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1 Introduction
The abstract characterization given for linear spaces of bounded Hilbert space operators
in terms ofmatricially normed spaces [] implies that quotients, mapping spaces and var-
ious tensor products of operator spaces may again be regarded as operator spaces. The
proof given in [] appealed to the theory of ordered operator spaces []. Effros and Ruan
[] showed that one can give a purely metric proof of this important theorem by using a
technique of Pisier [] andHaagerup []. The theory of operator spaces has an increasingly
significant effect on operator algebra theory (see [, ]).
The stability problem of functional equations originated from a question of Ulam []

concerning the stability of group homomorphisms. The functional equation

f (x + y) = f (x) + f (y)

is called the Cauchy additive functional equation. In particular, every solution of the
Cauchy additive functional equation is said to be an additive mapping. Hyers [] gave the
first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ theorem
was generalized by Aoki [] for additive mappings and by Rassias [] for linear mappings
by considering an unbounded Cauchy difference. A generalization of the Rassias theorem
was obtained by Găvruta [] by replacing the unbounded Cauchy difference by a general
control function in the spirit of Rassias’ approach.
In [], Gilányi showed that if f satisfies the functional inequality

∥∥f (x) + f (y) – f
(
xy–

)∥∥ ≤ ∥∥f (xy)∥∥,
then f satisfies the Jordan-von Neumann functional equation

f (x) + f (y) = f (xy) + f
(
xy–

)
.
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See also []. Gilányi [] and Fechner [] proved the Hyers-Ulam stability of the above
functional inequality.
Park et al. [] proved the Hyers-Ulam stability of the following functional inequalities:

∥∥f (x) + f (y) + f (z)
∥∥ ≤ ∥∥f (x + y + z)

∥∥, (.)

∥∥f (x) + f (y) + f (z)
∥∥ ≤

∥∥∥∥f
(
x + y


+ z
)∥∥∥∥. (.)

In the sequel, we adopt the usual terminology, notations and conventions of the theory
of random normed spaces, as in [–]. Throughout this paper, �+ is the space of dis-
tribution functions, that is, the space of all mappings F : R ∪ {–∞,∞} → [, ] such that
F is left-continuous and non-decreasing on R, F() =  and F(+∞) = . D+ is a subset of
�+ consisting of all functions F ∈ �+ for which l–F(+∞) = , where l–f (x) denotes the left
limit of the function f at the point x, that is, l–f (x) = limt→x– f (t). The space �+ is partially
ordered by the usual point-wise ordering of functions, i.e., F ≤G if and only if F(t)≤G(t)
for all t in R. The maximal element for �+ in this order is the distribution function ε

given by

ε(t) =

⎧⎨
⎩
 if t ≤ ,

 if t > .

Definition . ([]) Amapping T : [, ]× [, ]→ [, ] is a continuous triangular norm
(briefly, a continuous t-norm) if T satisfies the following conditions:
(a) T is commutative and associative;
(b) T is continuous;
(c) T(a, ) = a for all a ∈ [, ];
(d) T(a,b)≤ T(c,d) whenever a ≤ c and b≤ d for all a,b, c,d ∈ [, ].

Definition . ([]) A random normed space (briefly, RN-space) is a triple (X,μ,T),
where X is a vector space, T is a continuous t-norm and μ is a mapping from X into
D+ such that the following conditions hold:

(RN) μx(t) = ε(t) for all t >  if and only if x = ;
(RN) μαx(t) = μx( t

|α| ) for all x ∈ X , α �= ;
(RN) μx+y(t + s) ≥ T(μx(t),μy(s)) for all x, y ∈ X and all t, s≥ .

Every normed space (X,‖ · ‖) defines a random normed space (X,μ,TM), where

μx(t) =
t

t + ‖x‖

for all t > , and TM is the minimum t-norm. This space is called the induced random
normed space.

Definition . Let (X,μ,T) be an RN-space.
() A sequence {xn} in X is said to be convergent to x in X if, for every ε >  and λ > ,

there exists a positive integer N such that μxn–x(ε) >  – λ whenever n≥N .
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() A sequence {xn} in X is called a Cauchy sequence if, for every ε >  and λ > , there
exists a positive integer N such that μxn–xm (ε) >  – λ whenever n≥m ≥N .

() An RN-space (X,μ,T) is said to be complete if and only if every Cauchy sequence in
X is convergent to a point in X .

Theorem . ([]) If (X,μ,T) is an RN-space and {xn} is a sequence such that xn → x,
then limn→∞ μxn (t) = μx(t) almost everywhere.

We introduce the concept of matrix random normed space.

