Existence of positive solutions of higher-order nonlinear neutral equations

Tuncay Candan*

"Correspondence:
tcandan@nigde.edu.tr
Department of Mathematics, Faculty of Arts and Sciences, Niğde University, Niğde, 51200, Turkey

Abstract

In this work, we consider the existence of positive solutions of higher-order nonlinear neutral differential equations. In the special case, our results include some well-known results. In order to obtain new sufficient conditions for the existence of a positive solution, we use Schauder's fixed point theorem.

Keywords: neutral equations; fixed point; higher-order; positive solution

1 Introduction

The purpose of this article is to study higher-order neutral nonlinear differential equations of the form

$$
\begin{align*}
& {\left[r(t)\left[x(t)-P_{1}(t) x(t-\tau)\right]^{(n-1)}\right]^{\prime}+(-1)^{n} Q_{1}(t) f(x(t-\sigma))=0,} \tag{1}\\
& {\left[r(t)\left[x(t)-P_{1}(t) x(t-\tau)\right]^{(n-1)}\right]^{\prime}+(-1)^{n} \int_{c}^{d} Q_{2}(t, \xi) f(x(t-\xi)) d \xi=0} \tag{2}
\end{align*}
$$

and

$$
\begin{equation*}
\left[r(t)\left[x(t)-\int_{a}^{b} P_{2}(t, \xi) x(t-\xi) d \xi\right]^{(n-1)}\right]^{\prime}+(-1)^{n} \int_{c}^{d} Q_{2}(t, \xi) f(x(t-\xi)) d \xi=0 \tag{3}
\end{equation*}
$$

where $n \geq 2$ is an integer, $\tau>0, \sigma \geq 0, d>c \geq 0, b>a \geq 0, r, P_{1} \in C\left(\left[t_{0}, \infty\right),(0, \infty)\right)$, $P_{2} \in C\left(\left[t_{0}, \infty\right) \times[a, b],(0, \infty)\right), Q_{1} \in C\left(\left[t_{0}, \infty\right),(0, \infty)\right), Q_{2} \in C\left(\left[t_{0}, \infty\right) \times[c, d],(0, \infty)\right), f \in$ $C(\mathbb{R}, \mathbb{R}), f$ is a nondecreasing function with $x f(x)>0, x \neq 0$.
The motivation for the present work was the recent work of Culáková et al. [1] in which the second-order neutral nonlinear differential equation of the form

$$
\begin{equation*}
\left[r(t)[x(t)-P(t) x(t-\tau)]^{\prime}\right]^{\prime}+Q(t) f(x(t-\sigma))=0 \tag{4}
\end{equation*}
$$

was considered. Note that when $n=2$ in (1), we obtain (4). Thus, our results contain the results established in [1] for (1). The results for (2) and (3) are completely new.

Existence of nonoscillatory or positive solutions of higher-order neutral differential equations was investigated in [2-5], but in this work our results contain not only existence of solutions but also behavior of solutions. For books, we refer the reader to [6-11].
Let $\rho_{1}=\max \{\tau, \sigma\}$. By a solution of (1) we understand a function $x \in C\left(\left[t_{1}-\rho_{1}, \infty\right), \mathbb{R}\right)$, for some $t_{1} \geq t_{0}$, such that $x(t)-P_{1}(t) x(t-\tau)$ is $n-1$ times continuously differentiable,
$r(t)\left(x(t)-P_{1}(t) x(t-\tau)\right)^{(n-1)}$ is continuously differentiable on $\left[t_{1}, \infty\right)$ and (1) is satisfied for $t \geq t_{1}$. Similarly, let $\rho_{2}=\max \{\tau, d\}$. By a solution of (2) we understand a function $x \in C\left(\left[t_{1}-\rho_{2}, \infty\right), \mathbb{R}\right)$, for some $t_{1} \geq t_{0}$, such that $x(t)-P_{1}(t) x(t-\tau)$ is $n-1$ times continuously differentiable, $r(t)\left(x(t)-P_{1}(t) x(t-\tau)\right)^{(n-1)}$ is continuously differentiable on $\left[t_{1}, \infty\right)$ and (2) is satisfied for $t \geq t_{1}$. Finally, let $\rho_{3}=\max \{b, d\}$. By a solution of (3) we understand a function $x \in C\left(\left[t_{1}-\rho_{3}, \infty\right), \mathbb{R}\right)$, for some $t_{1} \geq t_{0}$, such that $x(t)-\int_{a}^{b} P_{2}(t, \xi) x(t-\xi) d \xi$ is $n-1$ times continuously differentiable, $r(t)\left[x(t)-\int_{a}^{b} P_{2}(t, \xi) x(t-\xi) d \xi\right]^{(n-1)}$ is continuously differentiable on $\left[t_{1}, \infty\right)$ and (3) is satisfied for $t \geq t_{1}$.
The following fixed point theorem will be used in proofs.

