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Abstract
In this paper, we study the mathematical properties of a new variational model for
image multiplicative noise removal. Some important properties of the model,
including the lower semicontinuity, the differential property, the convergence and
regularization property, are established for the first time. The existence and
uniqueness of a solution for the problem as well as a comparison principle have also
been established.
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1 Introduction
Consider the following variational problem:

min
u

E(u) :=min
u

{∫
�

φ(Du) + λ

∫
�

(
logu +

f
u

)}
, ()

where � ⊂ RN is an open bounded open set with Lipschitz-regular boundary ∂�, λ is a
constant, f : � → R+ is a given function, φ is an even function from RN to R having the
linear growth

φ(s) =

{
|s| log( + |s|), |s| <M,
b|s| – M

+M , |s| ≥M,
()

where b =M/( +M) + log( +M),M is a positive constant and its value is determined by
the size of an image.
The total variation has been introduced in computer vision first by Rudin, Osher and

Fatemi [] as a regularizing criterion for solving inverse problems. It has proved to be
very efficient for regularizing images without smoothing the boundaries of the objects.
A variety of variational methods have been proposed for imaging processing over the last
decades, and the main variational approaches devoted to multiplicative noises include the
RLO model [] proposed by Rudin et al., the AA model [] by Aubert and Aujol, and the
JY model [] by Jin and Yang.
Variational problem () is a multiplicative noise removal model. This model was first

obtained via the MAP estimator []. It is specifically devoted to the denoising of images
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corrupted by a gamma noise. This model cannot yield good denoising effectiveness, but it
can significantly avoid or reduce ‘edge blur’ and ‘step effect’.
From amathematical point of view,most of the existing variationalmodels for denoising

have been studied extensively [–, ]. For example, for a very informative discussion of
the use of total variation regularization in the field of image processing, see the introduc-
tion of []. In [], Aubert and Aujol proved the existence of a minimizer for a variational
model and studied the associated evolution problem, for which they derived existence and
uniqueness results for the solution. Moreover, they proved the convergence of an implicit
iterative scheme to compute the solution. Jin and Yang in [] established the existence and
uniqueness of a weak solution for the associated evolution equations of the JY model, and
showed that the solution of the evolution equation converges weakly in BV and strongly
in L to the minimizer as t → ∞. For model (), the initial boundary value problem of the
partial differential equation for the model is derived and discreted numerically. The ex-
periments in [] showed that the quality of the images restored by the model is excellent.
However, in order to further study and apply model (), further rigorous work is needed
to investigate the mathematical properties of the model.
The main goal of this paper is thus to further study the mathematical properties of

model (). The study is conducted in the space of functions with bounded variations (BV).
We first establish some importantmathematical properties for the function φ in themodel
including the lower semicontinuity, the differential property, the convergence and regu-
larization of its mollification φε . Then it is easy to prove the existence and uniqueness
of a solution for the model under appropriate assumptions. Furthermore, a comparison
principle is obtained.
The paper is organized as follows. Some preliminaries are given in the next section.

In Section , some properties about the function φ are obtained. Some new results for
variational model () such as the existence, uniqueness and comparison results are derived
in Section . Finally, a conclusion is given in Section .

2 Preliminaries
In this paper, we use the following classical distributional spaces. For the convenience of
readers, we here recall some basic notations and facts, and for details we refer the readers
to the works of Aubert-Kornprobst in [].
Let |E| denote the Lebesgue measure of a measurable set E in RN , let HN– denote the

Hausdorff measure of dimension N – , and let W ,p(�) and Lp(�) be the standard nota-
tions for the Sobolev and Lebesgue spaces, respectively, let C∞

 (�) be the set of functions
in C∞(�) with compact support in �.

Definition . If for all functions ϕ = (ϕ,ϕ) ∈ C
(�), |ϕ|L∞(�)| ≤ , the formula

∫
�

udivϕ dx = –
∫

�

Du · ϕ dx

holds, Du = (Du,Du) is called the distribution gradient of u, u is called a bounded vari-
ation function, and the total variation of Du on � is defined as follows:

∫
�

|Du|dx := sup

{∫
�

udivϕ dx : ϕ = (ϕ,ϕ) ∈ C
(�), |ϕ|L∞(�) ≤ 

}
.
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Definition . The space of bounded variation functions, BV (�), is defined as follows:

BV (�) =
{
u ∈ L(�) :

∫
�

|Du|dx <∞
}
.

