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University, Niğde, 51200, Turkey

Abstract
In this work, we consider the existence of positive solutions of higher-order nonlinear
neutral differential equations. In the special case, our results include some well-known
results. In order to obtain new sufficient conditions for the existence of a positive
solution, we use Schauder’s fixed point theorem.
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1 Introduction
The purpose of this article is to study higher-order neutral nonlinear differential equations
of the form

[
r(t)

[
x(t) – P(t)x(t – τ )

](n–)]′ + (–)nQ(t)f
(
x(t – σ )

)
= , ()

[
r(t)

[
x(t) – P(t)x(t – τ )

](n–)]′ + (–)n
∫ d

c
Q(t, ξ )f

(
x(t – ξ )

)
dξ =  ()

and

[
r(t)

[
x(t) –

∫ b

a
P(t, ξ )x(t – ξ )dξ

](n–)]′
+ (–)n

∫ d

c
Q(t, ξ )f

(
x(t – ξ )

)
dξ = , ()

where n ≥  is an integer, τ > , σ ≥ , d > c ≥ , b > a ≥ , r, P ∈ C([t,∞), (,∞)),
P ∈ C([t,∞)× [a,b], (,∞)), Q ∈ C([t,∞), (,∞)), Q ∈ C([t,∞)× [c,d], (,∞)), f ∈
C(R,R), f is a nondecreasing function with xf (x) > , x �= .
The motivation for the present work was the recent work of Culáková et al. [] in which

the second-order neutral nonlinear differential equation of the form

[
r(t)

[
x(t) – P(t)x(t – τ )

]′]′ +Q(t)f
(
x(t – σ )

)
=  ()

was considered. Note that when n =  in (), we obtain (). Thus, our results contain the
results established in [] for (). The results for () and () are completely new.
Existence of nonoscillatory or positive solutions of higher-order neutral differential

equations was investigated in [–], but in this work our results contain not only exis-
tence of solutions but also behavior of solutions. For books, we refer the reader to [–].
Let ρ =max{τ ,σ }. By a solution of () we understand a function x ∈ C([t – ρ,∞),R),

for some t ≥ t, such that x(t) – P(t)x(t – τ ) is n –  times continuously differentiable,
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r(t)(x(t) – P(t)x(t – τ ))(n–) is continuously differentiable on [t,∞) and () is satisfied
for t ≥ t. Similarly, let ρ = max{τ ,d}. By a solution of () we understand a function
x ∈ C([t – ρ,∞),R), for some t ≥ t, such that x(t) – P(t)x(t – τ ) is n –  times contin-
uously differentiable, r(t)(x(t) – P(t)x(t – τ ))(n–) is continuously differentiable on [t,∞)
and () is satisfied for t ≥ t. Finally, let ρ =max{b,d}. By a solution of () we understand
a function x ∈ C([t – ρ,∞),R), for some t ≥ t, such that x(t) –

∫ b
a P(t, ξ )x(t – ξ )dξ is

n– times continuously differentiable, r(t)[x(t)–
∫ b
a P(t, ξ )x(t– ξ )dξ ](n–) is continuously

differentiable on [t,∞) and () is satisfied for t ≥ t.
The following fixed point theorem will be used in proofs.

Theorem  (Schauder’s fixed point theorem []) Let A be a closed, convex and nonempty
subset of a Banach space �. Let S : A → A be a continuous mapping such that SA is a
relatively compact subset of �. Then S has at least one fixed point in A. That is, there exists
x ∈ A such that Sx = x.

2 Main results
Theorem  Let

∫ ∞

t
Q(t)dt =∞. ()

Assume that  < k ≤ k and there exists γ ≥  such that

k
k

exp

(
(k – k)

∫ t

t–γ

Q(t)dt
)

≥ , ()

exp

(
–k

∫ t

t–τ

Q(s)ds
)
+ exp

(
k

∫ t–τ

t–γ

Q(s)ds
)

× 
(n – )!

