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Abstract
Our aim in this paper is to deal with the growth properties for modified Neumann
integrals in a half-space of Rn. As an application, the solutions of Neumann problems
in it for a slowly growing continuous function are also given.
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1 Introduction andmain results
Let R and R+ be the sets of all real numbers and of all positive real numbers, respectively.
Let Rn (n ≥ ) denote the n-dimensional Euclidean space with points x = (x′,xn), where
x′ = (x,x, . . . ,xn–) ∈ Rn– and xn ∈ R. The boundary and closure of an open set � of Rn

are denoted by ∂� and �, respectively. For x ∈ Rn and r > , let Bn(x, r) denote the open
ball with center at x and radius r in Rn.
The upper half-space is the set H = {(x′,xn) ∈ Rn : xn > }, whose boundary is ∂H . For

a set F , F ⊂ R+ ∪ {}, we denote {x ∈ H ; |x| ∈ F} and {x ∈ ∂H ; |x| ∈ F} by HF and ∂HF ,
respectively. We identify Rn with Rn– ×R and Rn– with Rn– ×{}, writing typical points
x, y ∈ Rn as x = (x′,xn), y = (y′, yn), where y′ = (y, y, . . . , yn–) ∈ Rn–. Let θ be the angle
between x and ên, i.e., xn = |x| cos θ and  ≤ θ < π/, where ên is the ith unit coordinate
vector and ên is normal to ∂H .
We shall say that a set E ⊂H has a covering {rj,Rj} if there exists a sequence of balls {Bj}

with centers in H such that E ⊂ ⋃∞
j= Bj, where rj is the radius of Bj and Rj is the distance

between the origin and the center of Bj.
For positive functions g and g, we say that g � g if g ≤ Mg for some positive con-

stant M. Throughout this paper, let M denote various constants independent of the vari-
ables in question. Further, we use the standard notations, [d] is the integer part of d and
d = [d] + {d}, where d is a positive real number.
Given a continuous function f in ∂H , we say that h is a solution of theNeumann problem

in H with f , if h is a harmonic function in H and

lim
x∈H,x→y′

∂

∂xn
h(x) = f

(
y′)

for every point y′ ∈ ∂H .
For x ∈ Rn and y′ ∈ Rn–, consider the kernel function

Kn
(
x, y′) = –

βn

|x – y′|n– ,
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where βn = /(n – )σn and σn is the surface area of the n-dimensional unit sphere. It has
the expression

Kn
(
x, y′) = ∞∑

k=

|x|k
|y|n+k–C

n–


k

(
x · y′

|x||y′|
)
,

where C
n

k (t) is the ultraspherical (Gegenbauer) polynomials []. The series converges for

|y′| > |x|, and each term in it is a harmonic function of x.
The Neumann integral is defined by

N[f ](x) =
∫

∂H
Kn

(
x, y′)f (y′)dy′,

where f is a continuous function on ∂H , αn = /nσn and σn = π
n
 /	( + n

 ) is the volume of
the unit n-ball.
The Neumann integralN[f ](x) is a solution of the Neumann problem onH with f if (see

[, Theorem  and Remarks])

∫
∂H

f (y′)
( + |y′|)n– dy

′ < ∞.

In this paper, we consider functions f satisfying

∫
∂H

|f (y′)|p
( + |y′|)n+α– dy

′ < ∞ (.)

for  ≤ p < ∞ and α ∈ R.
For this p and α, we define the positive measure μ on Rn by

dμ
(
y′) =

{
|f (y′)|p|y′|–n–α+ dy′, y′ ∈ ∂H(, +∞),
, Q ∈ Rn – ∂H(, +∞).

If f is a measurable function on ∂H satisfying (.), we remark that the total mass of μ is
finite.
Let ε >  and δ ≥ . For each x ∈ Rn, the maximal functionM(x;μ, δ) is defined by

M(x;μ, δ) = sup
<ρ< |x|



μ(Bn(x, r))
ρδ

.

