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1 Introduction
In many problems, it is quite often to seek a particular solution of the minimum-norm
solution of a given nonlinear problem. In an abstractway, wemay formulate such problems
as finding a point x∗ with the property

x∗ ∈ C such that
∥∥x∗∥∥ =min

x∈C
{‖x‖}, (.)

where C is a nonempty closed convex subset of a real Hilbert space H . In other words, x∗

is the (nearest point or metric) projection of the origin onto C,

x∗ = PC(), (.)

where PC is the metric (or nearest point) projection fromH onto C. For instance, the split
feasibility problem (SFP), introduced in [, ], is to find a point

x∗ ∈ C such that Ax∗ ∈Q, (.)

where C and Q are closed convex subsets of Hilbert spaces H andH, respectively, and A
is a linear bounded operator from H to H. We note that problem (.) can be extended
to a problem of finding

x ∈D(A)∩D(B) such that x ∈ A–()∩ B–(), (.)

where A : D(A) → E∗ and B : D(B) → E∗ are monotone mappings on a subset of a Ba-
nach space E. The problem has been addressed by many authors in view of the applica-
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tions in image recovery and signal processing; see, for example, [–] and the references
therein.
AmappingA : C → E∗ is said to bemonotone if for each x, y ∈ C, the following inequality

holds:

〈x – y,Ax –Ay〉 ≥ , (.)

where C is a nonempty subset of a real Banach space E with E∗ as its dual. A is said to
be maximal monotone if its graph is not properly contained in the graph of any other
monotone mapping. A mapping A : C → E∗ is said to be γ -inverse strongly monotone if
there exists a positive real number γ such that

〈x – y,Ax –Ay〉 ≥ γ ‖Ax –Ay‖ for all x, y ∈ C, (.)

and it is called strongly monotone if there exists k >  such that

〈x – y,Ax –Ay〉 ≥ k‖x – y‖ for all x, y ∈ C. (.)

An operator A : C → E is called accretive if there exists j(x – y) ∈ J(x – y) such that

〈
Ax –Ay, j(x – y)

〉 ≥  for all x, y ∈ C, (.)

where J is the normalized duality mapping from E into E∗ defined for each x ∈ E by

Jx :=
{
f ∗ ∈ E∗ :

〈
x, f ∗〉 = ‖x‖ = ∥∥f ∗∥∥}.

It is well known that E is smooth if and only if J is single-valued, and if E is uniformly
smooth, then J is uniformly continuous on bounded subsets of E (see []). A is called m-
accretive if it is accretive and R(I + rA), the range of (I + rA), is E for all r > ; and an
accretive mapping A is said to satisfy range condition if

D(A) ⊆ C ⊆
⋂
r>

R(I + rA) (.)

for some nonempty closed convex subset C of a real Banach space H .
Clearly, the class of monotone mappings includes the class of strongly monotone and

the class of γ -inverse strongly monotone mappings. However, we observe that accretive
mappings and monotone mappings have different natures in Banach spaces more general
than Hilbert spaces.
When A and B are maximal monotone mappings in Hilbert spaces, Bauschke et al. []

proved that sequences generated from the method of alternating resolvents given by
⎧⎨
⎩xn+ = JAβ (xn), n≥ ,

xn = JBμ(xn–), n≥ ,
(.)

where JAμ := (I +μA)– is the resolvent of A, converge weakly to a point of A–()∩ B–()
provided thatA–()∩B–() is nonempty. Note that strong convergence of thesemethods
fails in general (see a counter example by Hundal []).
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With regard to a finite family ofm-accretive mappings, Zegeye and Shahzad [] proved
that under appropriate conditions, an iterative process of Halpern type defined by

xn+ = αnu + ( – αn)Srnxn, n≥ , (.)

where αn ∈ (, ) for all n ≥ , u,x ∈ H , Sr := aI + aJr + aJr + · · · + aNJNr with J ir =
(I + rAi)– for ai ∈ (, ), i = , , . . . ,N , and

∑
i= aNi = , converges strongly to a point in⋂N

i=A–() nearest to u, where {Ai : i = , , . . . ,N} is the set of a finite family ofm-accretive
mappings in a strictly convex and reflexive (real) Banach space E which has a uniformly
Gâteaux differentiable norm.
In , Hu and Liu [] also proved that under appropriate conditions, an iterative

process of Halpern type defined by

xn+ = αnu + δnxn + γnSrnxn, n≥ , (.)

where αn, δn,γn ∈ (, ) with αn + δn + γn = , for all n ≥ , u = x ∈ H , Srn := aI + aJrn +
aJrn + · · · + aNJNrn with J ir = (I + rAi)–, for ai ∈ (, ), i = , , . . . ,N , and

∑
i= aNi = , and

{rn} ⊂ (,∞), for Ai, i = , , . . . ,N , accretive mappings satisfying range condition (.),
converges strongly to a point in