It should be addressed here that the BV (�) endowed with the norm ‖u‖BV (�) =
∫
�

|u|dx+∫
�

|Du|dx is a Banach space.

With regard to the compactness in BV (�), we state the following theorem.

Theorem . ([]) Assume that {un}∞n= is a bounded sequence in BV (�). Then there exists
a subsequence {unj}∞j= and a function u ∈ BV (�) such that unj → u as j → ∞ in L(�).

Definition . The approximate upper limit u+(x) and the approximate lower limit u–(x),
respectively, are defined by

u+(x) = inf

{
t ∈ [–∞, +∞] : lim

ρ→+
|{u > t} ∩ B(x,ρ)|

ρ = 
}
,

u–(x) = sup

{
t ∈ [–∞, +∞] : lim

ρ→+
|{u < t} ∩ B(x,ρ)|

ρ = 
}
,

where B(x,ρ) is the ball of center x and radius ρ . When u+(x) is different from u–(x), we
define the jump set Su as follows:

Su =
{
x ∈ � : u–(x) < u+(x)

}
.

After choosing a normal nu(x) (x ∈ Su) pointing toward the largest value of u, we recall
the following decompositions (see [] for more details):

Du =∇u · dx +Dsu, ()

where ∇u is the density of the absolutely continuous part of Du with respect to the
Lebesgue measure, Dsu = Cu + (u+ –u–)nuHN–

|Su is the singular part, Cu is the Cantor part,
and (u+ – u–)nuHN–

|Su is the jump part, HN–
|Su is the Hausdorff measure restricted to the

set Su.
Let ηε be the usual mollifier with compact support B(, ε) and

∫
RN ηε(y)dy = . If g ∈

Lloc(�), define its mollification gε := (g ∗ ηε) in �ε := {x ∈ � : dist(x, ∂�) > ε}. That is,

gε(x) =
∫

�

g(y)ηε(x – y)dy =
∫
B(,ε)

g(x – y)ηε(y)dy for x ∈ �ε .

Using the standard properties of mollifiers, we have the following properties.

Theorem .
() If ≤ p < ∞ and g ∈ Lploc(�), then gε ∈ C∞(�) and gε → g in Lploc(�) and if

g ∈ Lp(�), then gε → g in Lp(�).
() If A≤ g(x) ≤ B for all x, then A≤ gε(x)≤ B for all x ∈ �ε .
() If h, g ∈ L(�), then

∫
�
hεg dx =

∫
�
hgε dx.

() If g ∈ C(�), then ∂gε
∂xi

= ( ∂g
∂xi

)ε .
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Proof Using the standard properties of mollifiers, we can easily prove the above results.
�

3 Some properties about φ
By the definition of φ in (), it is easy to see that φ belongs to C(RN ) and φ is Lipschitz
continuous with the gradient

∇φ(s) =

{
[log( + |s|) + |s|

+|s| ]
s
|s| , |s| ≤M,

b s
|s| , |s| >M.

Furthermore, it can be proved that

∣∣φ(s) – φ(s)
∣∣ ≤ b|s – s|, ()∣∣∇φ(s) –∇φ(s)

∣∣ ≤ b|s – s|. ()

Theorem . If φε = φ ∗ ηε , where ηε is the mollifier, then
() φε ∈ C∞(RN ) and φε is convex.
() φε → φ uniformly on compact subsets of RN as ε → .
() ∇φε(x) · x≥  for all x ∈ RN .

Proof () Since φ is continuous and convex, φε is clearly smooth and convex in RN (cf.The-
orem  of Appendix C in []).
() According to (), for all x ∈ RN , we have

lim
r→


|B(x, r)|

∫
B(x,r)

∣∣φ(y) – φ(x)
∣∣dx = . ()

For a fixed point x, by the definition of φε , we have from () that

∣∣φε(x) – φ(x)
∣∣

=
∣∣∣∣
∫
B(x,ε)

ηε(x – y)
[
φ(y) – φ(x)

]
dy

∣∣∣∣
≤ 

εN

∫
B(x,ε)

η

(
x – y

ε

)∣∣φ(y) – φ(x)
∣∣dy

≤ C
|B(x, ε)|

∫
B(x,ε)

∣∣φ(y) – φ(x)
∣∣dy→  as ε → .

