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Abstract
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estimates for arbitrary Jordan domains.
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1 Introduction andmain results
Let G ⊂ C be a finite region, with  ∈ G, bounded by a Jordan curve L := ∂G, � := {w :
|w| > }, � := extG (with respect to C). Let w = �(z) be the univalent conformal mapping
of � onto the � normalized by �(∞) = ∞, �′(∞) > , and � := �–.
Let ℘n denote the class of arbitrary algebraic polynomials Pn(z) of degree at most n ∈N.
Let Ap(G), p > , denote the class of functions f which are analytic in G and satisfy the

condition

‖f ‖Ap(G) :=
(∫∫

G

∣∣f (z)∣∣p dσz

)/p

< ∞,

where σ denotes a two-dimensional Lebesgue measure.
When L is rectifiable, letLp(L), p > , denote the class of functions f which are integrable

on L and satisfy the condition

‖f ‖Lp(L) :=
(∫

L

∣∣f (z)∣∣p|dz|
)/p

<∞.

From the well-known Bernstein-Walsh lemma [, p.], we see that

∣∣Pn(z)
∣∣ ≤ ∣∣�(z)

∣∣n‖Pn‖C(G), z ∈ �. (.)

For R > , let us set LR := {z : |�(z)| = R}, GR := intLR, �R := extLR. Then (.) can be
written as follows:

‖Pn‖C(GR) ≤ Rn‖Pn‖C(G). (.)

Hence, setting R =  + 
n , according to (.), we see that the C-norm of a polynomial Pn(z)

in GR andG is equivalent, i.e., the norm ‖Pn‖C(GR) increases with no more than a constant
with respect to ‖Pn‖C(G).
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In the case when L is rectifiable, a similar estimate of (.) type in space Lp(L) was ob-
tained in [] as follows:

‖Pn‖Lp(LR) ≤ Rn+ 
p ‖Pn‖Lp(L), p > . (.)

The Berstein-Walsh type estimation for regions with quasiconformal boundary [, p.]
in the space Ap(G), p > , is contained in []:

‖Pn‖Ap(GR)
≤ cR∗n+


p ‖Pn‖Ap(G)

, p > , (.)

where R∗ :=  + c(R – ) and c > , c = c(c,p,G) >  are constants. Therefore, if we
choose R =  + c

n , then (.) we can see that the Ap-norm of polynomials Pn(z) in GR and
G is equivalent.
In thiswork, we study a problem similar to (.) inAp(G), p > , for regionswith arbitrary

Jordan boundary.
Now we can state our new result.

Theorem . Let p > ; G be a Jordan region. Then, for any Pn ∈ ℘n, R =  + 
n and arbi-

trary R, R > R, we have

‖Pn‖Ap(GR)
≤ cR

n+ 
p ‖Pn‖Ap(GR )

, (.)

where c = ( 
ep– )


p [ +O( n )], n→ ∞.

The sharpness of (.) can be seen from the following remark:

Remark . For any n = , , . . . , there exist a polynomial P∗
n ∈ ℘n, region G∗ ⊂ C and

number R > R =  + 
n such that

∥∥P∗
n
∥∥
Ap(G∗

R)
≥

(


ep – 

) 
p
R

n+ 
p ∥∥P∗

n
∥∥
Ap(G∗

R
)
. (.)

2 Some auxiliary results
LetG ⊂C be a finite region bounded by the Jordan curve L. Let LR := {z : |�(z)| = R,R > },
Gt := intLt , �t := extLt .
We note that, throughout this paper, c, c, . . . (in general, different in different relations)

are positive constants.

Lemma . Let p > ; f be an analytic function in |z| >  and have a pole of degree at most
n, n ≥  at z =∞. Then, for any R and R > R, we have

‖f ‖Ap(R<|z|<R) ≤
(
Rnp+ – Rnp+



Rnp+
 – 

) 
p
‖f ‖Ap(<|z|<R). (.)

Proof The function g(z) := f (z)
zn is analytic in |z| >  and continuous in |z| ≥ . Applying

Hardy’s convexity theorem [, p.: Th..], for any arbitrary R and R (R > R), and ρ , s
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such that R ≤ ρ < R,  < s≤ R, we can write

∫
|z|=ρ

∣∣∣∣ f (z)
zn+


p

∣∣∣∣
p

|dz| ≤
∫

|z|=R

∣∣∣∣ f (z)
zn+


p

∣∣∣∣
p

|dz|, (.)

