Open Access

Growth estimates for modified Neumann integrals in a half-space

Yudong Ren^{1*} and Pai Yang²

*Correspondence: yudong83@163.com ¹Department of Mathematics and Information Science, Henan University of Economics and Law, Zhengzhou, 450002, P.R. China Full list of author information is available at the end of the article

Abstract

Our aim in this paper is to deal with the growth properties for modified Neumann integrals in a half-space of \mathbf{R}^n . As an application, the solutions of Neumann problems in it for a slowly growing continuous function are also given.

Keywords: Dirichlet problem; harmonic function; half-space

1 Introduction and main results

Let **R** and **R**₊ be the sets of all real numbers and of all positive real numbers, respectively. Let **R**^{*n*} ($n \ge 3$) denote the *n*-dimensional Euclidean space with points $x = (x', x_n)$, where $x' = (x_1, x_2, ..., x_{n-1}) \in \mathbf{R}^{n-1}$ and $x_n \in \mathbf{R}$. The boundary and closure of an open set Ω of **R**^{*n*} are denoted by $\partial \Omega$ and $\overline{\Omega}$, respectively. For $x \in \mathbf{R}^n$ and r > 0, let $B_n(x, r)$ denote the open ball with center at x and radius r in **R**^{*n*}.

The upper half-space is the set $H = \{(x', x_n) \in \mathbb{R}^n : x_n > 0\}$, whose boundary is ∂H . For a set $F, F \subset \mathbb{R}_+ \cup \{0\}$, we denote $\{x \in H; |x| \in F\}$ and $\{x \in \partial H; |x| \in F\}$ by HF and ∂HF , respectively. We identify \mathbb{R}^n with $\mathbb{R}^{n-1} \times \mathbb{R}$ and \mathbb{R}^{n-1} with $\mathbb{R}^{n-1} \times \{0\}$, writing typical points $x, y \in \mathbb{R}^n$ as $x = (x', x_n), y = (y', y_n)$, where $y' = (y_1, y_2, \dots, y_{n-1}) \in \mathbb{R}^{n-1}$. Let θ be the angle between x and \hat{e}_n , *i.e.*, $x_n = |x| \cos \theta$ and $0 \le \theta < \pi/2$, where \hat{e}_n is the *i*th unit coordinate vector and \hat{e}_n is normal to ∂H .

We shall say that a set $E \subset H$ has a covering $\{r_j, R_j\}$ if there exists a sequence of balls $\{B_j\}$ with centers in H such that $E \subset \bigcup_{j=0}^{\infty} B_j$, where r_j is the radius of B_j and R_j is the distance between the origin and the center of B_j .

For positive functions g_1 and g_2 , we say that $g_1 \leq g_2$ if $g_1 \leq Mg_2$ for some positive constant M. Throughout this paper, let M denote various constants independent of the variables in question. Further, we use the standard notations, [d] is the integer part of d and $d = [d] + \{d\}$, where d is a positive real number.

Given a continuous function f in ∂H , we say that h is a solution of the Neumann problem in H with f, if h is a harmonic function in H and

$$\lim_{x \in H, x \to y'} \frac{\partial}{\partial x_n} h(x) = f(y')$$

for every point $y' \in \partial H$.

For $x \in \mathbf{R}^n$ and $y' \in \mathbf{R}^{n-1}$, consider the kernel function

$$K_n(x,y') = -\frac{\beta_n}{|x-y'|^{n-2}},$$

©2013 Ren and Yang; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. where $\beta_n = 2/(n-2)\sigma_n$ and σ_n is the surface area of the *n*-dimensional unit sphere. It has the expression

$$K_n(x,y') = \sum_{k=0}^{\infty} \frac{|x|^k}{|y|^{n+k-2}} C_k^{\frac{n-2}{2}} \left(\frac{x \cdot y'}{|x||y'|}\right),$$

where $C_k^{\frac{n}{2}}(t)$ is the ultraspherical (Gegenbauer) polynomials [1]. The series converges for |y'| > |x|, and each term in it is a harmonic function of *x*.