Now φ ∈ C(RN ) and V ⊂⊂ RN , we choose V ⊂⊂ W ⊂⊂ RN and note that φ is uniformly
continuous onW . Thus the limit () holds uniformly for x ∈ V . Consequently, the calcu-
lation above implies φε → φ uniformly on V .
() Let ε < 

 . The convexity of φ
ε implies that φε()–φε(x)≥ ∇φε(x) · (–x), so∇φε(x) ·

x ≥ φε(x) – φε(). Further, we have

φε(x) – φε()

=
∫
B(,ε)

φ(x – y)ηε(y)dy –
∫
B(,ε)

φ(y)ηε(y)dy
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=
∫
B(,ε)∩B(x,)

[|x – y| log( + |x – y|) – |y| log( + |y|)]ηε(y)dy

+
∫
B(,ε)∩{|x–y|≥}

[
b|x – y| – 


– |y| log( + |y|)]ηε(y)dy.

For the first term on the right-hand side, we consider two possible cases.
Case . |x| ≥ ε. Since |y| ≤ ε, it implies |x – y| ≥ ε ≥ |x|. Noting that the function φ(s)

is increasing on (,+∞), we obtain that |x – y| log( + |x – y|) – |y| log( + |y|) ≥ . So the
first term on the right-hand side is nonnegative.
Case . |x| < ε. Since |y| ≤ ε < 

 , |x – y| ≤ |x| + |y| ≤ ε + ε ≤ 
 < , and so B(, ε) ∩

B(x, ) = B(, ε). In terms of the convexity of φ, we have

|x – y| log( + |x – y|) – |y| log( + |y|)
≥ ∇φ(y) · ((y – x) – y

)
=

(
log

(
 + |y|) + |y|

 + |y|
)

y
|y| · (–x).

Noting that
∫
B(,ε) yηε(y)dy = , we get

∫
B(,ε)∩B(x,)

[|x – y| log( + |x – y|) – |y| log( + |y|)]ηε(y)dy

≥
∫
B(,ε)

[(
log

(
 + |y|) + |y|

 + |y|
)

y
|y| · (–x)

]
ηε(y)dy = .

For the second term on the right-hand side, noting that ε < , we have

∫
B(,ε)∩{|x–y|≥}

[
b|x – y| – 


– |y| log( + |y|)]ηε(y)dy

≥
∫
B(,ε)∩{|x–y|≥}

(
b –



– log

)
ηε(y)dy = .

Therefore, φε(x) – φε()≥ . �

Remark Since φ : R → R+ is convex, increasing on R+ with linear growth at infinity, and
φ∞() = lims→∞ φ(s)/s = b, for u ∈ BV (�), we can get the Lebesgue decomposition of the
measure

∫
�

φ(Du)dx:

∫
�

φ(Du)dx =
∫

�

φ(∇u)dx + b
∫

�

∣∣Dsu
∣∣

=
∫

�

φ(∇u)dx + b
∫

�–Su
|Cu| + b

∫
Su

∣∣u+ – u–
∣∣dHN–.

Since b|s| –M/( +M) ≤ φ(s) ≤ b|s|, for all s ∈ RN , we have

∫
�

|Du| – M

 +M
|�| ≤

∫
�

φ(Du) ≤
∫

�

|Du|, ∀u ∈ BV (�). ()
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The lower semicontinuity of the functional φ with respect to convergence in L(�),
which is one of the most important properties of BV functions, is given in the next theo-
rem below.

Theorem . Assume that {ui}∞i= ⊂ BV (�) and ui → u in L(�) as i→ ∞, then

∫
�

φ(Du)≤ lim inf
i→∞

∫
�

φ(Dui). ()

Proof Let v ∈ C
(�) be such that |v| ≤ . Then

∫
�

udiv vdx = lim
i→∞

∫
�

ui div vdx≤ lim inf
i→∞

∫
�

|Dui|.

Taking the supremum over all such v, we have
∫

�

|Du| ≤ lim inf
i→∞

∫
�

|Dui|. ()

Thus () follows on combining () and (). �

Theorem . (Regularization) Suppose u ∈ BV (�). If uε are the mollified functions de-
scribed in Section  (where u is extended to be  outside � if necessary), then

lim
ε→

∫
�

φ
(
Duε

)
=

∫
�

φ(Du).