Definition . Let (X,μ,T) be a random normed space. Then
() (X, {μ(n)},T) is called amatrix random normed space if for each positive integer n,

(Mn(X),μ(n),T) is a random normed space and μ
(k)
AxB(t)≥ μ

(n)
x ( t

‖A‖·‖B‖ ) for all t > ,
A ∈Mk,n(R), x = [xij] ∈Mn(X) and B ∈Mn,k(R) with ‖A‖ · ‖B‖ �= .

() (X, {μ(n)},T) is called amatrix random Banach space if (X,μ,T) is a random
Banach space and (X, {μ(n)},T) is a matrix random normed space.

Let E, F be vector spaces. For a given mapping h : E → F and a given positive integer n,
define hn :Mn(E)→Mn(F) by

hn
(
[xij]

)
=

[
h(xij)

]

for all [xij] ∈Mn(E).
Let X be a set. A function d : X × X → [,∞] is called a generalized metric on X if d

satisfies
() d(x, y) =  if and only if x = y;
() d(x, y) = d(y,x) for all x, y ∈ X ;
() d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .
We recall a fundamental result in fixed point theory.

Theorem . ([, ]) Let (X,d) be a complete generalized metric space, and let J : X →
X be a strictly contractive mapping with a Lipschitz constant α < . Then, for each given
element x ∈ X, either

d
(
Jnx, Jn+x

)
=∞

for all nonnegative integers n or there exists a positive integer n such that
() d(Jnx, Jn+x) < ∞, ∀n≥ n;
() the sequence {Jnx} converges to a fixed point y∗ of J ;
() y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jnx, y) <∞};
() d(y, y∗) ≤ 

–α
d(y, Jy) for all y ∈ Y .

The stability problem in a random normed space was considered by Mihet and Radu
[]; next some authors proved some stability results in random normed spaces by differ-
ent methods (see [–]).
In , Isac and Rassias [] were the first to provide applications of stability theory

of functional equations for the proof of new fixed point theorems with applications. By
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using fixed pointmethods, the stability problems of several functional equations have been
extensively investigated by a number of authors (see [–]).
Throughout this paper, let X be a normed space and (Y , {μ(n)},T) be a matrix random

Banach space. In Section , we prove theHyers-Ulam stability of the Cauchy additive func-
tional inequality (.) inmatrix normed spaces by using the directmethod. In Section , we
prove the Hyers-Ulam stability of the Cauchy-Jensen additive functional inequality (.)
in matrix normed spaces by using the fixed point method.

2 Hyers-Ulam stability of the Cauchy additive functional inequality
In this section, we prove the Hyers-Ulam stability of the Cauchy additive functional in-
equality (.) in matrix random normed spaces by using the fixed point method.

Theorem . Let ϕ : X → [,∞) be a function such that there exists α <  with

ϕ(a,b, c)≤ α


ϕ(a, b, c)

for all a,b, c ∈ X. Let f : X → Y be an odd mapping satisfying

μ
(n)
fn([xij])+fn([yij])+fn([zij])(t) ≥min

{
μ
(n)
fn([xij+yij+zij])

(
t


)
,

t
t +

∑n
i,j= ϕ(xij, yij, zij)

}
(.)

for all t >  and x = [xij], y = [yij], z = [zij] ∈ Mn(X). Then A(a) := liml→∞ lf ( al ) exists for
each a ∈ X and defines an additive mapping A : X → Y such that

μfn([xij])–An([xij])(t) ≥
( – α)t

( – α)t + nα
∑n

i,j= ϕ(xij,xij, –xij)
(.)

for all t >  and x = [xij] ∈Mn(X).

Proof Let n = . Then (.) is equivalent to

μf (a)+f (b)+f (c)(t) ≥min

{
μf (a+b+c)

(
t


)
,

t
t + ϕ(a,b, c)

}
(.)

for all t >  and a,b, c ∈ X.
Letting b = a and c = –a in (.), we get

μf (a)–f (a)(t)≥ t
t + ϕ(a,a, –a)

, (.)

and so

μf (a)–f ( a )(t) ≥
t

t + ϕ( a ,
a
 , –a)

≥ t
t + α

ϕ(a,a, –a)
(.)

for all t >  and a ∈ X.
Consider the set

S := {g : X → Y }

http://www.journalofinequalitiesandapplications.com/content/2013/1/569
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and introduce the generalized metric on S:

d(g,h) = inf

{
ν ∈ R+ : μg(a)–h(a)(νt)≥ t

t + ϕ(a,a, –a)
,∀a ∈ X,∀t > 

}
,

where, as usual, infφ = +∞. It is easy to show that (S,d) is complete (see the proof of [,
Lemma .]).
Now we consider the linear mapping J : S → S such that