The Neumann integral is defined by

$$N[f](x) = \int_{\partial H} K_n(x, y') f(y') \, dy',$$

where *f* is a continuous function on ∂H , $\alpha_n = 2/n\sigma_n$ and $\sigma_n = \pi^{\frac{n}{2}}/\Gamma(1+\frac{n}{2})$ is the volume of the unit *n*-ball.

The Neumann integral N[f](x) is a solution of the Neumann problem on H with f if (see [2, Theorem 1 and Remarks])

$$\int_{\partial H} \frac{f(y')}{(1+|y'|)^{n-2}}\,dy' < \infty$$

In this paper, we consider functions f satisfying

$$\int_{\partial H} \frac{|f(\mathbf{y}')|^p}{(1+|\mathbf{y}'|)^{n+\alpha-2}} \, d\mathbf{y}' < \infty \tag{1.1}$$

for $1 \leq p < \infty$ and $\alpha \in \mathbf{R}$.

For this *p* and α , we define the positive measure μ on **R**^{*n*} by

$$d\mu(y') = \begin{cases} |f(y')|^p |y'|^{-n-\alpha+2} \, dy', & y' \in \partial H(1,+\infty), \\ 0, & Q \in \mathbf{R}^n - \partial H(1,+\infty). \end{cases}$$

If *f* is a measurable function on ∂H satisfying (1.1), we remark that the total mass of μ is finite.

Let $\epsilon > 0$ and $\delta \ge 0$. For each $x \in \mathbf{R}^n$, the maximal function $M(x; \mu, \delta)$ is defined by

$$M(x;\mu,\delta) = \sup_{0<\rho<\frac{|x|}{2}}\frac{\mu(B_n(x,r))}{\rho^{\delta}}.$$

The set { $x \in \mathbf{R}^n$; $M(x; \mu, \delta) > \epsilon$ } is denoted by $E(\epsilon; \mu, \delta)$.

To obtain the Neumann solution for the boundary data f, as in [3–6], we use the following modified kernel function defined by

$$L_{n,m}(x,y') = \begin{cases} -\beta_n \sum_{k=0}^{m-1} \frac{|x|^k}{|y|^{n+k-2}} C_k^{\frac{n-2}{2}} (\frac{x \cdot y'}{|x||y'|}), & |y'| \ge 1 \ m \ge 1, \\ 0, & |y'| < 1 \ m \ge 1, \\ 0, & m = 0 \end{cases}$$

for a non-negative integer *m*.

For $x \in \mathbf{R}^n$ and $y' \in \mathbf{R}^{n-1}$, the generalized Neumann kernel is defined by

$$K_{n,m}(x,y') = K_n(x,y') - L_{n,m}(x,y') \quad (m \ge 0).$$

Since $|x|^k C_k^{\frac{n-2}{2}}(\frac{x \cdot y'}{|x||y'|})$ $(k \ge 0)$ is harmonic in H (see [4]), $K_{n,m}(\cdot, y')$ is also harmonic in H for any fixed $y' \in \partial H$. Also, $K_{n,m}(x, y')$ will be of order $|y'|^{-(n+m-2)}$ as $y' \to \infty$ (see [7, Theorem D]).

Put

$$N_m[f](x) = \int_{\partial H} K_{n,m}(x, y') f(y') \, dy',$$

where *f* is a continuous function on ∂H . Here, note that $N_0[f](x)$ is nothing but the Neumann integral N[f](x).

The following result is due to Siegel and Talvila (see [5, Corollary 2.1]). For similar results with respect to the Schrödinger operator in a half-space, we refer readers to papers by Su (see [8]).