∫ ∞

t

(s – t)n–

r(s)

∫ ∞

s
Q(u)f

(
exp

(
–k

∫ u–σ

t–γ

Q(z)dz
))

duds

≤ P(t)≤ exp

(
–k

∫ t

t–τ

Q(s)ds
)
+ exp

(
k

∫ t–τ

t–γ

Q(s)ds
)

()

× 
(n – )!

∫ ∞

t

(s – t)n–

r(s)

∫ ∞

s
Q(u)f

(
exp

(
–k

∫ u–σ

t–γ

Q(z)dz
))

duds,

t ≥ t ≥ t +max{τ ,σ }.

Then () has a positive solution which tends to zero.

Proof Let � be the set of all continuous and bounded functions on [t,∞) with the sup
norm. Then � is a Banach space. Define a subset A of � by

A =
{
x ∈ � : v(t) ≤ x(t)≤ v(t), t ≥ t

}
,

where v(t) and v(t) are nonnegative functions such that

v(t) = exp

(
–k

∫ t

t–γ

Q(s)ds
)
, v(t) = exp

(
–k

∫ t

t–γ

Q(s)ds
)
, t ≥ t. ()
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It is clear that A is a bounded, closed and convex subset of �. We define the operator
S : A−→ � as

(Sx)(t) =

{
P(t)x(t – τ ) – 

(n–)!
∫ ∞
t

(s–t)n–
r(s)

∫ ∞
s Q(u)f (x(u – σ ))duds, t ≥ t,

(Sx)(t) + v(t) – v(t), t ≤ t ≤ t.

We show that S satisfies the assumptions of Schauder’s fixed point theorem.
First, S maps A into A. For t ≥ t and x ∈ A, using () and (), we have

(Sx)(t) ≤ P(t)v(t – τ ) –


(n – )!

∫ ∞

t

(s – t)n–

r(s)

∫ ∞

s
Q(u)f

(
v(u – σ )

)
duds

= P(t) exp
(
–k

∫ t–τ

t–γ

Q(s)ds
)

–


(n – )!

∫ ∞

t

(s – t)n–

r(s)

∫ ∞

s
Q(u)f

(
exp

(
–k

∫ u–σ

t–γ

Q(z)dz
))

duds

≤ v(t)

and

(Sx)(t) ≥ P(t)v(t – τ ) –


(n – )!

∫ ∞

t

(s – t)n–

r(s)

∫ ∞

s
Q(u)f

(
v(u – σ )

)
duds

= P(t) exp
(
–k

∫ t–τ

t–γ

Q(s)ds
)

–


(n – )!

∫ ∞

t

(s – t)n–

r(s)

∫ ∞

s
Q(u)f

(
exp

(
–k

∫ u–σ

t–γ

Q(z)dz
))

duds

≥ v(t).

For t ∈ [t, t] and x ∈ A, we obtain

(Sx)(t) = (Sx)(t) + v(t) – v(t) ≤ v(t)

and in order to show (Sx)(t)≥ v(t), consider

H(t) = v(t) – v(t) – v(t) + v(t).

By making use of (), it follows that

H ′(t) = v′
(t) – v′

(t) = –kQ(t)v(t) + kQ(t)v(t)

= Q(t)v(t)
[
–k + kv(t) exp

(
k

∫ t

t–γ

Q(s)ds
)]

= Q(t)v(t)
[
–k + k exp

(
(k – k)

∫ t

t–γ

Q(s)ds
)]

≤ Q(t)v(t)
[
–k + k exp

(
(k – k)

∫ t

t–γ

Q(s)ds
)]

≤ , t ≤ t ≤ t.
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Since H(t) =  and H ′(t)≤  for t ∈ [t, t], we conclude that

H(t) = v(t) – v(t) – v(t) + v(t) ≥ , t ≤ t ≤ t.

Then t ∈ [t, t] and for any x ∈ A,

(Sx)(t) = (Sx)(t) + v(t) – v(t) ≥ v(t) + v(t) – v(t)≥ v(t), t ≤ t ≤ t.