Jg(a) := g
(
a


)

for all a ∈ X.
Let g,h ∈ S be given such that d(g,h) = ε. Then

μg(a)–h(a)(εt) ≥ t
t + ϕ(a,a)

for all a ∈ X and t > . Hence

μJg(a)–Jh(a)(αεt) = μg( a )–h(
a
 )(αεt) = μg( a )–h(

a
 )

(
α


εt

)

≥
αt


αt
 + ϕ( a ,

a
 , –a)

≥
αt


αt
 + α

ϕ(a,a, –a)

=
t

t + ϕ(a,a, –a)

for all a ∈ X and t > . So d(g,h) = ε implies that d(Jg, Jh) ≤ αε. This means that

d(Jg, Jh) ≤ αd(g,h)

for all g,h ∈ S.
It follows from (.) that d(f , Jf )≤ α

 .
By Theorem ., there exists a mapping A : X → Y satisfying the following:
() A is a fixed point of J , i.e.,

A
(
a


)
=


A(a)

for all a ∈ X . The mapping A is a unique fixed point of J in the set

M =
{
g ∈ S : d(f , g) < ∞}

.

() d(J lf ,A)→  as l → ∞. This implies the equality

lim
l→∞

lf
(
a
l

)
= A(a)

for all a ∈ X .
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() d(f ,A)≤ 
–α

d(f , Jf ), which implies the inequality

d(f ,A) ≤ α

 – α
. (.)

By (.),

μl f ( a+b
l

)–l f ( a
l
)–l f ( b

l
)
(
lt

) ≥ t
t + ϕ( al ,

b
l , –

a+b
l )

for all a,b ∈ X and t > . So

μl f ( a+b
l

)–l f ( a
l
)–l f ( b

l
)(t) ≥

t
l

t
l +

αl

l ϕ(a,b, –a – b)

for all a,b ∈ X and t > . Since liml→∞
t
l

t
l
+ αl
l

ϕ(a,b,–a–b)
=  for all a,b ∈ X and t > ,

μA(a+b)–A(a)–A(b)(t) = 

for all a,b ∈ X and t > . Thus A(a + b) – A(a) – A(b) = . So the mapping A : X → Y is
additive.
We note that ej ∈M,n(R) is that jth component is  and the others are zero, Eij ∈Mn(R)

is that (i, j)-component is  and the others are zero, and Eij ⊗ x ∈ Mn(X) is that (i, j)-
component is x and the others are zero. Since μ

(n)
Ekl⊗x(t) = μx(t), we have

μ
(n)
[xij](t) = μ

(n)∑n
i,j= Eij⊗xij

(t) ≥min
{
μ
(n)
Eij⊗xij (tij) : i, j = , , . . . ,n

}

= min
{
μxij (tij) : i, j = , , . . . ,n

}
,

where t =
∑n

i,j= tij. So μ
(n)
[xij](t) ≥min{μxij (

t
n ) : i, j = , , . . . ,n}.

By (.),

μ
(n)
fn([xij])–An([xij])(t) ≥ min

{
μf (xij)–A(xij)

(
t
n

)
: i, j = , , . . . ,n

}

≥ min

{
( – α)t

( – α)t + nαϕ(xij,xij, –xij)
: i, j = , , . . . ,n

}

≥ ( – α)t
( – α)t + nα

∑n
i,j= ϕ(xij,xij, –xij)

for all x = [xij] ∈ Mn(X). Thus A : X → Y is a unique additive mapping satisfying (.), as
desired. �

Corollary . Let r, θ be positive real numbers with r > .Let f : X → Y be an oddmapping
satisfying

μ
(n)
fn([xij])+fn([yij])+fn([zij])(t)

≥min

{
μ
(n)
fn([xij+yij+zij])

(
t


)
,

t
t +

∑n
i,j= θ (‖xij‖r + ‖yij‖r + ‖zij‖r)

}
(.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/569
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for all t >  and x = [xij], y = [yij], z = [zij] ∈ Mn(X). Then A(a) := liml→∞ lf ( al ) exists for
each a ∈ X and defines an additive mapping A : X → Y such that

μfn([xij])–An([xij])(t) ≥
(r – )t

(r – )t + n( + r)
∑n

i,j= θ‖xij‖r

for all t >  and x = [xij] ∈Mn(X).