Theorem A If *f* is a continuous function on ∂H satisfying (1.1) with p = 1 and $\alpha = m$, then

$$\lim_{|x|\to\infty,x\in H} N_m[f](x) = o(|x|^m \sec^{n-2}\theta).$$
(1.2)

The next result deals with a type of uniqueness of solutions for the Neumann problem on *H* (see [9, Theorem 3]).

Theorem B Let *l* be a positive integer and *m* be a non-negative integer. If *f* is a continuous function on ∂H satisfying

$$\int_{\partial H} \frac{|f(y')|}{(1+|y'|)^{n+m-2}} \, dy' < \infty,$$

and h is a solution of the Neumann problem on H with f such that

$$\lim_{|x|\to\infty,x\in H}h^+(x)=o\bigl(|x|^{l+m}\bigr),$$

then

$$h(x) = N_m[f](x) + \Pi(x') + \sum_{j=1}^{\left\lfloor \frac{l+m}{2} \right\rfloor} \frac{(-1)^j}{(2j)!} x_n^{2j} \Delta^j \Pi(x')$$

for any $x = (x', x_n) \in H$, where $h^+(x)$ is the positive part of h,

$$\Delta^{j} = \left(\frac{\partial^{2}}{\partial x_{1}^{2}} + \frac{\partial^{2}}{\partial x_{2}^{2}} + \dots + \frac{\partial^{2}}{\partial x_{n-1}^{2}}\right) \quad (j = 1, 2 \dots)$$

and $\Pi(x')$ is a polynomial of $x' \in \mathbf{R}^{n-1}$ of degree less than l + m.

Our first aim is to be concerned with the growth property of $N_m[f]$ at infinity and establish the following theorem.

Theorem 1 Let $1 \le p < \infty$, $0 \le \beta \le (n-2)p$, $n + \alpha - 2 > -(n-1)(p-1)$ and

$$\begin{split} &1-\frac{1-\alpha}{p} < m < 2-\frac{1-\alpha}{p} \quad if \ p > 1, \\ &\alpha \leq m < \alpha+1 \quad if \ p = 1. \end{split}$$

If f is a measurable function on ∂ satisfying (1.1), then there exists a covering $\{r_j, R_j\}$ of $E(\epsilon; \mu, (n-2)p - \beta) (\subset H)$ satisfying

$$\sum_{j=0}^{\infty} \left(\frac{r_j}{R_j}\right)^{(n-2)p-\beta} < \infty$$
(1.3)

such that

$$\lim_{|x|\to\infty,x\in H-E(\epsilon;\mu,(n-2)p-\beta)} N_m[f](x) = o\left(|x|^{1+\frac{\alpha-1}{p}}\sec^{\frac{\beta}{p}}\theta\right).$$
(1.4)

Corollary 1 *Let* $1 , <math>n + \alpha - 2 > -(n - 1)(p - 1)$ *and*

$$1-\frac{1-\alpha}{p} < m < 2-\frac{1-\alpha}{p}.$$

If f is a measurable function on ∂H satisfying (1.1), then

$$\lim_{|x|\to\infty,x\in H} N_m[f](x) = o\left(|x|^{1+\frac{\alpha-1}{p}}\sec^{n-2}\theta\right).$$
(1.5)

As an application of Theorem 1, we now show the solution of the Neumann problem with continuous data on *H*.

Theorem 2 Let p, β , α and m be defined as in Theorem 1. If f is a continuous function on ∂H satisfying (1.1), then the function $N_m[f]$ is a solution of the Neumann problem on Hwith f and (1.4) holds, where the exceptional set $E(\epsilon; \mu, (n-2)p - \beta) (\subset H)$ has a covering $\{r_j, R_j\}$ satisfying (1.3).

Remark In the case p = 1, $\alpha = m$ and $\beta = n - 2$, then (1.3) is a finite sum and the set $E(\epsilon; \mu, 0)$ is a bounded set. So (1.4) holds in *H*. That is to say, (1.2) holds. This is just the result of Theorem A.