Theorem 1 (Schauder's fixed point theorem [9]) Let A be a closed, convex and nonempty subset of a Banach space Ω. Let $S: A \rightarrow A$ be a continuous mapping such that $S A$ is a relatively compact subset of Ω. Then S has at least one fixed point in A. That is, there exists $x \in A$ such that $S x=x$.

2 Main results

Theorem 2 Let

$$
\begin{equation*}
\int_{t_{0}}^{\infty} Q_{1}(t) d t=\infty \tag{5}
\end{equation*}
$$

Assume that $0<k_{1} \leq k_{2}$ and there exists $\gamma \geq 0$ such that

$$
\begin{align*}
& \frac{k_{1}}{k_{2}} \exp \left(\left(k_{2}-k_{1}\right) \int_{t_{0}-\gamma}^{t_{0}} Q_{1}(t) d t\right) \geq 1 \tag{6}\\
& \exp \left(-k_{2} \int_{t-\tau}^{t} Q_{1}(s) d s\right)+\exp \left(k_{2} \int_{t_{0}-\gamma}^{t-\tau} Q_{1}(s) d s\right) \\
& \quad \times \frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{s}^{\infty} Q_{1}(u) f\left(\exp \left(-k_{1} \int_{t_{0}-\gamma}^{u-\sigma} Q_{1}(z) d z\right)\right) d u d s \\
& \quad \leq P_{1}(t) \leq \exp \left(-k_{1} \int_{t-\tau}^{t} Q_{1}(s) d s\right)+\exp \left(k_{1} \int_{t_{0}-\gamma}^{t-\tau} Q_{1}(s) d s\right) \tag{7}\\
& \quad \times \frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{s}^{\infty} Q_{1}(u) f\left(\exp \left(-k_{2} \int_{t_{0}-\gamma}^{u-\sigma} Q_{1}(z) d z\right)\right) d u d s \\
& \quad t \geq t_{1} \geq t_{0}+\max \{\tau, \sigma\}
\end{align*}
$$

Then (1) has a positive solution which tends to zero.

Proof Let Ω be the set of all continuous and bounded functions on $\left[t_{0}, \infty\right)$ with the sup norm. Then Ω is a Banach space. Define a subset A of Ω by

$$
A=\left\{x \in \Omega: v_{1}(t) \leq x(t) \leq v_{2}(t), t \geq t_{0}\right\}
$$

where $v_{1}(t)$ and $v_{2}(t)$ are nonnegative functions such that

$$
\begin{equation*}
v_{1}(t)=\exp \left(-k_{2} \int_{t_{0}-\gamma}^{t} Q_{1}(s) d s\right), \quad v_{2}(t)=\exp \left(-k_{1} \int_{t_{0}-\gamma}^{t} Q_{1}(s) d s\right), \quad t \geq t_{0} \tag{8}
\end{equation*}
$$

It is clear that A is a bounded, closed and convex subset of Ω. We define the operator $S: A \longrightarrow \Omega$ as

$$
(S x)(t)=\left\{\begin{array}{l}
P_{1}(t) x(t-\tau)-\frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{s}^{\infty} Q_{1}(u) f(x(u-\sigma)) d u d s, \quad t \geq t_{1} \\
(S x)\left(t_{1}\right)+v_{2}(t)-v_{2}\left(t_{1}\right), \quad t_{0} \leq t \leq t_{1}
\end{array}\right.
$$

We show that S satisfies the assumptions of Schauder's fixed point theorem.
First, S maps A into A. For $t \geq t_{1}$ and $x \in A$, using (7) and (8), we have

$$
\begin{aligned}
(S x)(t) \leq & P_{1}(t) v_{2}(t-\tau)-\frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{s}^{\infty} Q_{1}(u) f\left(v_{1}(u-\sigma)\right) d u d s \\
= & P_{1}(t) \exp \left(-k_{1} \int_{t_{0}-\gamma}^{t-\tau} Q_{1}(s) d s\right) \\
& -\frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{s}^{\infty} Q_{1}(u) f\left(\exp \left(-k_{2} \int_{t_{0}-\gamma}^{u-\sigma} Q_{1}(z) d z\right)\right) d u d s \\
\leq & v_{2}(t)
\end{aligned}
$$

and

$$
\begin{aligned}
(S x)(t) \geq & P_{1}(t) v_{1}(t-\tau)-\frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{s}^{\infty} Q_{1}(u) f\left(v_{2}(u-\sigma)\right) d u d s \\
= & P_{1}(t) \exp \left(-k_{2} \int_{t_{0}-\gamma}^{t-\tau} Q_{1}(s) d s\right) \\
& -\frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{s}^{\infty} Q_{1}(u) f\left(\exp \left(-k_{1} \int_{t_{0}-\gamma}^{u-\sigma} Q_{1}(z) d z\right)\right) d u d s \\
\geq & v_{1}(t) .
\end{aligned}
$$