∫
|z|=R

∣∣∣∣ f (z)
zn+


p

∣∣∣∣
p

|dz| ≤
∫

|z|=s

∣∣∣∣ f (z)
zn+


p

∣∣∣∣
p

|dz|, (.)

respectively. Thus,

∫
|z|=ρ

∣∣f (z)∣∣p|dz| ≤ ρnp+
∫

|z|=R

∣∣∣∣ f (z)
zn+


p

∣∣∣∣
p

|dz|, (.)

snp+
∫

|z|=R

∣∣∣∣ f (z)
zn+


p

∣∣∣∣
p

|dz| ≤
∫

|z|=s

∣∣f (z)∣∣p|dz|. (.)

Integrating (.) over ρ from R to R, and (.) over s from  to R, we get

∫ R

R

∫
|z|=ρ

∣∣f (z)∣∣p|dz|dρ ≤ 
np + 

(
Rnp+ – Rnp+


)∫

|z|=R

∣∣∣∣ f (z)
zn+


p

∣∣∣∣
p

|dz|,


np + 

(
Rnp+
 – 

)∫
|z|=R

∣∣∣∣ f (z)
zn+


p

∣∣∣∣
p

|dz| ≤
∫ R



∫
|z|=s

∣∣f (z)∣∣p|dz|ds.

After calculation we have

∫∫
R<|z|<R

∣∣f (z)∣∣p dσz ≤ Rnp+ – Rnp+


Rnp+
 – 

∫∫
<|z|<R

∣∣f (z)∣∣p dσz, (.)

and we see that (.) is true. �

Corollary . Under the assumptions of Lemma . for R =  + 
n , we have

‖f ‖Ap(R<|z|<R) ≤ cRn+ 
p ‖f ‖Ap(<|z|<R), (.)

where c := c(p,n) = ( 
ep– )


p [ +O( n )], n→ ∞.

Proof Let us put

Sp := Sp(R,R,n,p) :=
Rnp+ – Rnp+



Rnp+
 – 

= Rnp+ ·  – (RR )
np+

Rnp+
 – 

,

and taking R =  + 
n , we have

Sp = Rnp+ ·  – (RR )
np+

( + 
n )np+ – 

≤ Rnp+

( + 
n )np+ – 

. (.)

According to the right-hand side of the well-known estimation (see, for example, [, p.
(Problem )])

e
n + 

< e –
(
 +


n

)n

<
e

n + 
, n = , , . . . , (.)
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we have

(
 +


n

)np+

≥
(
 +


n

)np

≥
(
e –

e
n + 

)p

= ep ·
(
 –


n + 

)p

≥ (εn · e)p,

where




≤ εn :=  –


n + 
→ , n→ ∞. (.)

Therefore

Sp ≤ 
(εne)p – 

Rnp+ = Rnp+ 
ep – 

[
 +O

(

n

)]
, n → ∞. (.)

From (.) and (.) we complete the proof. �

Remark . For the polynomial Qn(z) = zn, R =  + 
n and any R > R,

‖Qn‖Ap(R<|z|<R) ≥ cRn+ 
p ‖Qn‖Ap(<|z|<R), (.)

where c := c(p,n) := ( 
ep– )


p [ –O( n )], n→ ∞.

Proof Really, from (.) we get

Sp = Rnp+ ·  – (RR )
np+

( + 
n )np+ – 

= Rnp+ ·  – δn

( + 
n )np+ – 

, (.)

where

δn :=
(
R

R

)np+

→ , n→ ∞. (.)

According to the left-hand side of (.), we obtain

(
 +


n

)np+

=
(
 +


n

)np(
 +


n

)

≤
(
e –

e
n + 

)p

ηn

= ep ·
(
 –


n + 

)p

ηn ≤ ep · ηn,

where

ηn :=
(
 +


n

)

→ , n→ ∞.

Therefore,

Sp ≥ Rnp+ ·  – δn

ηnep – 

= Rnp+ ·
[


ηnep – 

–
δn

ηnep – 

]
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= Rnp+ ·
{


ep – 

[
 –O

(

n

)]
–O(δn)

}

= Rnp+ · 
ep – 

[
 –O

(

n

)]
, n → ∞. �

Corollary . For f ≡ Pn, we have

‖Pn‖Ap(|z|<R) ≤ cRn+ 
p ‖Pn‖Ap(|z|<R),

where c := c(p,n) := ( 
ep– )


p [ +O( n )], n→ ∞.