Corollary 2 *Let* $1 \le p < \infty$, $n + \alpha - 2 > -(n - 1)(p - 1)$ *and*

$$\begin{aligned} 1 &- \frac{1-\alpha}{p} < m < 2 - \frac{1-\alpha}{p} \quad if \ p > 1, \\ \alpha &\leq m < \alpha + 1 \quad if \ p = 1. \end{aligned}$$

If f is a continuous function on ∂H satisfying (1.1), then the function $N_m[f]$ is a solution of the Neumann problem on H with f and (1.5) holds.

The following result extends Theorem B, which is our result in the case p = 1 and $\alpha = m$.

Theorem 3 Let $1 \le p < \infty$, $\alpha > 1 - p$, *l* be a positive integer and

$$1 - \frac{1 - \alpha}{p} < m < 2 - \frac{1 - \alpha}{p} \quad if p > 1,$$

$$\alpha \le m < \alpha + 1 \quad if p = 1.$$

If f is a continuous function on ∂H satisfying (1.1) and h is a solution of the Neumann problem on H with f such that

$$\lim_{|x| \to \infty, x \in H} h^+(x) = o(|x|^{l+[1+\frac{\alpha-1}{p}]}),$$
(1.6)

then

$$h(x) = N_m[f](x) + \Pi(x') + \sum_{j=1}^{\left[\frac{l+\left[1+\frac{q-1}{p}\right]}{2}\right]} \frac{(-1)^j}{(2j)!} x_n^{2j} \Delta^j \Pi(x')$$
(1.7)

for any $x = (x', x_n) \in H$ and $\Pi(x')$ is a polynomial of $x' \in \mathbb{R}^{n-1}$ of degree less than $l + [1 + \frac{\alpha-1}{p}]$.

2 Lemmas

In our discussions, the following estimates for the kernel function $K_{n,m}(x, y')$ are fundamental (see [10, Lemma 4.2] and [4, Lemmas 2.1 and 2.4]).

Lemma 1

- (1) If $1 \le |y'| \le \frac{|x|}{2}$, then $|K_{n,m}(x,y')| \le |x|^{m-1}|y'|^{-n-m+3}$. (2) If $\frac{|x|}{2} < |y'| \le \frac{3}{2}|x|$, then $|K_{n,m}(x,y')| \le |x-y'|^{2-n}$. (3) If $\frac{3}{2}|x| < |y'| \le 2|x|$, then $|K_{n,m}(x,y')| \le x_n^{2-n}$.
- (4) If $|y'| \ge 2|x|$ and $|y'| \ge 1$, then $|K_{n,m}(x,y')| \lesssim |x|^m |y'|^{2-n-m}$.

The following lemma is due to Qiao (see [4]).

Lemma 2 If $\epsilon > 0$, $\eta \ge 0$ and λ is a positive measure in \mathbb{R}^n satisfying $\lambda(\mathbb{R}^n) < \infty$, then $E(\epsilon; \lambda, \eta)$ has a covering $\{r_i, R_i\}$ (j = 1, 2, ...) such that

$$\sum_{j=1}^{\infty} \left(\frac{r_j}{R_j}\right)^{\eta} < \infty.$$

Lemma 3 ([9, Lemma 4]) Let p, β , α and m be defined as in Theorem 1. If f is a locally integral and upper semi-continuous function on ∂H satisfying (1.1), then

$$\limsup_{x \in H, x \to y'} \frac{\partial}{\partial x_n} N_m[f](x) \le f(y')$$

for any fixed $y' \in \partial H$.