For $t \in\left[t_{0}, t_{1}\right]$ and $x \in A$, we obtain

$$
(S x)(t)=(S x)\left(t_{1}\right)+v_{2}(t)-v_{2}\left(t_{1}\right) \leq v_{2}(t)
$$

and in order to show $(S x)(t) \geq v_{1}(t)$, consider

$$
H(t)=v_{2}(t)-v_{2}\left(t_{1}\right)-v_{1}(t)+v_{1}\left(t_{1}\right)
$$

By making use of (6), it follows that

$$
\begin{aligned}
H^{\prime}(t) & =v_{2}^{\prime}(t)-v_{1}^{\prime}(t)=-k_{1} Q_{1}(t) v_{2}(t)+k_{2} Q_{1}(t) v_{1}(t) \\
& =Q_{1}(t) v_{2}(t)\left[-k_{1}+k_{2} v_{1}(t) \exp \left(k_{1} \int_{t_{0}-\gamma}^{t} Q_{1}(s) d s\right)\right] \\
& =Q_{1}(t) v_{2}(t)\left[-k_{1}+k_{2} \exp \left(\left(k_{1}-k_{2}\right) \int_{t_{0}-\gamma}^{t} Q_{1}(s) d s\right)\right] \\
& \leq Q_{1}(t) v_{2}(t)\left[-k_{1}+k_{2} \exp \left(\left(k_{1}-k_{2}\right) \int_{t_{0}-\gamma}^{t_{0}} Q_{1}(s) d s\right)\right] \leq 0, \quad t_{0} \leq t \leq t_{1} .
\end{aligned}
$$

Since $H\left(t_{1}\right)=0$ and $H^{\prime}(t) \leq 0$ for $t \in\left[t_{0}, t_{1}\right]$, we conclude that

$$
H(t)=v_{2}(t)-v_{2}\left(t_{1}\right)-v_{1}(t)+v_{1}\left(t_{1}\right) \geq 0, \quad t_{0} \leq t \leq t_{1} .
$$

Then $t \in\left[t_{0}, t_{1}\right]$ and for any $x \in A$,

$$
(S x)(t)=(S x)\left(t_{1}\right)+v_{2}(t)-v_{2}\left(t_{1}\right) \geq v_{1}\left(t_{1}\right)+v_{2}(t)-v_{2}\left(t_{1}\right) \geq v_{1}(t), \quad t_{0} \leq t \leq t_{1}
$$

Hence, S maps A into A.
Second, we show that S is continuous. Let $\left\{x_{i}\right\}$ be a convergent sequence of functions in A such that $x_{i}(t) \rightarrow x(t)$ as $i \rightarrow \infty$. Since A is closed, we have $x \in A$. It is obvious that for $t \in\left[t_{0}, t_{1}\right]$ and $x \in A, S$ is continuous. For $t \geq t_{1}$,

$$
\begin{aligned}
&\left|\left(S x_{i}\right)(t)-(S x)(t)\right| \\
& \leq P_{1}(t)\left|x_{i}(t-\tau)-x(t-\tau)\right| \\
& \quad+\left|\frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{s}^{\infty} Q_{1}(u)\left[f\left(x_{i}(u-\sigma)\right)-f(x(u-\sigma))\right] d u d s\right| \\
& \leq P_{1}(t)\left|x_{i}(t-\tau)-x(t-\tau)\right| \\
& \quad+\frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{s}^{\infty} Q_{1}(u)\left|f\left(x_{i}(u-\sigma)\right)-f(x(u-\sigma))\right| d u d s .
\end{aligned}
$$

Since $\left|f\left(x_{i}(t-\sigma)\right)-f(x(t-\sigma))\right| \rightarrow 0$ as $i \rightarrow \infty$, by making use of the Lebesgue dominated convergence theorem, we see that

$$
\lim _{t \rightarrow \infty}\left\|\left(S x_{i}\right)(t)-(S x)(t)\right\|=0
$$

and therefore S is continuous.
Third, we show that $S A$ is relatively compact. In order to prove that $S A$ is relatively compact, it suffices to show that the family of functions $\{S x: x \in A\}$ is uniformly bounded and equicontinuous on $\left[t_{0}, \infty\right)$. Since uniform boundedness of $\{S x: x \in A\}$ is obvious, we need only to show equicontinuity. For $x \in A$ and any $\epsilon>0$, we take $T \geq t_{1}$ large enough such that $(S x)(T) \leq \frac{\epsilon}{2}$. For $x \in A$ and $T_{2}>T_{1} \geq T$, we have

$$
\left|(S x)\left(T_{2}\right)-(S x)\left(T_{1}\right)\right| \leq\left|(S x)\left(T_{2}\right)\right|+\left|(S x)\left(T_{1}\right)\right| \leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
$$