Hence, S maps A into A.
Second, we show that S is continuous. Let {xi} be a convergent sequence of functions in

A such that xi(t) → x(t) as i → ∞. Since A is closed, we have x ∈ A. It is obvious that for
t ∈ [t, t] and x ∈ A, S is continuous. For t ≥ t,

∣∣(Sxi)(t) – (Sx)(t)
∣∣

≤ P(t)
∣∣xi(t – τ ) – x(t – τ )

∣∣
+

∣∣∣∣ 
(n – )!

∫ ∞

t

(s – t)n–

r(s)

∫ ∞

s
Q(u)

[
f
(
xi(u – σ )

)
– f

(
x(u – σ )

)]
duds

∣∣∣∣
≤ P(t)

∣∣xi(t – τ ) – x(t – τ )
∣∣

+


(n – )!

∫ ∞

t

(s – t)n–

r(s)

∫ ∞

s
Q(u)

∣∣f (xi(u – σ )
)
– f

(
x(u – σ )

)∣∣duds.
Since |f (xi(t – σ )) – f (x(t – σ ))| →  as i → ∞, by making use of the Lebesgue dominated
convergence theorem, we see that

lim
t→∞

∥∥(Sxi)(t) – (Sx)(t)
∥∥ = 

and therefore S is continuous.
Third, we show that SA is relatively compact. In order to prove that SA is relatively

compact, it suffices to show that the family of functions {Sx : x ∈ A} is uniformly bounded
and equicontinuous on [t,∞). Since uniform boundedness of {Sx : x ∈ A} is obvious, we
need only to show equicontinuity. For x ∈ A and any ε > , we take T ≥ t large enough
such that (Sx)(T)≤ ε

 . For x ∈ A and T > T ≥ T , we have

∣∣(Sx)(T) – (Sx)(T)
∣∣ ≤ ∣∣(Sx)(T)

∣∣ + ∣∣(Sx)(T)
∣∣ ≤ ε


+

ε


= ε.

Note that

Xn – Yn = (X – Y )
(
Xn– +Xn–Y + · · · +XYn– + Yn–)

≤ n(X – Y )Xn–, X > Y > . ()

For x ∈ A and t ≤ T < T ≤ T , by using () we obtain

∣∣(Sx)(T) – (Sx)(T)
∣∣

≤ ∣∣P(T)x(T – τ ) – P(T)x(T – τ )
∣∣
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+


(n – )!

∫ T

T

(s – T)n–

r(s)

∫ ∞

s
Q(u)f

(
x(u – σ )

)
duds

+


(n – )!

∫ ∞

T

(s – T)n– – (s – T)n–

r(s)

∫ ∞

s
Q(u)f

(
x(u – σ )

)
duds

≤ ∣∣P(T)x(T – τ ) – P(T)x(T – τ )
∣∣

+ max
T≤s≤T

{


(n – )!
sn–

r(s)

∫ ∞

s
Q(u)f

(
x(u – σ )

)
du

}
(T – T)

+


(n – )!

∫ ∞

T

(s – T)n–

r(s)

∫ ∞

s
Q(u)f

(
x(u – σ )

)
duds(T – T).

Thus there exits δ >  such that

∣∣(Sx)(T) – (Sx)(T)
∣∣ < ε if  < T – T < δ.

Finally, for x ∈ A and t ≤ T < T ≤ t, there exits δ >  such that

∣∣(Sx)(T) – (Sx)(T)
∣∣ = ∣∣v(T) – v(T)

∣∣ < ε if  < T – T < δ.