Lemma 4 ([2, Lemma 1]) If h(x) is a harmonic polynomial of $x = (x', x_n) \in H$ of degree m and $\partial h/\partial x_n$ vanishes on ∂H , then there exists a polynomial $\Pi(x')$ of degree m such that

$$h(x) = \begin{cases} \Pi(x') + \sum_{j=1}^{\left\lfloor \frac{m}{2} \right\rfloor} \frac{(-1)^j}{(2j)!} x_n^{2j} \Delta^j \Pi(x'), & m \ge 2, \\ \Pi(x'), & m = 0, 1. \end{cases}$$

3 Proof of Theorem 1

For any $\epsilon > 0$, there exists $R_{\epsilon} > 1$ such that

$$\int_{\partial H(R_{\epsilon},\infty)} \frac{|f(y')|^p}{(1+|y'|)^{n+\alpha-2}} \, dy' < \epsilon.$$
(3.1)

Take any point $x \in H(R_{\epsilon}, \infty) - E(\epsilon; \mu, (n-2)p - \beta)$ such that $|x| > 2R_{\epsilon}$, and write

$$\begin{split} N_m[f](x) &= \left(\int_{G_1} + \int_{G_2} + \int_{G_3} + \int_{G_4} + \int_{G_5}\right) K_{n,m}(x,y') f(y') \, dy \\ &= U_1(x) + U_2(x) + U_3(x) + U_4(x) + U_5(x), \end{split}$$

where

$$G_{1} = \left\{ y' \in \partial H : |y'| \le 1 \right\}, \qquad G_{2} = \left\{ y' \in \partial H : 1 < |y'| \le \frac{|x|}{2} \right\},$$

$$G_{3} = \left\{ y' \in \partial H : \frac{|x|}{2} < |y'| \le \frac{3}{2} |x| \right\}, \qquad G_{4} = \left\{ y' \in \partial H : \frac{3}{2} |x| < |y'| \le 2|x| \right\}$$

$$G_{5} = \left\{ y' \in \partial H : |y'| \ge 2|x| \right\}.$$

First note that

$$egin{aligned} ig| U_1(x) ig| \lesssim & \int_{G_1} rac{|f(y')|}{|x-y'|^{n-2}} \, dy' \ \lesssim & |x|^{2-n} \int_{G_1} ig| fig(y') ig| \, dy', \end{aligned}$$

so that

$$\lim_{|x| \to \infty, x \in H} |x|^{-1 + \frac{1-\alpha}{p}} U_1(x) = 0.$$
(3.2)

If $m < 2 - \frac{1-\alpha}{p}$ and $\frac{1}{p} + \frac{1}{q} = 1$, then $(3 - n - m + \frac{n+\alpha-2}{p})q + n - 1 > 0$. By Lemma 1(1), (3.1) and the Hölder inequality, we have

$$\begin{aligned} \left| U_{2}(x) \right| \lesssim \left| x \right|^{m-1} \int_{G_{2}} \left| y' \right|^{-n-m+3} \left| f(y') \right| dy' \\ \lesssim \left| x \right|^{m-1} \left(\int_{G_{2}} \frac{\left| f(y') \right|^{p}}{\left| y' \right|^{n+\alpha-2}} dy' \right)^{\frac{1}{p}} \left(\int_{G_{2}} \left| y' \right|^{(-n-m+3+\frac{n+\alpha-2}{p})q} dy' \right)^{\frac{1}{q}} \\ \lesssim \left| x \right|^{1-\frac{1-\alpha}{p}} \left(\int_{G_{2}} \frac{\left| f(y') \right|^{p}}{\left| y' \right|^{n+\alpha-2}} dy' \right)^{\frac{1}{p}}. \end{aligned}$$
(3.3)

Put

$$U_2(x) = U_{21}(x) + U_{22}(x),$$

where

$$\begin{aligned} \mathcal{U}_{21}(x) &= \int_{G_2 \cap B_{n-1}(R_\epsilon)} K_{n,m}(x,y') f(y') \, dy', \\ \mathcal{U}_{22}(x) &= \int_{G_2 \setminus B_{n-1}(R_\epsilon)} K_{n,m}(x,y') f(y') \, dy'. \end{aligned}$$