Note that

$$
\begin{align*}
X^{n}-Y^{n} & =(X-Y)\left(X^{n-1}+X^{n-2} Y+\cdots+X Y^{n-2}+Y^{n-1}\right) \\
& \leq n(X-Y) X^{n-1}, \quad X>Y>0 . \tag{9}
\end{align*}
$$

For $x \in A$ and $t_{1} \leq T_{1}<T_{2} \leq T$, by using (9) we obtain

$$
\begin{aligned}
& \left|(S x)\left(T_{2}\right)-(S x)\left(T_{1}\right)\right| \\
& \quad \leq\left|P_{1}\left(T_{2}\right) x\left(T_{2}-\tau\right)-P_{1}\left(T_{1}\right) x\left(T_{1}-\tau\right)\right|
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{(n-2)!} \int_{T_{1}}^{T_{2}} \frac{\left(s-T_{1}\right)^{n-2}}{r(s)} \int_{s}^{\infty} Q_{1}(u) f(x(u-\sigma)) d u d s \\
& +\frac{1}{(n-2)!} \int_{T_{2}}^{\infty} \frac{\left(s-T_{1}\right)^{n-2}-\left(s-T_{2}\right)^{n-2}}{r(s)} \int_{s}^{\infty} Q_{1}(u) f(x(u-\sigma)) d u d s \\
& \leq\left|P_{1}\left(T_{2}\right) x\left(T_{2}-\tau\right)-P_{1}\left(T_{1}\right) x\left(T_{1}-\tau\right)\right| \\
& \quad+\max _{T_{1} \leq s \leq T_{2}}\left\{\frac{1}{(n-2)!} \frac{s^{n-2}}{r(s)} \int_{s}^{\infty} Q_{1}(u) f(x(u-\sigma)) d u\right\}\left(T_{2}-T_{1}\right) \\
& \quad+\frac{1}{(n-3)!} \int_{T_{2}}^{\infty} \frac{\left(s-T_{1}\right)^{n-3}}{r(s)} \int_{s}^{\infty} Q_{1}(u) f(x(u-\sigma)) d u d s\left(T_{2}-T_{1}\right) .
\end{aligned}
$$

Thus there exits $\delta>0$ such that

$$
\left|(S x)\left(T_{2}\right)-(S x)\left(T_{1}\right)\right|<\epsilon \quad \text { if } 0<T_{2}-T_{1}<\delta .
$$

Finally, for $x \in A$ and $t_{0} \leq T_{1}<T_{2} \leq t_{1}$, there exits $\delta>0$ such that

$$
\left|(S x)\left(T_{2}\right)-(S x)\left(T_{1}\right)\right|=\left|v_{2}\left(T_{1}\right)-v_{2}\left(T_{2}\right)\right|<\epsilon \quad \text { if } 0<T_{2}-T_{1}<\delta
$$

Therefore $S A$ is relatively compact. In view of Schauder's fixed point theorem, we can conclude that there exists $x \in A$ such that $S x=x$. That is, x is a positive solution of (1) which tends to zero. The proof is complete.

Theorem 3 Let

$$
\begin{equation*}
\int_{t_{0}}^{\infty} \tilde{Q}_{2}(t) d t=\infty, \tag{10}
\end{equation*}
$$

where $\tilde{Q}_{2}(t)=\int_{c}^{d} Q_{2}(t, \xi) d \xi$. Assume that $0<k_{1} \leq k_{2}$ and there exists $\gamma \geq 0$ such that

$$
\begin{aligned}
& \frac{k_{1}}{k_{2}} \exp \left(\left(k_{2}-k_{1}\right) \int_{t_{0}-\gamma}^{t_{0}} \tilde{Q}_{2}(t) d t\right) \geq 1, \\
& \exp \left(-k_{2} \int_{t-\tau}^{t} \tilde{Q}_{2}(s) d s\right)+\exp \left(k_{2} \int_{t_{0}-\gamma}^{t-\tau} \tilde{Q}_{2}(s) d s\right) \\
& \quad \times \frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{s}^{\infty} \int_{c}^{d} Q_{2}(u, \xi) f\left(\exp \left(-k_{1} \int_{t_{0}-\gamma}^{u-\xi} \tilde{Q}_{2}(z) d z\right)\right) d \xi d u d s \\
& \quad \leq P_{1}(t) \leq \exp \left(-k_{1} \int_{t-\tau}^{t} \tilde{Q}_{2}(s) d s\right)+\exp \left(k_{1} \int_{t_{0}-\gamma}^{t-\tau} \tilde{Q}_{2}(s) d s\right) \\
& \quad \times \frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{s}^{\infty} \int_{c}^{d} Q_{2}(u, \xi) f\left(\exp \left(-k_{2} \int_{t_{0}-\gamma}^{u-\xi} \tilde{Q}_{2}(z) d z\right)\right) d \xi d u d s, \\
& \quad t \geq t_{1} \geq t_{0}+\max \{\tau, d\} .
\end{aligned}
$$

Then (2) has a positive solution which tends to zero.