Proof Really, (.) implies, for any f ≡ Pn,

‖Pn‖pAp(R<|z|<R) ≤ Sp · ‖Pn‖pAp(<|z|<R).

Adding ‖Pn‖pAp(|z|<R) to the both sides, we obtain

‖Pn‖pAp(|z|<R) ≤ Sp · ‖Pn‖pAp(<|z|<R) + ‖Pn‖pAp(|z|<R)

≤ max
{
Sp, 

} · ‖Pn‖pAp(|z|<R).

Passing to the limit as R =  + 
n → , from (.) we obtain

‖Pn‖pAp(|z|<R) ≤


ep – 

[
 +O

(

n

)]
· Rnp+‖Pn‖pAp(|z|<R). �

3 Proof of the theorem

Proof First of all, let us convince ourselves that for the proof of (.) it is sufficient to show
the fulfilment of estimation

‖Pn‖Ap(GR\GR ) ≤ cRn+ 
p ‖Pn‖Ap(GR\G) (.)

for some constant c = c(p,R) >  independent of R and n. Really, let (.) be true. Then

‖Pn‖pAp(GR\GR )
≤ cpRnp+‖Pn‖pAp(GR\G). (.)

Now, we will add to both sides ‖Pn‖pAp(GR )
:

‖Pn‖pAp(GR) ≤ cpRnp+‖Pn‖pAp(GR\G) + ‖Pn‖pAp(GR )

≤ cpRnp+‖Pn‖pAp(GR\G) + cpRnp+‖Pn‖pAp(GR )

= cpRnp+‖Pn‖pAp(GR )
. (.)

Therefore,

‖Pn‖Ap(GR) ≤ 

p cRn+ 

p ‖Pn‖Ap(GR ).
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Now, let us make a proof of (.).
For the p > , let us set

fn(w) := Pn
(
�(w)

)[
� ′(w)

] 
p , w =�(z).

The function fn is analytic in� and has a pole of degree at most n at w =∞. Then, accord-
ing to Lemma ., we have

‖fn‖pAp(R<|w|<R) ≤ S(R,R,n,p)‖fn‖pAp(<|w|<R),

where

Sp :=
Rnp+ – Rnp+



Rnp+
 – 

= Rnp+ ·  – (RR )
np+

Rnp+
 – 

.

Then

∫∫
GR\GR

∣∣Pn(z)
∣∣p dσz =

∫∫
R<|w|<R

∣∣fn(w)∣∣p dσw

≤ Sp
∫∫

<|w|<R

∣∣fn(w)∣∣p dσw

≤ Rnp+ · 
Rnp+
 – 

∫∫
GR\G

∣∣Pn(z)
∣∣p dσz.

Therefore,

∫∫
GR

∣∣Pn(z)
∣∣p dσz ≤ Rnp+ · 

Rnp+
 – 

∫∫
GR

∣∣Pn(z)
∣∣p dσz. (.)

Taking R =  + 
n , from (.) and (.) we get


Rnp+
 – 

=


ep – 

[
 +O

(

n

)]
, n→ ∞. (.)

Now, from (.) and (.) we complete the proof. �

3.1 Proof of the remark

Proof Let P∗
n = zn, G∗ = B := {z : |z| < } and R ≤ ep

ep– . Then

∥∥P∗
n
∥∥p

Ap(G∗
R)
=

∫∫
|z|<R

∣∣zn∣∣p dσz

= Rnp+ · R–(np+)


∥∥P∗
n
∥∥p

Ap(G∗
R

)

=
R

R
 · Rnp


· Rnp+∥∥P∗

n
∥∥p

Ap(G∗
R

)
. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/570
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For R =  + 
n , from (.) we obtain

(
 +


n

)np

≤
(
e –

e
n + 

)p

≤ ep,

(
 +


n

)

≤ .

Then

R
Rnp+


≥ R
ep

and

∥∥P∗
n
∥∥p

Ap(G∗
R)

≥ R
ep

· Rnp+∥∥P∗
n
∥∥p

Ap(G∗
R

)
.

In particular, for R = ep
ep– we have

∥∥P∗
n
∥∥p

Ap(G∗
R)

≥ 
ep – 

· Rnp+∥∥P∗
n
∥∥p

Ap(G∗
R

)
. �
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