If $|x| \ge 2R_{\epsilon}$, then

$$|U_{21}(x)| \lesssim R_{\epsilon}^{2-m-\frac{1-\alpha}{p}}|x|^{m-1}.$$

Moreover, by (3.1) and (3.3), we get

$$\left| U_{22}(x) \right| \lesssim \epsilon \left| x \right|^{1 - \frac{1 - \alpha}{p}}.$$

That is,

$$\left| U_2(x) \right| \lesssim \epsilon \left| x \right|^{1 - \frac{1 - \alpha}{p}}.$$
(3.4)

By Lemma 1(3), (3.1) and the Hölder inequality, we have

$$\left| U_4(x) \right| \lesssim \epsilon x_n^{2-n} |x|^{n-1-\frac{1-\alpha}{p}}.$$
(3.5)

If $m > 1 - \frac{1-\alpha}{p}$, then $(2 - n - m + \frac{n+\alpha-2}{p})q + n - 1 < 0$. We obtain, by Lemma 1(4), (3.1) and the Hölder inequality,

$$\begin{aligned} \left| U_{5}(x) \right| &\lesssim |x|^{m} \int_{G_{5}} \left| y' \right|^{-n-m+2} \left| f(y') \right| dy' \\ &\lesssim |x|^{m} \left(\int_{G_{5}} \frac{|f(y')|^{p}}{|y'|^{n+\alpha-2}} dy' \right)^{\frac{1}{p}} \left(\int_{G_{5}} \left| y' \right|^{(-n-m+2+\frac{n+\alpha-2}{p})q} dy' \right)^{\frac{1}{q}} \\ &\lesssim \epsilon |x|^{1-\frac{1-\alpha}{p}}. \end{aligned}$$
(3.6)

Finally, we shall estimate $U_3(x)$. Take a sufficiently small positive number *b* such that $\partial H[\frac{|x|}{2}, \frac{3}{2}|x|] \subset B(x, \frac{|x|}{2})$ for any $x \in \Pi(b)$, where

$$\Pi(b) = \left\{ x \in H; \inf_{y' \in \partial H} \left| \frac{x}{|x|} - \frac{y'}{|y'|} \right| < b \right\}$$

and divide *H* into two sets $\Pi(b)$ and $H - \Pi(b)$.

If $x \in H - \Pi(b)$, then there exists a positive number b' such that $|x - y'| \ge b'|x|$ for any $y' \in \partial H$, and hence

$$egin{aligned} &|U_3(x)|\lesssim \int_{G_3} \left|y'
ight|^{2-n}ig|fig(y'ig)ig|\,dy'\ &\lesssim |x|^m\int_{G_3}ig|y'ig|^{2-n-m}ig|fig(y'ig)ig|\,dy'\ &\lesssim \epsilon |x|^{1-rac{1-lpha}{p}}, \end{aligned}$$

which is similar to the estimate of $U_5(x)$.

We shall consider the case $x \in \Pi(b)$. Now put

$$H_i(x) = \left\{ y' \in \partial H\left[\frac{|x|}{2}, \frac{3}{2}|x|\right]; 2^{i-1}\delta(x) \leq \left|x - y'\right| < 2^i\delta(x) \right\},$$

where $\delta(x) = \inf_{y' \in H} |x - y'|$.

Since $\partial H \cap \{y' \in \mathbf{R}^{n-1} : |x - y'| < \delta(x)\} = \emptyset$, we have

$$U_3(x) = \sum_{i=1}^{i(x)} \int_{H_i(x)} \frac{|g(y')|}{|x - y'|^{n-2}} \, dy',$$

where i(x) is a positive integer satisfying $2^{i(x)-1}\delta(x) \le \frac{|x|}{2} < 2^{i(x)}\delta(x)$. Similar to the estimate of $U_5(x)$, we obtain