Therefore SA is relatively compact. In view of Schauder’s fixed point theorem, we can
conclude that there exists x ∈ A such that Sx = x. That is, x is a positive solution of ()
which tends to zero. The proof is complete. �

Theorem  Let

∫ ∞

t
Q̃(t)dt =∞, ()

where Q̃(t) =
∫ d
c Q(t, ξ )dξ . Assume that  < k ≤ k and there exists γ ≥  such that

k
k

exp

(
(k – k)

∫ t

t–γ

Q̃(t)dt
)

≥ , ()

exp

(
–k

∫ t

t–τ

Q̃(s)ds
)
+ exp

(
k

∫ t–τ

t–γ

Q̃(s)ds
)

× 
(n – )!

∫ ∞

t

(s – t)n–

r(s)

∫ ∞

s

∫ d

c
Q(u, ξ )f

(
exp

(
–k

∫ u–ξ

t–γ

Q̃(z)dz
))

dξ duds

≤ P(t)≤ exp

(
–k

∫ t

t–τ

Q̃(s)ds
)
+ exp

(
k

∫ t–τ

t–γ

Q̃(s)ds
)

× 
(n – )!

∫ ∞

t

(s – t)n–

r(s)

∫ ∞

s

∫ d

c
Q(u, ξ )f

(
exp

(
–k

∫ u–ξ

t–γ

Q̃(z)dz
))

dξ duds,

t ≥ t ≥ t +max{τ ,d}.

Then () has a positive solution which tends to zero.
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Proof Let � be the set of all continuous and bounded functions on [t,∞) with the sup
norm. Then � is a Banach space. Define a subset A of � by

A =
{
x ∈ � : v(t) ≤ x(t)≤ v(t), t ≥ t

}
,

where v(t) and v(t) are nonnegative functions such that

v(t) = exp

(
–k

∫ t

t–γ

Q̃(s)ds
)
, v(t) = exp

(
–k

∫ t

t–γ

Q̃(s)ds
)
, t ≥ t.

It is clear that A is a bounded, closed and convex subset of �. We define the operator
S : A−→ � as follows:

(Sx)(t) =

{
P(t)x(t – τ ) – 

(n–)!
∫ ∞
t

(s–t)n–
r(s)

∫ ∞
s

∫ d
c Q(u, ξ )f (x(u – ξ ))dξ duds, t ≥ t,

(Sx)(t) + v(t) – v(t), t ≤ t ≤ t.

Since the remaining part of the proof is similar to those in the proof of Theorem , it is
omitted. Thus the theorem is proved. �

Theorem  Suppose that () and () hold. In addition, assume that

exp

(
–k

∫ t

t–a
Q̃(s)ds

)
+ exp

(
k

∫ t–a

t–γ

Q̃(s)ds
)

× 
(n – )!

∫ ∞

t

(s – t)n–

r(s)

∫ ∞

s

∫ d

c
Q(u, ξ )f

(
exp

(
–k

∫ u–ξ

t–γ

Q̃(z)dz
))

dξ duds

≤ P̃(t)≤ exp

(
–k

∫ t

t–b
Q̃(s)ds

)
+ exp

(
k

∫ t–b

t–γ

Q̃(s)ds
)

()

× 
(n – )!

∫ ∞

t

(s – t)n–

r(s)

∫ ∞

s

∫ d

c
Q(u, ξ )f

(
exp

(
–k

∫ u–ξ

t–γ

Q̃(z)dz
))

dξ duds,

t ≥ t ≥ t +max{b,d},

where P̃(t) =
∫ b
a P(t, ξ )dξ . Then () has a positive solution which tends to zero.

Proof Let � be the set of all continuous and bounded functions on [t,∞) with the sup
norm. Then � is a Banach space. Define a subset A of � by

A =
{
x ∈ � : v(t) ≤ x(t)≤ v(t), t ≥ t

}
,

where v(t) and v(t) are nonnegative functions such that

v(t) = exp

(
–k

∫ t

t–γ

Q̃(s)ds
)
, v(t) = exp

(
–k

∫ t

t–γ

Q̃(s)ds
)
, t ≥ t. ()
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It is clear that A is a bounded, closed and convex subset of �. We define the operator
S : A−→ � as

(Sx)(t) =

⎧⎪⎨
⎪⎩

∫ b
a P(t, ξ )x(t – ξ )dξ – 

(n–)!
∫ ∞
t

(s–t)n–
r(s)

∫ ∞
s

∫ d
c Q(u, ξ )f (x(u – ξ ))dξ duds,

t ≥ t,
(Sx)(t) + v(t) – v(t), t ≤ t ≤ t.