Proof Let Ω be the set of all continuous and bounded functions on $\left[t_{0}, \infty\right)$ with the sup norm. Then Ω is a Banach space. Define a subset A of Ω by

$$
A=\left\{x \in \Omega: v_{1}(t) \leq x(t) \leq v_{2}(t), t \geq t_{0}\right\},
$$

where $v_{1}(t)$ and $v_{2}(t)$ are nonnegative functions such that

$$
v_{1}(t)=\exp \left(-k_{2} \int_{t_{0}-\gamma}^{t} \tilde{Q}_{2}(s) d s\right), \quad v_{2}(t)=\exp \left(-k_{1} \int_{t_{0}-\gamma}^{t} \tilde{Q}_{2}(s) d s\right), \quad t \geq t_{0} .
$$

It is clear that A is a bounded, closed and convex subset of Ω. We define the operator $S: A \longrightarrow \Omega$ as follows:

$$
(S x)(t)=\left\{\begin{array}{l}
P_{1}(t) x(t-\tau)-\frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{s}^{\infty} \int_{c}^{d} Q_{2}(u, \xi) f(x(u-\xi)) d \xi d u d s, \quad t \geq t_{1} \\
(S x)\left(t_{1}\right)+v_{2}(t)-v_{2}\left(t_{1}\right), \quad t_{0} \leq t \leq t_{1}
\end{array}\right.
$$

Since the remaining part of the proof is similar to those in the proof of Theorem 2, it is omitted. Thus the theorem is proved.

Theorem 4 Suppose that (10) and (11) hold. In addition, assume that

$$
\begin{aligned}
& \exp \left(-k_{2} \int_{t-a}^{t} \tilde{Q}_{2}(s) d s\right)+\exp \left(k_{2} \int_{t_{0}-\gamma}^{t-a} \tilde{Q}_{2}(s) d s\right) \\
& \quad \times \frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{s}^{\infty} \int_{c}^{d} Q_{2}(u, \xi) f\left(\exp \left(-k_{1} \int_{t_{0}-\gamma}^{u-\xi} \tilde{Q}_{2}(z) d z\right)\right) d \xi d u d s \\
& \quad \leq \tilde{P}_{2}(t) \leq \exp \left(-k_{1} \int_{t-b}^{t} \tilde{Q}_{2}(s) d s\right)+\exp \left(k_{1} \int_{t_{0}-\gamma}^{t-b} \tilde{Q}_{2}(s) d s\right) \\
& \quad \times \frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{s}^{\infty} \int_{c}^{d} Q_{2}(u, \xi) f\left(\exp \left(-k_{2} \int_{t_{0}-\gamma}^{u-\xi} \tilde{Q}_{2}(z) d z\right)\right) d \xi d u d s, \\
& t \geq t_{1} \geq t_{0}+\max \{b, d\},
\end{aligned}
$$

where $\tilde{P}_{2}(t)=\int_{a}^{b} P_{2}(t, \xi) d \xi$. Then (3) has a positive solution which tends to zero.

Proof Let Ω be the set of all continuous and bounded functions on $\left[t_{0}, \infty\right)$ with the sup norm. Then Ω is a Banach space. Define a subset A of Ω by

$$
A=\left\{x \in \Omega: v_{1}(t) \leq x(t) \leq v_{2}(t), t \geq t_{0}\right\}
$$

where $v_{1}(t)$ and $v_{2}(t)$ are nonnegative functions such that

$$
\begin{equation*}
v_{1}(t)=\exp \left(-k_{2} \int_{t_{0}-\gamma}^{t} \tilde{Q}_{2}(s) d s\right), \quad v_{2}(t)=\exp \left(-k_{1} \int_{t_{0}-\gamma}^{t} \tilde{Q}_{2}(s) d s\right), \quad t \geq t_{0} \tag{13}
\end{equation*}
$$

It is clear that A is a bounded, closed and convex subset of Ω. We define the operator $S: A \longrightarrow \Omega$ as

$$
(S x)(t)=\left\{\begin{array}{l}
\int_{a}^{b} P_{2}(t, \xi) x(t-\xi) d \xi-\frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{s}^{\infty} \int_{c}^{d} Q_{2}(u, \xi) f(x(u-\xi)) d \xi d u d s \\
\quad t \geq t_{1} \\
(S x)\left(t_{1}\right)+v_{2}(t)-v_{2}\left(t_{1}\right), \quad t_{0} \leq t \leq t_{1}
\end{array}\right.
$$