The set {x ∈ Rn;M(x;μ, δ) > ε} is denoted by E(ε;μ, δ).
To obtain the Neumann solution for the boundary data f , as in [–], we use the follow-

ing modified kernel function defined by

Ln,m
(
x, y′) =

⎧⎪⎪⎨
⎪⎪⎩
–βn

∑m–
k=

|x|k
|y|n+k–C

n–


k ( x·y′
|x||y′| ), |y′| ≥ m ≥ ,

, |y′| < m≥ ,
, m = 

for a non-negative integer m.
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For x ∈ Rn and y′ ∈ Rn–, the generalized Neumann kernel is defined by

Kn,m
(
x, y′) = Kn

(
x, y′) – Ln,m

(
x, y′) (m ≥ ).

Since |x|kC n–


k ( x·y′
|x||y′| ) (k ≥ ) is harmonic in H (see []), Kn,m(·, y′) is also harmonic in H

for any fixed y′ ∈ ∂H . Also, Kn,m(x, y′) will be of order |y′|–(n+m–) as y′ → ∞ (see [, The-
orem D]).
Put

Nm[f ](x) =
∫

∂H
Kn,m

(
x, y′)f (y′)dy′,

where f is a continuous function on ∂H . Here, note that N[f ](x) is nothing but the Neu-
mann integral N[f ](x).
The following result is due to Siegel andTalvila (see [, Corollary .]). For similar results

with respect to the Schrödinger operator in a half-space, we refer readers to papers by Su
(see []).

Theorem A If f is a continuous function on ∂H satisfying (.) with p =  and α =m, then

lim|x|→∞,x∈HNm[f ](x) = o
(|x|m secn– θ

)
. (.)

The next result deals with a type of uniqueness of solutions for the Neumann problem
on H (see [, Theorem ]).

Theorem B Let l be a positive integer and m be a non-negative integer. If f is a continuous
function on ∂H satisfying

∫
∂H

|f (y′)|
( + |y′|)n+m– dy

′ < ∞,

and h is a solution of the Neumann problem on H with f such that

lim|x|→∞,x∈H h
+(x) = o

(|x|l+m)
,

then

h(x) =Nm[f ](x) +
(
x′) + [ l+m ]∑

j=

(–)j

(j)!
xjn �j

(
x′)

for any x = (x′,xn) ∈H , where h+(x) is the positive part of h,

�j =
(

∂

∂x
+

∂

∂x
+ · · · + ∂

∂xn–

)
(j = ,  . . .)

and (x′) is a polynomial of x′ ∈ Rn– of degree less than l +m.
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Our first aim is to be concerned with the growth property of Nm[f ] at infinity and es-
tablish the following theorem.

Theorem  Let ≤ p < ∞, ≤ β ≤ (n – )p, n + α –  > –(n – )(p – ) and

 –
 – α

p
<m <  –

 – α

p
if p > ,

α ≤m < α +  if p = .

If f is a measurable function on ∂ satisfying (.), then there exists a covering {rj,Rj} of
E(ε;μ, (n – )p – β) (⊂H) satisfying

∞∑
j=

(
rj
Rj

)(n–)p–β

< ∞ (.)

such that

lim
|x|→∞,x∈H–E(ε;μ,(n–)p–β)

Nm[f ](x) = o
(|x|+ α–

p sec
β
p θ

)
. (.)

Corollary  Let  < p < ∞, n + α –  > –(n – )(p – ) and

 –
 – α

p
<m <  –

 – α

p
.

If f is a measurable function on ∂H satisfying (.), then

lim|x|→∞,x∈HNm[f ](x) = o
(|x|+ α–

p secn– θ
)
. (.)

As an application of Theorem , we now show the solution of the Neumann problem
with continuous data on H .

Theorem  Let p, β , α and m be defined as in Theorem . If f is a continuous function
on ∂H satisfying (.), then the function Nm[f ] is a solution of the Neumann problem on H
with f and (.) holds, where the exceptional set E(ε;μ, (n – )p – β) (⊂ H) has a covering
{rj,Rj} satisfying (.).