We show that S satisfies the assumptions of Schauder’s fixed point theorem.
First of all, S maps A into A. For t ≥ t and x ∈ A, using (), (), the decreasing nature

of v and v, we have

(Sx)(t) ≤
∫ b

a
P(t, ξ )v(t – ξ )dξ –


(n – )!

×
∫ ∞

t

(s – t)n–

r(s)

∫ ∞

s

∫ d

c
Q(u, ξ )f

(
v(u – ξ )

)
dξ duds

≤ P̃(t) exp
(
–k

∫ t–b

t–γ

Q̃(s)ds
)
–


(n – )!

×
∫ ∞

t

(s – t)n–

r(s)

∫ ∞

s

∫ d

c
Q(u, ξ )f

(
exp

(
–k

∫ u–ξ

t–γ

Q̃(z)dz
))

dξ duds

≤ v(t)

and

(Sx)(t) ≥
∫ b

a
P(t, ξ )v(t – ξ )dξ –


(n – )!

×
∫ ∞

t

(s – t)n–

r(s)

∫ ∞

s

∫ d

c
Q(u, ξ )f

(
v(u – ξ )

)
dξ duds

≥ P̃(t) exp
(
–k

∫ t–a

t–γ

Q̃(s)ds
)
–


(n – )!

×
∫ ∞

t

(s – t)n–

r(s)

∫ ∞

s

∫ d

c
Q(u, ξ )f

(
exp

(
–k

∫ u–ξ

t–γ

Q̃(z)dz
))

dξ duds

≥ v(t).

For t ∈ [t, t] and x ∈ A, we obtain

(Sx)(t) = (Sx)(t) + v(t) – v(t) ≤ v(t)

and to show (Sx)(t)≥ v(t), consider

H(t) = v(t) – v(t) – v(t) + v(t).

By making use of (), it follows that

H ′(t) = v′
(t) – v′

(t)

= –kQ̃(t)v(t) + kQ̃(t)v(t)

http://www.journalofinequalitiesandapplications.com/content/2013/1/573
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= Q̃(t)v(t)
[
–k + kv(t) exp

(
k

∫ t

t–γ

Q̃(s)ds
)]

≤ Q̃(t)v(t)
[
–k + k exp

(
(k – k)

∫ t

t–γ

Q̃(s)ds
)]

≤ , t ≤ t ≤ t.

Since H(t) =  and H ′(t)≤  for t ∈ [t, t], we conclude that

H(t) = v(t) – v(t) – v(t) + v(t) ≥ , t ≤ t ≤ t.

Then t ∈ [t, t] and for any x ∈ A,

(Sx)(t) = (Sx)(t) + v(t) – v(t) ≥ v(t) + v(t) – v(t)≥ v(t), t ≤ t ≤ t.

Hence, S maps A into A.
Next, we show that S is continuous. Let {xi} be a convergent sequence of functions in

A such that xi(t) → x(t) as i → ∞. Since A is closed, we have x ∈ A. It is obvious that for
t ∈ [t, t] and x ∈ A, S is continuous. For t ≥ t,

∣∣(Sxi)(t) – (Sx)(t)
∣∣

≤
∫ b

a
P(t, ξ )

∣∣xi(t – ξ ) – x(t – ξ )
∣∣dξ

+


(n – )!

∫ ∞

t

(s – t)n–

r(s)

∫ ∞

s

∫ d

c
Q(u, ξ )

∣∣f (xi(u – ξ )
)
– f

(
x(u – ξ )

)∣∣dξ duds.