⋂N
i=A–() nearest to u in a strictly convex and reflexive

(real) Banach space E which has a uniformly Gâteaux differentiable norm.
A natural question arises whether we can have the results of Zegeye and Shahzad [] and

Hu and Liu [] for the class of monotone mappings or not, in Banach spaces more general
than Hilbert spaces?
Let C be a nonempty, closed, and convex subset of a smooth and uniformly convex real

Banach space E. Let Ai : C → E∗ for i = , , . . . ,N be continuous monotone mappings
satisfying range condition (.) with F :=

⋂N
i=A–

i () = ∅.
It is our purpose in this paper to introduce an iterative scheme (see (.)) which con-

verges strongly to the commonminimum-norm zero of the family {Ai, i = , , . . . ,N}. Our
theorems improve and unify most of the results that have been proved for this important
class of nonlinear mappings.

2 Preliminaries
Let E be a normed linear space with dimE ≥ . The modulus of smoothness of E is the
function ρE : [,∞) → [,∞) defined by

ρE(τ ) := sup

{‖x + y‖ + ‖x – y‖


–  : ‖x‖ = ;‖y‖ = τ

}
.

The space E is said to be smooth if ρE(τ ) > , ∀τ > , and E is called uniformly smooth if
and only if limt→+

ρE(t)
t = .

Themodulus of convexity of E is the function δE : (, ]→ [, ] defined by

δE(ε) := inf

{
 –

∥∥∥∥x + y


∥∥∥∥ : ‖x‖ = ‖y‖ = ; ε = ‖x – y‖
}
.

E is called uniformly convex if and only if δE(ε) >  for every ε ∈ (, ].
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Let C be a nonempty, closed, and convex subset of a smooth, strictly convex, and reflex-
ive Banach space E with dual E∗. A monotone mapping A is said to satisfy range condition
if we have that

D(A) ⊆ C ⊆
⋂
r>

J–R(J + rA) (.)

for some nonempty closed convex subset C of a smooth, strictly convex, and reflexive
Banach space E. In the sequel, the resolvent of a monotone mapping A : C → E∗ shall be
denoted by QA

r := (J + rA)–J for r > . We know the following lemma.

Lemma . [] Let E be a smooth and strictly convex Banach space, C be a nonempty,
closed, and convex subset of E, and A⊂ E×E∗ be a monotone mapping satisfying (.). Let
QA

rn be the resolvent of A for {rn} ⊂ (,∞) such that limn→∞ rn = ∞. If {xn} is a bounded
sequence of C such that QA

rnxn ⇀ z, then z ∈ A–().

Let E be a smooth Banach space with dual E∗. Let the Lyapunov function φ : E×E →R,
introduced by Alber [], be defined by

φ(y,x) = ‖y‖ – 〈y, Jx〉 + ‖x‖ for x, y ∈ E, (.)

where J is the normalized duality mapping. If E = H , a Hilbert space, then the duality
mapping becomes the identity map on H . We observe that in a Hilbert space H , (.)
reduces to φ(x, y) = ‖x – y‖ for x, y ∈H .
In the sequel, we shall make use of the following lemmas.

Lemma. [] Let E be a smooth and strictly convex Banach space, andC be a nonempty,
closed, and convex subset of E. Let A ⊂ E × E∗ be a monotone mapping satisfying (.),
A–() be nonempty and QA

r be the resolvent of A for some r > . Then, for each r > , we
have that

φ
(
p,QA

r x
)
+ φ

(
QA

r x,x
) ≤ φ(p,x)

for all p ∈ A–() and x ∈ C.

Lemma . [] Let E be a smooth and strictly convex Banach space, C be a nonempty,
closed, and convex subset of E, and T be a mapping from C into itself such that F(T) is
nonempty and φ(p,Tx) ≤ φ(p,x) for all p ∈ F(T) and x ∈ C.Then F(T) is closed and convex.

Lemma . [] Let E be a real smooth and uniformly convex Banach space, and let {xn}
and {yn} be two sequences of E. If either {xn} or {yn} is bounded andφ(xn, yn) →  as n → ∞,
then xn – yn →  as n→ ∞.

We make use of the function V : E × E∗ →R defined by

V
(
x,x∗) = ‖x‖ – 

〈
x,x∗〉 + ∥∥x∗∥∥ for all x ∈ E and x∗ ∈ E,

studied by Alber []. That is, V (x,x∗) = φ(x, J–x∗) for all x ∈ E and x∗ ∈ E∗.
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Lemma . [] Let E be a reflexive, strictly convex, and smooth Banach space with E∗ as
its dual. Then

V
(
x,x∗) + 

〈
J–x∗ – x, y∗〉 ≤ V

(
x,x∗ + y∗)

for all x ∈ E and x∗, y∗ ∈ E∗.