Remark In the case p = , α = m and β = n – , then (.) is a finite sum and the set
E(ε;μ, ) is a bounded set. So (.) holds in H . That is to say, (.) holds. This is just the
result of Theorem A.

Corollary  Let ≤ p <∞, n + α –  > –(n – )(p – ) and

 –
 – α

p
<m <  –

 – α

p
if p > ,

α ≤m < α +  if p = .

If f is a continuous function on ∂H satisfying (.), then the function Nm[f ] is a solution of
the Neumann problem on H with f and (.) holds.
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The following result extends Theorem B, which is our result in the case p =  and α =m.

Theorem  Let ≤ p < ∞, α >  – p, l be a positive integer and

 –
 – α

p
<m <  –

 – α

p
if p > ,

α ≤m < α +  if p = .

If f is a continuous function on ∂H satisfying (.) and h is a solution of the Neumann
problem on H with f such that

lim|x|→∞,x∈H h
+(x) = o

(|x|l+[+ α–
p ]), (.)

then

h(x) =Nm[f ](x) +
(
x′) + [

l+[+ α–
p ]

 ]∑
j=

(–)j

(j)!
xjn �j

(
x′) (.)

for any x = (x′,xn) ∈ H and(x′) is a polynomial of x′ ∈ Rn– of degree less than l+[+ α–
p ].

2 Lemmas
In our discussions, the following estimates for the kernel function Kn,m(x, y′) are funda-
mental (see [, Lemma .] and [, Lemmas . and .]).

Lemma 
() If ≤ |y′| ≤ |x|

 , then |Kn,m(x, y′)|� |x|m–|y′|–n–m+.
() If |x|

 < |y′| ≤ 
 |x|, then |Kn,m(x, y′)|� |x – y′|–n.

() If 
 |x| < |y′| ≤ |x|, then |Kn,m(x, y′)|� x–nn .

() If |y′| ≥ |x| and |y′| ≥ , then |Kn,m(x, y′)|� |x|m|y′|–n–m.

The following lemma is due to Qiao (see []).

Lemma  If ε > , η ≥  and λ is a positive measure in Rn satisfying λ(Rn) < ∞, then
E(ε;λ,η) has a covering {rj,Rj} (j = , , . . .) such that

∞∑
j=

(
rj
Rj

)η

< ∞.

Lemma  ([, Lemma ]) Let p, β , α and m be defined as in Theorem . If f is a locally
integral and upper semi-continuous function on ∂H satisfying (.), then

lim sup
x∈H,x→y′

∂

∂xn
Nm[f ](x)≤ f

(
y′)

for any fixed y′ ∈ ∂H .
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Lemma  ([, Lemma ]) If h(x) is a harmonic polynomial of x = (x′,xn) ∈ H of degree m
and ∂h/∂xn vanishes on ∂H , then there exists a polynomial (x′) of degree m such that

h(x) =

{
(x′) +

∑[m ]
j=

(–)j
(j)! x

j
n �j(x′), m ≥ ,

(x′), m = , .

3 Proof of Theorem 1
For any ε > , there exists Rε >  such that

∫
∂H(Rε ,∞)

|f (y′)|p
( + |y′|)n+α– dy

′ < ε. (.)

Take any point x ∈ H(Rε ,∞) – E(ε;μ, (n – )p – β) such that |x| > Rε , and write

Nm[f ](x) =
(∫

G

+
∫
G

+
∫
G

+
∫
G

+
∫
G

)
Kn,m

(
x, y′)f (y′)dy′

= U(x) +U(x) +U(x) +U(x) +U(x),

where

G =
{
y′ ∈ ∂H :

∣∣y′∣∣ ≤ 
}
, G =

{
y′ ∈ ∂H :  <

∣∣y′∣∣ ≤ |x|


}
,

G =
{
y′ ∈ ∂H :

|x|


<
∣∣y′∣∣ ≤ 


|x|

}
, G =

{
y′ ∈ ∂H :



|x| < ∣∣y′∣∣ ≤ |x|

}

G =
{
y′ ∈ ∂H :

∣∣y′∣∣ ≥ |x|}.
First note that

∣∣U(x)
∣∣ � ∫

G

|f (y′)|
|x – y′|n– dy

′

� |x|–n
∫
G

∣∣f (y′)∣∣dy′,

so that

lim|x|→∞,x∈H |x|–+ –α
p U(x) = . (.)