Since |f (xi(t– ξ ))– f (x(t– ξ ))| →  as i→ ∞ and ξ ∈ [c,d], by making use of the Lebesgue
dominated convergence theorem, we see that

lim
t→∞

∥∥(Sxi)(t) – (Sx)(t)
∥∥ = .

Thus S is continuous.
Finally, we show that SA is relatively compact. In order to prove that SA is relatively

compact, it suffices to show that the family of functions {Sx : x ∈ A} is uniformly bounded
and equicontinuous on [t,∞). Since uniform boundedness of {Sx : x ∈ A} is obvious, we
need only to show equicontinuity. For x ∈ A and any ε > , we take T ≥ t large enough
such that (Sx)(T)≤ ε

 . For x ∈ A and T > T ≥ T , we have

∣∣(Sx)(T) – (Sx)(T)
∣∣ ≤ ∣∣(Sx)(T)

∣∣ + ∣∣(Sx)(T)
∣∣ ≤ ε


+

ε


= ε.

For x ∈ A and t ≤ T < T ≤ T , by using () we obtain

∣∣(Sx)(T) – (Sx)(T)
∣∣

≤
∫ b

a

∣∣P(T, ξ )x(T – ξ ) – P(T, ξ )x(T – ξ )
∣∣dξ

+


(n – )!

∫ T

T

(s – T)n–

r(s)

∫ ∞

s

∫ d

c
Q(u, ξ )f

(
x(u – ξ )

)
dξ duds

http://www.journalofinequalitiesandapplications.com/content/2013/1/573
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+


(n – )!

∫ ∞

T

(s – T)n– – (s – T)n–

r(s)

∫ ∞

s

∫ d

c
Q(u, ξ )f

(
x(u – ξ )

)
dξ duds

≤
∫ b

a

∣∣P(T, ξ )x(T – ξ ) – P(T, ξ )x(T – ξ )
∣∣dξ

+ max
T≤s≤T

{


(n – )!
sn–

r(s)

∫ ∞

s

∫ d

c
Q(u, ξ )f

(
x(u – ξ )

)
dξ du

}
(T – T)

+


(n – )!

∫ ∞

T

(s – T)n–

r(s)

∫ ∞

s

∫ d

c
Q(u, ξ )f

(
x(u – ξ )

)
dξ duds(T – T).

Thus there exits δ >  such that

∣∣(Sx)(T) – (Sx)(T)
∣∣ < ε if  < T – T < δ.

For x ∈ A and t ≤ T < T ≤ t, there exits δ >  such that

∣∣(Sx)(T) – (Sx)(T)
∣∣ = ∣∣v(T) – v(T)

∣∣ < ε if  < T – T < δ.

Therefore SA is relatively compact. In view of Schauder’s fixed point theorem, we can
conclude that there exists x ∈ A such that Sx = x. That is, x is a positive solution of ()
which tends to zero. The proof is complete. �

Example  Consider the neutral differential equation

[
et/

[
x(t) – P(t)x

(
t –




)]()]′
– qx(t – ) = , t ≥ t, ()

where q ∈ (,∞) and

exp(–kqτ ) +
exp(q[k(t + γ – τ – t) – k(γ – σ – t)])

k
exp((–qk – 

 )t)
(kq + 

 )

≤ P(t)≤ exp(–kqτ ) +
exp(q[k(t + γ – τ – t) – k(γ – σ – t)])

k

× exp((–qk – 
 )t)

(kq + 
 )

.

Note that for k = 
 , k = , q =  and t = γ = 

 , we have

k
k

exp

(
(k – k)

∫ t

t–γ

Q(t)dt
)
=


exp

(



∫ 



dt

)
= . ≥ 

and

exp

(
–


)
+



exp

(
–t – 


)
≤ P(t)≤ exp(–) +



exp

(
–t


)
, t ≥ .

If P(t) fulfils the last inequality above, a straightforward verification yields that the con-
ditions of Theorem  are satisfied and therefore () has a positive solution which tends
to zero.
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