Proof Since uε → u as ε →  in L(�) from Theorem ., we have, by Theorem ., the
inequality

∫
�

φ(Du)≤ lim inf
ε→

∫
�

φ
(
Duε

)
,

and so it remains only to prove a verse inequality.
For u ∈ BV (�), by the method of the proof in Theorem A. of [], we can obtain

∫
�

φ(Du) = sup
v∈C

(�)
|v|≤

–
∫

�

(|v| log( + |v|) + udiv v
)
dx. ()

Suppose v ∈ C
(�) and |v| ≤ , then, by Theorem .,

∫
�

uε div vdx =
∫

�

u(div v)ε dx =
∫

�

udiv vε dx

and

lim
ε→

∫
�

∣∣vε
∣∣ log( + ∣∣vε

∣∣) = ∫
�

|v| log( + |v|).
Thus

–
∫

�

(|v| log( + |v|) + uε div v
)
dx = lim

ε→
–

∫
�

(∣∣vε
∣∣ log( + ∣∣vε

∣∣) + udiv vε
)
dx. ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/568
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Since |v| ≤ , by Theorem ., we get that |vε | ≤ . On taking the supremum over all such
v and noting (), we get that

∫
�

φ
(
Duε

)
= lim

ε→
–

∫
�

(∣∣vε
∣∣ log( + ∣∣vε

∣∣) + udiv vε
)
dx

≤ lim
ε→

sup
|vε |≤

–
∫

�

(∣∣vε
∣∣ log( + ∣∣vε

∣∣) + udiv vε
)
dx

=
∫

�

φ(Du).

Thus

lim inf
ε→

∫
�

φ
(
Duε

) ≤
∫

�

φ(Du). �

4 Some facts for the variational problem
Consider the variational problem. Assume that f ∈ L(�) with  < inf� f ≤ f ≤ sup� f < ∞,
find a function ũ ∈ S(�) such that

E(ũ) = min
u∈S(�)

{∫
�

φ(Du) +
∫

�

(
logu +

f
u

)}
, ()

where S(�) = {u ∈ BV (�) :∇u ∈ L(�)}.
For the existence of solutions for minimization problem (), we have obtained the exis-

tence result in the BV space (see []), namely, for f ∈ L∞(�) with inf� f > , problem ()
has at least one solution u ∈ BV (�) satisfying  < inf� f ≤ u≤ sup� f .
We find that, under appropriate assumptions, we can prove the existence of a Lipschitz

solution for problem () as detailed below.

Theorem . (Existence of a Lipschitz solution) Suppose that � is a bounded open do-
main in RN and f ∈ L(�) with  < inf� f ≤ f ≤ sup� f < ∞. Then problem () has at
least one Lipschitz solution if for any x ∈ ∂�, there exist two planes in RN+, z = π+(x) and
z = π–(x) such that

(i) π–(x)≤ f (x)≤ π+(x), ∀x ∈ ∂�;
(ii) the slopes of these planes are uniformly bounded, independent of x, by a constant K .

That is, |Dπ±| ≤ K for all x ∈ �.

Proof Consider the approximation of problem (), that is, replacing φ(s) by φε(s) +
|s| log( + |s|). By the general elliptic theory (see []), there exists a minimizer uε for each
ε > . The proof in Section  of [] shows that uε has a uniform gradient bound which is
not greater than K , then, by applying to a subsequence of uε as ε → , we get a Lipschitz
function u, and the rest of the proof is straightforward. �

Theorem . (Uniqueness) Let f >  be in L∞(�), then problem () has at most one so-
lution ũ such that  < ũ < f .

Proof Letting τ (u) = logu+ f /u, we have τ ′(u) = /u+(u– f )/u and τ ′′(u) = (f –u)/u.We
thus deduce that if  < u < f , then τ is strictly convex.Using () and noting that φ : R→ R+

http://www.journalofinequalitiesandapplications.com/content/2013/1/568
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is convex, increasing on R+ with linear growth at infinity, we obtain the uniqueness of a
minimizer. �

Theorem . (Comparison principle) Let f and f be in L∞(�) with inf� f >  and
inf� f > . Assume that f < f in �. We denote by u (resp., u) a solution of () for f = f
(resp., f = f). Then we have u ≤ u.

