn –Axn)} are bounded. Hence, by Lemma ., there exists a continu-
ous, strictly increasing and convex function g : R+ → R+ with g() =  such that

‖xn+‖ =
∥∥( – αn)xn + αnπf (Jxn –Axn)

∥∥

≤ ( – αn)‖xn‖ + αn
∥∥πf (Jxn –Axn)

∥∥

– αn( – αn)g
(∥∥xn – πf (Jxn –Axn)

∥∥)
. (.)

It follows from (.), (.) and condition (ii) that

‖xn+‖ ≤ ( – αn)‖xn‖ + αn‖xn‖ – αn( – αn)g
(∥∥xn – πf (Jxn –Axn)

∥∥)
.

That is,

‖xn+‖ ≤ ‖xn‖ – αn( – αn)g
(∥∥xn – πf (Jxn –Axn)

∥∥)
. (.)

Taking the sum for n = , , , . . . ,m in (.), we get

m∑
n=

αn( – αn)g
(∥∥xn – πf (Jxn –Axn)

∥∥)

≤ ‖x‖ – ‖xm+‖

≤ ‖x‖.

Hence,

+∞∑
n=

αn( – αn)g
(∥∥xn – πf (Jxn –Axn)

∥∥)
< +∞. (.)

Due to the condition
∑+∞

n= αn( – αn) = +∞, we may assume, without loss of generality,
that

g
(∥∥xn – πf (Jxn –Axn)

∥∥) →  as n→ +∞.

Applying the properties of g , we can deduce that

∥∥xn – πf (Jxn –Axn)
∥∥ →  as n → +∞. (.)

Since dom f is boundedly compact, there exists a subsequence {xni} of {xn} such that

xni → x̄ ∈ dom f as i→ +∞.

Since A is norm-to-weak continuous and J is norm-to-weak star continuous, we get that

Jxni –Axni ⇀ Jx̄ –Ax̄ as i → +∞.

http://www.journalofinequalitiesandapplications.com/content/2013/1/574
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Since πf is weak-to-norm continuous by Proposition .(iv),

πf (Jxni –Axni ) → πf (Jx̄ –Ax̄) as i→ +∞.

Hence, (.) yields

x̄ = πf (Jx̄ –Ax̄).

Now it follows from Proposition . that x̄ is a solution of generalized variational inequal-
ity (.). �

4 Application
Let f ∈ �(X) and let g : X →R be a convex and Gâteaux differentiable function. Consider
the optimization problem

min
x∈X f (x) + g(x). (P)

We denote by Sol(P) the solution set of problem (P). Despite its simplicity, problem (P) has
been shown to cover a wide range of apparently unrelated signal recovery formulations
(see [, ]).
Notice that

x̄ ∈ Sol(P) ⇔  ∈ ∂f (x̄) +∇g(x̄)

⇔ –∇g(x̄) ∈ ∂f (x̄)

⇔ 〈∇g(x̄), y – x̄
〉
+ f (y) – f (x̄) ≥ , ∀y ∈ X.

Note that if g is convex andGâteaux differentiable, then∇g is norm-to-weak continuous
from X to X∗ by Corollary . in []. Therefore, as an application of Proposition ., we
have the following result.

Proposition . Let X be a smooth and uniformly convex Banach space. Let g : X → R

be convex and Gâteaux differentiable. Suppose that f ∈ �(X) and dom f is a nonempty
boundedly compact convex subset of X. Suppose that

(i) f (x) ≥  for all x ∈ dom f and f () = ;
(ii) for any x ∈ dom f ,

∥∥Jx –∇g(x)
∥∥ ≤ ‖x‖.

Let x ∈ dom f and the sequence {xn} be generated by the following iteration scheme:

xn+ = ( – αn)xn + αnπf
(
Jxn –∇g(xn)

)
,

where {αn} satisfies the conditions:
(a)  ≤ αn ≤  for all n = , , , . . . ;
(b)

∑+∞
n= αn( – αn) = +∞.

Then problem (P) has a solution x̄ and there exists a subsequence {xni} of {xn} such that
xni → x̄ as i → ∞.

http://www.journalofinequalitiesandapplications.com/content/2013/1/574
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5 Concluding remark
This paper has improved the iterativemethod ofWu andHuang [] for solving generalized
variational inequality problem (.), several results regarding the generalized proximity
operator and its relationswith the envelope function are presented. In addition, it is shown
that under an appropriate assumption some optimization problem can be transformed
into (.) and then the iterative method can be applied.
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