Proof The proof follows from Theorem . by taking ϕ(a,b, c) = θ (‖a‖r + ‖b‖r + ‖c‖r) for
all a,b, c ∈ X. Then we can choose α = –r and we get the desired result. �

Theorem . Let f : X → Y be an odd mapping satisfying (.) for which there exists a
function ϕ : X → [,∞) such that there exists α <  with

ϕ(a,b, c)≤ αϕ

(
a

,
b

,
c


)

for all a,b, c ∈ X.Then A(a) := liml→∞ 
l f (

la) exists for each a ∈ X and defines an additive
mapping A : X → Y such that

μfn([xij])–An([xij])(t) ≥
( – α)t

( – α)t + n
∑n

i,j= ϕ(xij,xij, –xij)

for all t >  and x = [xij] ∈Mn(X).

Proof Let (S,d) be the generalized metric space defined in the proof of Theorem ..
Now we consider the linear mapping J : S → S such that

Jg(a) := g
(
a


)

for all a ∈ X.
It follows from (.) that d(f , Jf )≤ 

 . So

d(f ,A)≤ 
 – α

.

The rest of the proof is similar to the proof of Theorem .. �

Corollary . Let r, θ be positive real numbers with r < . Let f : X → Y be a mapping
satisfying (.). Then A(a) := liml→∞ lf ( al ) exists for each a ∈ X and defines an additive
mapping A : X → Y such that

μfn([xij])–An([xij])(t) ≥
( – r)t

( – r)t + n( + r)
∑n

i,j= θ‖xij‖r

for all t >  and x = [xij] ∈Mn(X).

Proof The proof follows from Theorem . by taking ϕ(a,b, c) = θ (‖a‖r + ‖b‖r + ‖c‖r) for
all a,b, c ∈ X. Then we can choose α = r– and we get the desired result. �
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3 Hyers-Ulam stability of the Cauchy-Jensen additive functional inequality
In this section, we prove the Hyers-Ulam stability of Cauchy-Jensen additive functional
inequality (.) in matrix random normed spaces by using the fixed point method.

Theorem . Let ϕ : X → [,∞) be a function such that there exists α <  with

ϕ(a,b, c)≤ α


ϕ(a, b, c)

for all a,b, c ∈ X. Let f : X → Y be an odd mapping satisfying

μ
(n)
fn([xij])+fn([yij])+fn([zij])(t)

≥min

{
μ
(n)
fn([

xij+yij
 +zij])

(
t


)
,

t
t +

∑n
i,j= ϕ(xij, yij, zij)

}
(.)

for all t >  and x = [xij], y = [yij], z = [zij] ∈ Mn(X). Then A(a) := liml→∞ lf ( al ) exists for
each a ∈ X and defines an additive mapping A : X → Y such that

μfn([xij])–An([xij])(t) ≥
( – α)t

( – α)t + nα
∑n

i,j= ϕ(xij,xij, –xij)
(.)

for all t >  and x = [xij] ∈Mn(X).

Proof Let n = . Then (.) is equivalent to

μf (a)+f (b)+f (c)(t) ≥min

{
μf ( a+b +c)

(
t


)
,

t
t + ϕ(a,b, c)

}
(.)

for all t >  and a,b, c ∈ X.
Letting b = a and c = –a in (.), we get

μf (a)–f (a)(t)≥ t
t + ϕ(a,a, –a)

, (.)

and so

μf (a)–f ( a )(t) ≥
t

t + ϕ( a ,
a
 , –

a
 )

≥ t
t + α

ϕ(a,a, –a)
(.)

for all t >  and a ∈ X.
Let (S,d) be the generalized metric space defined in the proof of Theorem ..
Now we consider the linear mapping J : S → S such that

Jg(a) := g
(
a


)

for all a ∈ X.
Let g,h ∈ S be given such that d(g,h) = ε. Then

μg(a)–h(a)(εt) ≥ t
t + ϕ(a,a, –a)

http://www.journalofinequalitiesandapplications.com/content/2013/1/569
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for all a ∈ X and t > . Hence

μJg(a)–Jh(a)(αεt) = μg( a )–h(
a
 )(αεt) = μg( a )–h(

a
 )

(
α


εt

)

≥
αt


αt
 + ϕ( a ,

a
 , –

a
 )

≥
αt


αt
 + α

ϕ(a,a, –a)

=
t

t + ϕ(a,a, –a)

for all a ∈ X and t > . So d(g,h) = ε implies that d(Jg, Jh) ≤ αε. This means that

d(Jg, Jh) ≤ αd(g,h)

for all g,h ∈ S.
It follows from (.) that d(f , Jf ) ≤ α

 .
By Theorem ., there exists a mapping A : X → Y satisfying the following:
() A is a fixed point of J , i.e.,

A
(
a


)
=


A(a)

for all a ∈ X . The mapping A is a unique fixed point of J in the set

M =
{
g ∈ S : d(f , g) < ∞}

.