We show that S satisfies the assumptions of Schauder's fixed point theorem.
First of all, S maps A into A. For $t \geq t_{1}$ and $x \in A$, using (12), (13), the decreasing nature of v_{2} and v_{1}, we have

$$
\begin{aligned}
(S x)(t) \leq & \int_{a}^{b} P_{2}(t, \xi) v_{2}(t-\xi) d \xi-\frac{1}{(n-2)!} \\
& \times \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{s}^{\infty} \int_{c}^{d} Q_{2}(u, \xi) f\left(v_{1}(u-\xi)\right) d \xi d u d s \\
\leq & \tilde{P}_{2}(t) \exp \left(-k_{1} \int_{t_{0}-\gamma}^{t-b} \tilde{Q}_{2}(s) d s\right)-\frac{1}{(n-2)!} \\
& \times \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{s}^{\infty} \int_{c}^{d} Q_{2}(u, \xi) f\left(\exp \left(-k_{2} \int_{t_{0}-\gamma}^{u-\xi} \tilde{Q}_{2}(z) d z\right)\right) d \xi d u d s \\
\leq & v_{2}(t)
\end{aligned}
$$

and

$$
\begin{aligned}
(S x)(t) \geq & \int_{a}^{b} P_{2}(t, \xi) v_{1}(t-\xi) d \xi-\frac{1}{(n-2)!} \\
& \times \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{s}^{\infty} \int_{c}^{d} Q_{2}(u, \xi) f\left(v_{2}(u-\xi)\right) d \xi d u d s \\
\geq & \tilde{P}_{2}(t) \exp \left(-k_{2} \int_{t_{0}-\gamma}^{t-a} \tilde{Q}_{2}(s) d s\right)-\frac{1}{(n-2)!} \\
& \times \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{s}^{\infty} \int_{c}^{d} Q_{2}(u, \xi) f\left(\exp \left(-k_{1} \int_{t_{0}-\gamma}^{u-\xi} \tilde{Q}_{2}(z) d z\right)\right) d \xi d u d s \\
\geq & v_{1}(t) .
\end{aligned}
$$

For $t \in\left[t_{0}, t_{1}\right]$ and $x \in A$, we obtain

$$
(S x)(t)=(S x)\left(t_{1}\right)+v_{2}(t)-v_{2}\left(t_{1}\right) \leq v_{2}(t)
$$

and to show $(S x)(t) \geq v_{1}(t)$, consider

$$
H(t)=v_{2}(t)-v_{2}\left(t_{1}\right)-v_{1}(t)+v_{1}\left(t_{1}\right)
$$

By making use of (11), it follows that

$$
\begin{aligned}
H^{\prime}(t) & =v_{2}^{\prime}(t)-v_{1}^{\prime}(t) \\
& =-k_{1} \tilde{Q}_{2}(t) v_{2}(t)+k_{2} \tilde{Q}_{2}(t) v_{1}(t)
\end{aligned}
$$

$$
\begin{aligned}
& =\tilde{Q}_{2}(t) v_{2}(t)\left[-k_{1}+k_{2} v_{1}(t) \exp \left(k_{1} \int_{t_{0}-\gamma}^{t} \tilde{Q}_{2}(s) d s\right)\right] \\
& \leq \tilde{Q}_{2}(t) v_{2}(t)\left[-k_{1}+k_{2} \exp \left(\left(k_{1}-k_{2}\right) \int_{t_{0}-\gamma}^{t_{0}} \tilde{Q}_{2}(s) d s\right)\right] \leq 0, \quad t_{0} \leq t \leq t_{1} .
\end{aligned}
$$

Since $H\left(t_{1}\right)=0$ and $H^{\prime}(t) \leq 0$ for $t \in\left[t_{0}, t_{1}\right]$, we conclude that

$$
H(t)=v_{2}(t)-v_{2}\left(t_{1}\right)-v_{1}(t)+v_{1}\left(t_{1}\right) \geq 0, \quad t_{0} \leq t \leq t_{1} .
$$

Then $t \in\left[t_{0}, t_{1}\right]$ and for any $x \in A$,

$$
(S x)(t)=(S x)\left(t_{1}\right)+v_{2}(t)-v_{2}\left(t_{1}\right) \geq v_{1}\left(t_{1}\right)+v_{2}(t)-v_{2}\left(t_{1}\right) \geq v_{1}(t), \quad t_{0} \leq t \leq t_{1}
$$