$$\begin{split} &\int_{H_{i}(x)} \frac{|g(y')|}{|x - y'|^{n-2}} \, dy' \\ &\lesssim \int_{H_{i}(x)} \frac{|g(y')|}{\{2^{i-1}\delta(x)\}^{n-2}} \, dy' \\ &\lesssim \delta(x)^{\frac{\beta - (n-2)p}{p}} \int_{H_{i}(x)} \delta(x)^{\frac{(n-2)p - \beta}{p} - n+2} |g(y')| \, dy' \\ &\lesssim \cos^{-\frac{\beta}{p}} \theta \delta(x)^{\frac{\beta - (n-2)p}{p}} \int_{H_{i}(x)} |x|^{-\frac{\beta}{p}} |g(y')| \, dy' \\ &\lesssim |x|^{n-2 - \frac{\beta}{p}} \cos^{-\frac{\beta}{p}} \theta \delta(x)^{\frac{\beta - (n-2)p}{p}} \int_{H_{i}(x)} |y'|^{2-n} |g(y')| \, dy' \\ &\lesssim |x|^{n-1 + \frac{\alpha - \beta - 1}{p}} \cos^{-\frac{\beta}{p}} \theta \left(\frac{\mu(H_{i}(x))}{2^{i}\delta(x)^{(n-2)p - \beta}}\right)^{\frac{1}{p}} \end{split}$$

for i = 0, 1, 2, ..., i(x).

Since $x \notin E(\epsilon; \mu, (n-2)p - \beta)$, we have

$$\frac{\mu(H_i(x))}{\{2^i\delta(x)\}^{(n-2)p-\beta}} \lesssim \frac{\mu(B_{n-1}(x,2^i\delta(x)))}{\{2^i\delta(x)\}^{(n-2)p-\beta}} \lesssim M\big(x;\mu,(n-2)p-\beta\big) \lesssim \epsilon |x|^{\beta-(n-2)p}$$

for $i = 0, 1, 2, \dots, i(x) - 1$ and

$$\frac{\mu(H_{i(x)}(x))}{\{2^i\delta(x)\}^{(n-2)p-\beta}}\lesssim \frac{\mu(B_{n-1}(x,\frac{|x|}{2}))}{(\frac{|x|}{2})^{(n-2)p-\beta}}\lesssim \epsilon |x|^{\beta-(n-2)p}.$$

So

$$|U_3(x)| \lesssim \epsilon |x|^{1+\frac{\alpha-1}{p}} \sec^{\frac{\beta}{p}} \theta.$$
(3.7)

Combining (3.2), (3.4)-(3.7), we obtain that if R_{ϵ} is sufficiently large and ϵ is a sufficiently small number, then $N_m[f](x) = o(|x|^{1+\frac{\alpha-1}{p}} \sec^{\frac{\beta}{p}} \theta)$ as $|x| \to \infty$, where $x \in H(R_{\epsilon}, +\infty) - E(\epsilon; \mu, (n-2)p - \beta)$. Finally, there exists an additional finite ball B_0 covering $H(0, R_{\epsilon}]$, which together with Lemma 2, gives the conclusion of Theorem 1.

4 Proof of Theorem 2

For any fixed $x \in H$, take a number R satisfying $R > \max\{1, 2|x|\}$. If $m > \frac{1-\alpha}{p}$, then $(2 - n - m + \frac{n+\alpha-2}{p})q + n - 1 < 0$. By (1.1), Lemma 1(4) and the Hölder inequality, we have

$$\begin{split} &\int_{\partial H(R,\infty)} \left| K_{n,m}(x,y') \right| \left| f(y') \right| dy' \\ &\lesssim \left| x \right|^m \int_{\partial H(R,\infty)} \left| y' \right|^{2-n-m} \left| f(y') \right| dy' \\ &\lesssim \left| x \right|^m \left(\int_{\partial H(R,\infty)} \frac{\left| f(y') \right|^p}{\left| y' \right|^{n+\alpha-2}} dy' \right)^{\frac{1}{p}} \left(\int_{\partial H(R,\infty)} \left| y' \right|^{(-n-m+2+\frac{n+\alpha-2}{p})q} dy' \right)^{\frac{1}{q}} \\ &< \infty. \end{split}$$

Hence $N_m[f](x)$ is absolutely convergent and finite for any $x \in H$. Thus $N_m[f](x)$ is harmonic on H.