Let E be a reflexive, strictly convex, and smooth Banach space, and let C be a nonempty,
closed, and convex subset of E. The generalized projection mapping, introduced by Alber
[], is a mapping �C : E → C that assigns an arbitrary point x ∈ E to the minimizer, x̄, of
φ(·,x) over C, that is, �Cx = x̄, where x̄ is the solution to the minimization problem

φ(x̄,x) =min
{
φ(y,x), y ∈ C

}
. (.)

Lemma . [] Let C be a nonempty, closed, and convex subset of a real reflexive, strictly
convex, and smooth Banach space E, and let x ∈ E. Then, ∀y ∈ C,

φ(y,�Cx) + φ(�Cx,x)≤ φ(y,x).

Lemma . [] Let C be a convex subset of a real smooth Banach space E. Let x ∈ E. Then
x =�Cx if and only if

〈z – x, Jx – Jx〉 ≤ , ∀z ∈ C.

Lemma . [] Let E be a uniformly convex Banach space and BR() be a closed ball of E.
Then there exists a continuous strictly increasing convex function g : [,∞)→ [,∞) with
g() =  such that

‖αx + αx + · · · + αNxN‖ ≤
N∑
i=

αi‖xi‖ – αiαjg
(‖xi – xj‖

)

for αi ∈ (, ) such that
∑N

i= αi =  and xi ∈ BR() := {x ∈ E : ‖x‖ ≤ R} for some R > .

Lemma. [] Let {an} be a sequence of nonnegative real numbers satisfying the following
relation:

an+ ≤ ( – βn)an + βnδn, ∀n≥ n,

where {βn} ⊂ (, ) and {δn} ⊂ R satisfy the following conditions: limn→∞ βn = ,
∑∞

n= βn =
∞, and lim supn→∞ δn ≤ . Then limn→∞ an = .

Lemma . [] Let {an} be sequences of real numbers such that there exists a subse-
quence {ni} of {n} such that ani < ani+ for all i ∈ N. Then there exists a nondecreasing
sequence {mk} ⊂ N such that mk → ∞, and the following properties are satisfied by all
(sufficiently large) numbers k ∈ N:

amk ≤ amk+ and ak ≤ amk+.
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In fact, mk is the largest number n in the set {, , . . . ,k} such that the condition an ≤ an+
holds.

3 Main result
We now prove the following theorem.

Theorem . Let C be a nonempty, closed, and convex subset of a smooth and uniformly
convex real Banach space E. Let Ai : C → E∗, for i = , , . . . ,N , be continuous monotone
mappings satisfying (.).Assume thatF :=

⋂N
i=A–

i () is nonempty. Let {xn} be a sequence
generated by

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C, chosen arbitrarily,

yn =�C[( – αn)xn],

xn+ = J–(βJyn +
∑N

i= βiJQ
Ai
rn yn), ∀n≥ ,

(.)

where αn ∈ (, ), {βi}Ni= ⊂ [c,d] ⊂ (, ) and {rn} ⊂ (,∞) satisfy the following conditions:
limn→∞ αn = ,

∑∞
n= αn =∞,

∑N
i= βi = ,and limn→∞ rn =∞.Then {xn} converges strongly

to the minimum-norm point of F .

Proof From Lemmas . and . we get that A–
i () is closed and convex. Thus, �F () is

well defined. Let p = �F (). Then from (.), Lemma . and the property of φ, we get
that

φ(p, yn) = φ
(
p,�C( – αn)xn

) ≤ φ
(
p, ( – αn)xn

)
= φ

(
p, J–

(
αnJ + ( – αn)Jxn

))
= ‖p‖ – 

〈
p,αnJ + ( – αn)Jxn

〉
+

∥∥αnJ + ( – αn)Jxn
∥∥

≤ ‖p‖ – αn〈p, J〉 – ( – αn)〈p, Jxn〉
+ αn‖J‖ + ( – αn)‖Jxn‖

= αnφ(p, ) + ( – αn)φ(p,xn). (.)

Moreover, from (.), Lemma ., Lemma . and (.), we get that

φ(p,xn+) = φ

(
p, J–

(
βJyn +

N∑
i=

βiJQAi
rn yn

))

= ‖p‖ – 

〈
p,βJyn +

N∑
i=

βiJQAi
rn yn

〉
+

∥∥∥∥∥βJyn +
N∑
i=

βiJQAi
rn yn

∥∥∥∥∥


≤ ‖p‖ – β〈p, Jyn〉 – 
N∑
i=

βi
〈
p, JQAi

rn yn
〉

+ β‖yn‖ +
N∑
i=

βi
∥∥QAi

rn yn
∥∥ – ββig

(∥∥Jyn – JQAi
rn yn

∥∥)

= βφ(p, yn) +
N∑
i=

βiφ
(
p,QAi

rn yn
)
– ββig

(∥∥Jyn – JQAi
rn yn

∥∥)

http://www.journalofinequalitiesandapplications.com/content/2013/1/566
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≤ βφ(p, yn) + ( – β)φ(p, yn) – ββig
(∥∥Jyn – JQAi

rn yn
∥∥)

≤ φ(p, yn) – ββig
(∥∥Jyn – JQAi

rn yn
∥∥) ≤ φ(p, yn) (.)