() d(J lf ,A)→  as l → ∞. This implies the equality

lim
l→∞

lf
(
a
l

)
= A(a)

for all a ∈ X .
() d(f ,A)≤ 

–α
d(f , Jf ), which implies the inequality

d(f ,A) ≤ α

 – α
. (.)

By (.),

μl f ( a+b
l

)–l f ( a
l
)–l f ( b

l
)
(
lt

) ≥ t
t + ϕ( al ,

b
l , –

a+b
l+ )

for all a,b ∈ X and t > . So

μl f ( a+b
l

)–l f ( a
l
)–l f ( b

l
)(t) ≥

t
l

t
l +

αl

l ϕ(a,b, –
a+b
 )

for all a,b ∈ X and t > . Since liml→∞
t
l

t
l
+ αl
l

ϕ(a,b,–a–b)
=  for all a,b ∈ X and t > ,

μA(a+b)–A(a)–A(b)(t) = 

http://www.journalofinequalitiesandapplications.com/content/2013/1/569
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for all a,b ∈ X and t > . Thus A(a + b) – A(a) – A(b) = . So the mapping A : X → Y is
additive.
By (.),

μ
(n)
fn([xij])–An([xij])(t) ≥ min

{
μf (xij)–A(xij)

(
t
n

)
: i, j = , , . . . ,n

}

≥ min

{
( – α)t

( – α)t + nαϕ(xij,xij, –xij)
: i, j = , , . . . ,n

}

≥ ( – α)t
( – α)t + nα

∑n
i,j= ϕ(xij,xij, –xij)

for all x = [xij] ∈ Mn(X). Thus A : X → Y is a unique additive mapping satisfying (.), as
desired. �

Corollary . Let r, θ be positive real numbers with r > .Let f : X → Y be an oddmapping
satisfying

μ
(n)
fn([xij])+fn([yij])+fn([zij])(t)

≥min

{
μ
(n)
fn([

xij+yij
 +zij])

(
t


)
,

t
t +

∑n
i,j= θ (‖xij‖r + ‖yij‖r + ‖zij‖r)

}
(.)

for all t >  and x = [xij], y = [yij], z = [zij] ∈ Mn(X). Then A(a) := liml→∞ lf ( al ) exists for
each a ∈ X and defines an additive mapping A : X → Y such that

μfn([xij])–An([xij])(t) ≥
(r – )t

(r – )t + n
∑n

i,j= θ‖xij‖r

for all t >  and x = [xij] ∈Mn(X).

Proof The proof follows from Theorem . by taking ϕ(a,b, c) = θ (‖a‖r + ‖b‖r + ‖c‖r) for
all a,b, c ∈ X. Then we can choose α = –r and we get the desired result. �

Theorem . Let f : X → Y be an odd mapping satisfying (.) for which there exists a
function ϕ : X → [,∞) such that there exists α <  with

ϕ(a,b, c)≤ αϕ

(
a

,
b

,
c


)

for all a,b, c ∈ X.Then A(a) := liml→∞ 
l f (

la) exists for each a ∈ X and defines an additive
mapping A : X → Y such that

μfn([xij])–An([xij])(t) ≥
( – α)t

( – α)t + n
∑n

i,j= ϕ(xij,xij, –xij)

for all t >  and x = [xij] ∈Mn(X).

Proof Let (S,d) be the generalized metric space defined in the proof of Theorem ..

http://www.journalofinequalitiesandapplications.com/content/2013/1/569
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Now we consider the linear mapping J : S → S such that

Jg(a) := g
(
a


)

for all a ∈ X.
It follows from (.) that d(f , Jf ) ≤ 

 . So

d(f ,A)≤ 
 – α

.

The rest of the proof is similar to the proof of Theorem .. �

Corollary . Let r, θ be positive real numbers with r < . Let f : X → Y be a mapping
satisfying (.). Then A(a) := liml→∞ lf ( al ) exists for each a ∈ X and defines an additive
mapping A : X → Y such that

μfn([xij])–An([xij])(t) ≥
( – r)t

( – r)t + n
∑n

i,j= θ‖xij‖r

for all t >  and x = [xij] ∈Mn(X).

Proof The proof follows from Theorem . by taking ϕ(a,b, c) = θ (‖a‖r + ‖b‖r + ‖c‖r) for
all a,b, c ∈ X. Then we can choose α = r– and we get the desired result. �
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29. Cădariu, L, Radu, V: On the stability of the Cauchy functional equation: a fixed point approach. Grazer Math. Ber. 346,
43-52 (2004)
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