To prove

$$\lim_{x \to y', x \in H} \frac{\partial}{\partial x_n} N_m[f](x) = f(y')$$

for any point $y' \in \partial H$, we only need to apply Lemma 3 to f(y) and -f(y).

We complete the proof of Theorem 2.

5 Proof of Theorem 3

Consider the function $h'(x) = h(x) - N_m[f](x)$. Then it follows from Theorems 2 and 3 that h'(x) is a solution of the Neumann problem on H with f and it is an even function of x_n (see [2, p.92]).

Since

$$0 \le \{h - N_m[f]\}^+(x) \le h^+(x) + \{N_m[f]\}^-(x)$$

for any $x \in H$, and

$$\lim_{|x|\to\infty,x\in H} N_m[f](x) = o\left(|x|^{1+\frac{\alpha-1}{p}}\right)$$

from Theorem 2.

Moreover, (1.6) gives that

$$\lim_{|x|\to\infty,x\in H} (h-N_m[f])(x) = o(|x|^{l+[1+\frac{\alpha-1}{p}]}).$$

This implies that h'(x) is a polynomial of degree less than $l + [1 + \frac{\alpha - 1}{p}]$ (see [11, Appendix]), which gives the conclusion of Theorem 3 from Lemma 4.

Competing interests

The authors declare that there is no conflict of interests regarding the publication of this article.

Authors' contributions

All authors contributed equally to the manuscript and read and approved the final manuscript.

Author details

¹Department of Mathematics and Information Science, Henan University of Economics and Law, Zhengzhou, 450002, P.R. China. ²College of Applied Mathematics, Chengdu University of Information Technology, Chengdu, 610225, P.R. China.

Acknowledgements

The authors are thankful to the referees for their helpful suggestions and necessary corrections in the completion of this paper.

Received: 13 August 2013 Accepted: 23 October 2013 Published: 04 Dec 2013

References

- 1. Szegö, G: Orthogonal Polynomials. American Mathematical Society: Colloquium Publications, vol. 23. Am. Math. Soc., Providence (1975)
- 2. Armitage, DH: The Neumann problem for a function in $\mathbf{R}^n \times (0, \infty)$. Arch. Ration. Mech. Anal. **63**, 89-105 (1976)
- Huang, JJ, Qiao, L: The Dirichlet problem on the upper half-space. Abstr. Appl. Anal. 2012, Article ID 203096 (2012)
 Qiao, L: Modified Poisson integral and Green potential on a half-space. Abstr. Appl. Anal. 2012, Article ID 765965 (2012)
- Siegel, D, Talvila, E: Sharp growth estimates for modified Poisson integrals in a half space. Potential Anal. 15(4), 333-360 (2001)
- Qiao, L, Deng, GT: Growth estimates for modified Green potentials in the upper-half space. Bull. Sci. Math. 135, 279-290 (2011)
- 7. Armitage, DH: On harmonic polynomials. Proc. Lond. Math. Soc. 38, 53-71 (1979)
- 8. Su, BY: Dirichlet problem for the Schrödinger operator in a half space. Abstr. Appl. Anal. 2012, Article ID 578197 (2012)
- 9. Su, BY: Growth properties of harmonic functions in the upper half space. Acta Math. Sin. 55(6), 1095-1100 (2012) (in Chinese)
- 10. Hayman, WK, Kennedy, PB: Subharmonic Functions, vol. 1. Academic Press, London (1976)
- 11. Brelot, M: Éléments de la théorie classique du potential, pp. 53-71. Centre de Documentation Universitaire, Paris (1965)

10.1186/1029-242X-2013-572

Cite this article as: Ren and Yang: Growth estimates for modified Neumann integrals in a half-space. Journal of Inequalities and Applications 2013, 2013:572

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com