If m <  – –α
p and 

p +

q = , then ( – n –m + n+α–

p )q + n –  > . By Lemma (), (.)
and the Hölder inequality, we have

∣∣U(x)
∣∣ � |x|m–

∫
G

∣∣y′∣∣–n–m+∣∣f (y′)∣∣dy′

� |x|m–
(∫

G

|f (y′)|p
|y′|n+α– dy

′
) 

p
(∫

G

∣∣y′∣∣(–n–m++ n+α–
p )q dy′

) 
q

� |x|– –α
p

(∫
G

|f (y′)|p
|y′|n+α– dy

′
) 

p
. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/572
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Put

U(x) =U(x) +U(x),

where

U(x) =
∫
G∩Bn–(Rε )

Kn,m
(
x, y′)f (y′)dy′,

U(x) =
∫
G\Bn–(Rε )

Kn,m
(
x, y′)f (y′)dy′.

If |x| ≥ Rε , then

∣∣U(x)
∣∣� R

–m– –α
p

ε |x|m–.

Moreover, by (.) and (.), we get

∣∣U(x)
∣∣� ε|x|– –α

p .

That is,

∣∣U(x)
∣∣� ε|x|– –α

p . (.)

By Lemma (), (.) and the Hölder inequality, we have

∣∣U(x)
∣∣� εx–nn |x|n–– –α

p . (.)

Ifm >  – –α
p , then ( – n–m+ n+α–

p )q + n–  < . We obtain, by Lemma (), (.) and
the Hölder inequality,

∣∣U(x)
∣∣ � |x|m

∫
G

∣∣y′∣∣–n–m+∣∣f (y′)∣∣dy′

� |x|m
(∫

G

|f (y′)|p
|y′|n+α– dy

′
) 

p
(∫

G

∣∣y′∣∣(–n–m++ n+α–
p )q dy′

) 
q

� ε|x|– –α
p . (.)

Finally, we shall estimate U(x). Take a sufficiently small positive number b such that
∂H[ |x|

 ,

 |x|]⊂ B(x, |x|

 ) for any x ∈ (b), where

(b) =
{
x ∈ H ; inf

y′∈∂H

∣∣∣∣ x
|x| –

y′

|y′|
∣∣∣∣ < b

}

and divide H into two sets (b) and H –(b).

http://www.journalofinequalitiesandapplications.com/content/2013/1/572


Ren and Yang Journal of Inequalities and Applications 2013, 2013:572 Page 8 of 10
http://www.journalofinequalitiesandapplications.com/content/2013/1/572

If x ∈ H – (b), then there exists a positive number b′ such that |x – y′| ≥ b′|x| for any
y′ ∈ ∂H , and hence

∣∣U(x)
∣∣� ∫

G

∣∣y′∣∣–n∣∣f (y′)∣∣dy′

� |x|m
∫
G

∣∣y′∣∣–n–m∣∣f (y′)∣∣dy′

� ε|x|– –α
p ,

which is similar to the estimate of U(x).
We shall consider the case x ∈ (b). Now put

Hi(x) =
{
y′ ∈ ∂H

[ |x|

,


|x|

]
; i–δ(x)≤ ∣∣x – y′∣∣ < iδ(x)

}
,

where δ(x) = infy′∈H |x – y′|.
Since ∂H ∩ {y′ ∈ Rn– : |x – y′| < δ(x)} =∅, we have

U(x) =
i(x)∑
i=

∫
Hi(x)

|g(y′)|
|x – y′|n– dy

′,

where i(x) is a positive integer satisfying i(x)–δ(x)≤ |x|
 < i(x)δ(x).