Proof Let J(u) =
∫
�

φ(Du). From Theorem  in [], we know that u and u exist. Since ui
is a minimizer with data fi (i = , ), we have

∫
�

(
log

(
inf(u,u)

)
+

f
inf(u,u)

)
+ J

(
inf(u,u)

)

≥
∫

�

(
logu +

f
u

)
+ J(u) ()

and

∫
�

(
log

(
sup(u,u)

)
+

f
sup(u,u)

)
+ J

(
sup(u,u)

)

≥
∫

�

(
logu +

f
u

)
+ J(u). ()

Using the fact that J(inf(u,u))+ J(sup(u,u))≤ J(u)+ J(u) (see [] or [] for details),
and adding these two inequalities () and (), we obtain

∫
�

(
log

(
inf(u,u)

)
+ log

(
sup(u,u)

)
+

f
inf(u,u)

+
f

sup(u,u)

)

≥
∫

�

(
logu + logu +

f
u

+
f
u

)
. ()

Writing � = {u > u} ∪ {u ≤ u}, we easily get that
∫

{u>u}

(
logu + logu +

f
u

+
f
u

)
≥

∫
{u>u}

(
logu + logu +

f
u

+
f
u

)
,

this is,

∫
{u>u}

(f – f)
u – u
uu

≥ .

Since f < f, we thus deduce that {u > u} has a zero Lebesgue measure; i.e., u ≤ u a.e.
in �. �

Remark The above result agrees with observation in image processing. Suppose that f
and f are two images with noise. u and u are from f and f after denoising by some
method, respectively. If the image f is dimer than f at almost every pixel, then u is not
naturally lighter than u.

http://www.journalofinequalitiesandapplications.com/content/2013/1/568
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5 Conclusion
In this paper, we study themathematical properties of an important variationalmodel pro-
posed in our recent work [] for removing multiplicative noise. For the first time, many
important properties of the model, including the lower semicontinuity, the differential
property, the convergence and regularization property are established and proved. The
well-posedness of the underlying mathematical problem for the model has also been es-
tablished. The comparison principle of solutions for the model has also been obtained.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors completed the paper together. All authors read and approved the final manuscript.

Acknowledgements
The first author is supported partly by the National Natural Science Foundation of China (11071266), and partly by the
Chinese Scholarship Council during the author’s visit to Curtin University of Technology. The second author is supported
by the Australian Research Council.

Received: 14 August 2013 Accepted: 5 November 2013 Published: 27 Nov 2013

References
1. Rudin, L, Osher, S, Fatemi, E: Nonlinear total variation based noise removal algorithms. Physica D 60, 259-268 (1992)
2. Rudin, L, Lions, PL, Osher, S: Multiplicative denoising and deblurring: theory and algorithms. In: Osher, S, Paragios, N

(eds.) Geometric Level Sets in Imaging, Vision, and Graphics, pp. 103-119. Springer, Berlin (2003)
3. Aubert, G, Aujol, JF: A variational approach to removing multiplicative noise. SIAM J. Appl. Math. 68, 925-946 (2008)
4. Jin, ZM, Yang, XP: A variational model to remove the multiplicative noise in ultrasound images. J. Math. Imaging Vis.

39, 62-74 (2011)
5. Hu, XG, Zhang, LT, Jiang, W: Improved variational model to remove multiplicative noise based on partial differential

equation. J. Comput. Appl. 32, 1879-1881 (2012)
6. Aubert, G, Kornprobst, P: Mathematical Problems in Image Processing. Appl. Math. Sci., vol. 147. Springer, New York

(2002)
7. Chan, TF, Esedoglu, S: Aspects of total variation regularized L1 function approximation. SIAM J. Appl. Math. 65,

1817-1837 (2005)
8. Lawrence, CE: Partial Differential Equations. Am. Math. Soc., Providence (1998)
9. Ambrosio, L: A compactness theorem for a new class of functions of bounded variation. Boll. Unione Mat. Ital. 7,

857-881 (1989)
10. Hardt, R, Kinderlehrer, D: Elastic plastic deformation. Appl. Math. Optim. 10, 203-246 (1983)
11. Hartman, P, Stampacchia, G: On some non-linear elliptic differential functional equations. Acta Math. 115, 271-310

(1966)
12. Chambolle, A: An algorithm for mean curvature motion. Interfaces Free Bound. 6, 195-218 (2004)
13. Giusti, E: Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Basel (1994)

10.1186/1029-242X-2013-568
Cite this article as: Hu et al.: Analysis of a new variational model for image multiplicative denoising. Journal of
Inequalities and Applications 2013, 2013:568

http://www.journalofinequalitiesandapplications.com/content/2013/1/568

	Analysis of a new variational model for image multiplicative denoising
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Some properties about phi
	Some facts for the variational problem
	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	References