Hence, S maps A into A.
Next, we show that S is continuous. Let $\left\{x_{i}\right\}$ be a convergent sequence of functions in A such that $x_{i}(t) \rightarrow x(t)$ as $i \rightarrow \infty$. Since A is closed, we have $x \in A$. It is obvious that for $t \in\left[t_{0}, t_{1}\right]$ and $x \in A, S$ is continuous. For $t \geq t_{1}$,

$$
\begin{aligned}
& \left|\left(S x_{i}\right)(t)-(S x)(t)\right| \\
& \quad \leq \int_{a}^{b} P_{2}(t, \xi)\left|x_{i}(t-\xi)-x(t-\xi)\right| d \xi \\
& \quad+\frac{1}{(n-2)!} \int_{t}^{\infty} \frac{(s-t)^{n-2}}{r(s)} \int_{s}^{\infty} \int_{c}^{d} Q_{2}(u, \xi)\left|f\left(x_{i}(u-\xi)\right)-f(x(u-\xi))\right| d \xi d u d s .
\end{aligned}
$$

Since $\left|f\left(x_{i}(t-\xi)\right)-f(x(t-\xi))\right| \rightarrow 0$ as $i \rightarrow \infty$ and $\xi \in[c, d]$, by making use of the Lebesgue dominated convergence theorem, we see that

$$
\lim _{t \rightarrow \infty}\left\|\left(S x_{i}\right)(t)-(S x)(t)\right\|=0
$$

Thus S is continuous.
Finally, we show that $S A$ is relatively compact. In order to prove that $S A$ is relatively compact, it suffices to show that the family of functions $\{S x: x \in A\}$ is uniformly bounded and equicontinuous on $\left[t_{0}, \infty\right)$. Since uniform boundedness of $\{S x: x \in A\}$ is obvious, we need only to show equicontinuity. For $x \in A$ and any $\epsilon>0$, we take $T \geq t_{1}$ large enough such that $(S x)(T) \leq \frac{\epsilon}{2}$. For $x \in A$ and $T_{2}>T_{1} \geq T$, we have

$$
\left|(S x)\left(T_{2}\right)-(S x)\left(T_{1}\right)\right| \leq\left|(S x)\left(T_{2}\right)\right|+\left|(S x)\left(T_{1}\right)\right| \leq \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
$$

For $x \in A$ and $t_{1} \leq T_{1}<T_{2} \leq T$, by using (9) we obtain

$$
\begin{aligned}
& \left|(S x)\left(T_{2}\right)-(S x)\left(T_{1}\right)\right| \\
& \quad \leq \int_{a}^{b}\left|P_{2}\left(T_{2}, \xi\right) x\left(T_{2}-\xi\right)-P_{2}\left(T_{1}, \xi\right) x\left(T_{1}-\xi\right)\right| d \xi \\
& \quad+\frac{1}{(n-2)!} \int_{T_{1}}^{T_{2}} \frac{\left(s-T_{1}\right)^{n-2}}{r(s)} \int_{s}^{\infty} \int_{c}^{d} Q_{2}(u, \xi) f(x(u-\xi)) d \xi d u d s
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{(n-2)!} \int_{T_{2}}^{\infty} \frac{\left(s-T_{1}\right)^{n-2}-\left(s-T_{2}\right)^{n-2}}{r(s)} \int_{s}^{\infty} \int_{c}^{d} Q_{2}(u, \xi) f(x(u-\xi)) d \xi d u d s \\
\leq & \int_{a}^{b}\left|P_{2}\left(T_{2}, \xi\right) x\left(T_{2}-\xi\right)-P_{2}\left(T_{1}, \xi\right) x\left(T_{1}-\xi\right)\right| d \xi \\
& +\max _{T_{1} \leq s \leq T_{2}}\left\{\frac{1}{(n-2)!} \frac{s^{n-2}}{r(s)} \int_{s}^{\infty} \int_{c}^{d} Q_{2}(u, \xi) f(x(u-\xi)) d \xi d u\right\}\left(T_{2}-T_{1}\right) \\
& +\frac{1}{(n-3)!} \int_{T_{2}}^{\infty} \frac{\left(s-T_{1}\right)^{n-3}}{r(s)} \int_{s}^{\infty} \int_{c}^{d} Q_{2}(u, \xi) f(x(u-\xi)) d \xi d u d s\left(T_{2}-T_{1}\right) .
\end{aligned}
$$

Thus there exits $\delta>0$ such that

$$
\left|(S x)\left(T_{2}\right)-(S x)\left(T_{1}\right)\right|<\epsilon \quad \text { if } 0<T_{2}-T_{1}<\delta .
$$

For $x \in A$ and $t_{0} \leq T_{1}<T_{2} \leq t_{1}$, there exits $\delta>0$ such that

$$
\left|(S x)\left(T_{2}\right)-(S x)\left(T_{1}\right)\right|=\left|v_{2}\left(T_{1}\right)-v_{2}\left(T_{2}\right)\right|<\epsilon \quad \text { if } 0<T_{2}-T_{1}<\delta .
$$

Therefore $S A$ is relatively compact. In view of Schauder's fixed point theorem, we can conclude that there exists $x \in A$ such that $S x=x$. That is, x is a positive solution of (1) which tends to zero. The proof is complete.