Similar to the estimate of U(x), we obtain

∫
Hi(x)

|g(y′)|
|x – y′|n– dy

′

�
∫
Hi(x)

|g(y′)|
{i–δ(x)}n– dy

′

� δ(x)
β–(n–)p

p

∫
Hi(x)

δ(x)
(n–)p–β

p –n+∣∣g(y′)∣∣dy′

� cos–
β
p θδ(x)

β–(n–)p
p

∫
Hi(x)

|x|– β
p
∣∣g(y′)∣∣dy′

� |x|n–– β
p cos–

β
p θδ(x)

β–(n–)p
p

∫
Hi(x)

∣∣y′∣∣–n∣∣g(y′)∣∣dy′

� |x|n–+ α–β–
p cos–

β
p θ

(
μ(Hi(x))

iδ(x)(n–)p–β

) 
p

for i = , , , . . . , i(x).
Since x /∈ E(ε;μ, (n – )p – β), we have

μ(Hi(x))
{iδ(x)}(n–)p–β

� μ(Bn–(x, iδ(x)))
{iδ(x)}(n–)p–β

�M
(
x;μ, (n – )p – β

)
� ε|x|β–(n–)p

for i = , , , . . . , i(x) –  and

μ(Hi(x)(x))
{iδ(x)}(n–)p–β

�
μ(Bn–(x, |x|

 ))
( |x|
 )(n–)p–β

� ε|x|β–(n–)p.
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Ren and Yang Journal of Inequalities and Applications 2013, 2013:572 Page 9 of 10
http://www.journalofinequalitiesandapplications.com/content/2013/1/572

So

∣∣U(x)
∣∣� ε|x|+ α–

p sec
β
p θ . (.)

Combining (.), (.)-(.), we obtain that if Rε is sufficiently large and ε is a sufficiently
small number, then Nm[f ](x) = o(|x|+ α–

p sec
β
p θ ) as |x| → ∞, where x ∈ H(Rε , +∞) –

E(ε;μ, (n–)p–β). Finally, there exists an additional finite ball B coveringH(,Rε], which
together with Lemma , gives the conclusion of Theorem .

4 Proof of Theorem 2
For any fixed x ∈ H , take a number R satisfying R >max{, |x|}. If m > –α

p , then ( – n –
m + n+α–

p )q + n –  < . By (.), Lemma () and the Hölder inequality, we have

∫
∂H(R,∞)

∣∣Kn,m
(
x, y′)∣∣∣∣f (y′)∣∣dy′

� |x|m
∫

∂H(R,∞)

∣∣y′∣∣–n–m∣∣f (y′)∣∣dy′

� |x|m
(∫

∂H(R,∞)

|f (y′)|p
|y′|n+α– dy

′
) 

p
(∫

∂H(R,∞)

∣∣y′∣∣(–n–m++ n+α–
p )q dy′

) 
q

< ∞.

Hence Nm[f ](x) is absolutely convergent and finite for any x ∈ H . Thus Nm[f ](x) is har-
monic on H .
To prove

lim
x→y′ ,x∈H

∂

∂xn
Nm[f ](x) = f

(
y′)

for any point y′ ∈ ∂H , we only need to apply Lemma  to f (y) and –f (y).
We complete the proof of Theorem .

5 Proof of Theorem 3
Consider the function h′(x) = h(x) –Nm[f ](x). Then it follows from Theorems  and  that
h′(x) is a solution of the Neumann problem on H with f and it is an even function of xn
(see [, p.]).
Since

 ≤ {
h –Nm[f ]

}+(x)≤ h+(x) +
{
Nm[f ]

}–(x)
for any x ∈H , and

lim|x|→∞,x∈HNm[f ](x) = o
(|x|+ α–

p
)

from Theorem .
Moreover, (.) gives that

lim|x|→∞,x∈H
(
h –Nm[f ]

)
(x) = o

(|x|l+[+ α–
p ]).

http://www.journalofinequalitiesandapplications.com/content/2013/1/572
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This implies that h′(x) is a polynomial of degree less than l+[+ α–
p ] (see [, Appendix]),

which gives the conclusion of Theorem  from Lemma .
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