Example 1 Consider the neutral differential equation

$$
\begin{equation*}
\left[e^{t / 2}\left[x(t)-P_{1}(t) x\left(t-\frac{3}{2}\right)\right]^{(2)}\right]^{\prime}-q x(t-1)=0, \quad t \geq t_{0} \tag{14}
\end{equation*}
$$

where $q \in(0, \infty)$ and

$$
\begin{aligned}
& \exp \left(-k_{2} q \tau\right)+\frac{\exp \left(q\left[k_{2}\left(t+\gamma-\tau-t_{0}\right)-k_{1}\left(\gamma-\sigma-t_{0}\right)\right]\right)}{k_{1}} \frac{\exp \left(\left(-q k_{1}-\frac{1}{2}\right) t\right)}{\left(k_{1} q+\frac{1}{2}\right)^{2}} \\
& \quad \leq P_{1}(t) \leq \exp \left(-k_{1} q \tau\right)+\frac{\exp \left(q\left[k_{1}\left(t+\gamma-\tau-t_{0}\right)-k_{2}\left(\gamma-\sigma-t_{0}\right)\right]\right)}{k_{2}} \\
& \quad \times \frac{\exp \left(\left(-q k_{2}-\frac{1}{2}\right) t\right)}{\left(k_{2} q+\frac{1}{2}\right)^{2}} .
\end{aligned}
$$

Note that for $k_{1}=\frac{2}{3}, k_{2}=1, q=1$ and $t_{0}=\gamma=\frac{13}{2}$, we have

$$
\frac{k_{1}}{k_{2}} \exp \left(\left(k_{2}-k_{1}\right) \int_{t_{0}-\gamma}^{t_{0}} Q_{1}(t) d t\right)=\frac{2}{3} \exp \left(\frac{1}{3} \int_{0}^{\frac{13}{2}} 1 d t\right)=5.8194 \geq 1
$$

and

$$
\exp \left(\frac{-3}{2}\right)+\frac{54}{49} \exp \left(\frac{-t-5}{6}\right) \leq P_{1}(t) \leq \exp (-1)+\frac{4}{9} \exp \left(\frac{-5 t}{6}\right), \quad t \geq 8 .
$$

If $P_{1}(t)$ fulfils the last inequality above, a straightforward verification yields that the conditions of Theorem 2 are satisfied and therefore (14) has a positive solution which tends to zero.

Competing interests

The author declares that they have no competing interests.
Received: 16 August 2013 Accepted: 11 November 2013 Published: 05 Dec 2013

References

1. Culáková, I, Hanuštiaková, L', Olach, R: Existence for positive solutions of second-order neutral nonlinear differential equations. Appl. Math. Lett. 22, 1007-1010 (2009)
2. Candan, T: The existence of nonoscillatory solutions of higher order nonlinear neutral equations. Appl. Math. Lett. 25(3), 412-416 (2012)
3. Candan, T, Dahiya, RS: Existence of nonoscillatory solutions of higher order neutral differential equations with distributed deviating arguments. Math. Slovaca 63(1), 183-190 (2013)
4. Li, W-T, Fei, X-L: Classifications and existence of positive solutions of higher-order nonlinear delay differential equations. Nonlinear Anal. 41, 433-445 (2000)
5. Zhou, Y, Zhang, BG: Existence of nonoscillatory solutions of higher-order neutral differential equations with positive and negative coefficients. Appl. Math. Lett. 15, 867-874 (2002)
6. Agarwal, RP, Grace, SR, O'Regan, D: Oscillation Theory for Difference and Functional Differential Equations. Kluwer Academic, Dordrecht (2000)
7. Agarwal, RP, Bohner, M, Li, W-T: Nonoscillation and Oscillation: Theory for Functional Differential Equations. Dekker, New York (2004)
8. Erbe, LH, Kong, QK, Zhang, BG: Oscillation Theory for Functional Differential Equations. Dekker, New York (1995)
9. Györi, I, Ladas, G: Oscillation Theory of Delay Differential Equations with Applications. Clarendon, Oxford (1991)
10. Bainov, DD, Mishev, DP: Oscillation Theory for Neutral Differential Equations with Delay. Hilger, Bristol (1991)
11. Ladde, GS, Lakshmikantham, V, Zhang, BG: Oscillation Theory of Differential Equations with Deviating Arguments Dekker, New York (1987)

Submit your manuscript to a SpringerOpen ${ }^{\text {© }}$
journal and benefit from:
Convenient online submission
Rigorous peer review
Immediate publication on acceptance
Open access: articles freely available online
High visibility within the field
Retaining the copyright to your article
Submit your next manuscript at $\$$ springeropen.com