≤ αnφ(p, ) + ( – αn)φ(p,xn) (.)

for each i ∈ {, , . . . ,N}. Thus, by induction,

φ(p,xn+) ≤max
{
φ(p, ),φ(p,x)

}
, ∀n≥ ,

which implies that {xn} and hence {yn} are bounded. Now let zn = (–αn)xn. Then we note
that yn =�Czn. Using Lemma ., Lemma . and the property of φ, we obtain that

φ(p, yn) ≤ φ(p, zn) = V (p, Jzn)

≤ V
(
p, Jzn – αn(J – Jp)

)
– 

〈
zn – p, –αn(J – Jp)

〉
= φ

(
p, J–

(
αnJp + ( – αn)Jxn

))
– αn〈zn – p, Jp〉

≤ αnφ(p,p) + ( – αn)φ(p,xn) – αn〈zn – p, Jp〉
= ( – αn)φ(p,xn) – αn〈zn – p, Jp〉
≤ ( – αn)φ(p,xn) – αn〈zn – p, Jp〉. (.)

Furthermore, from (.) and (.) we have that

φ(p,xn+) ≤ ( – αn)φ(p,xn) – αn〈zn – p, Jp〉
– ββig

(∥∥Jyn – JQAi
rn yn

∥∥)
(.)

≤ ( – αn)φ(p,xn) – αn〈zn – p, Jp〉. (.)

Now, following the method of proof of Lemma . of Maingé [], we consider two cases
as follows.
Case . Suppose that there exists n ∈ N such that {φ(p,xn)} is nonincreasing for all

n≥ n. In this situation, {φ(p,xn)} is convergent. Then from (.) we have that

ββig
(∥∥Jyn – JQAi

rn yn
∥∥) → , (.)

which implies, by the property of g , that

Jyn – JQAi
rn yn →  as n → ∞, (.)

and hence, since J– is uniformly continuous on bounded sets, we obtain that

yn –QAi
rn yn →  as n→ ∞, (.)

for each i ∈ {, , . . . ,N}.

http://www.journalofinequalitiesandapplications.com/content/2013/1/566
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Furthermore, Lemma ., the property of φ and the fact that αn → , as n → ∞, imply
that

φ(xn, yn) = φ(xn,�Czn)

≤ φ(xn, zn)

= φ
(
xn, J–

(
αnJ + ( – αn)Jxn

))
≤ αnφ(xn, ) + ( – αn)φ(xn,xn)

≤ αnφ(xn, ) + ( – αn)φ(xn,xn) →  as n→ ∞, (.)

and hence from Lemma . we get that

xn – yn → , xn – zn →  as n→ ∞. (.)

Since {zn} is bounded and E is reflexive, we choose a subsequence {zni} of {zn} such that
zni ⇀ z and lim supn→∞〈zn – p, Jp〉 = limi→∞〈zni – p, Jp〉. Then from (.) we get that

yni ⇀ z as i → ∞. (.)

Thus, from (.) and Lemma ., we obtain that z ∈ A–
i () for each i ∈ {, , . . . ,N} and

hence z ∈ ⋂N
i=A–

i ().
Therefore, by Lemma ., we immediately obtain that lim supn→∞〈zn – p, Jp〉 =

limi→∞〈zni – p, Jp〉 = 〈z – p, Jp〉 ≥ . It follows from Lemma . and (.) that φ(p,xn) → 
as n→ ∞. Consequently, from Lemma . we obtain that xn → p.
Case . Suppose that there exists a subsequence {ni} of {n} such that

φ(p,xni ) < φ(p,xni+)

for all i ∈ N. Then, by Lemma ., there exists a nondecreasing sequence {mk} ⊂ N such
that mk → ∞, φ(p,xmk ) ≤ φ(p,xmk+), and φ(p,xk) ≤ φ(p,xmk+) for all k ∈ N. Then, from
(.) and the fact that αn → , we obtain that

g
(∥∥Jymk – JQAi

rmk
ymk

∥∥) →  as k → ∞,

for each i ∈ {, , . . . ,N}. Thus, following the method of proof of Case , we obtain that
ymk –QAi

rmk
ymk → , xmk – ymk → , xmk – zmk →  as k → ∞, and hence we obtain that

lim sup
k→∞

〈zmk – p, Jp〉 ≥ . (.)

Then from (.) we have that

φ(p,xmk+) ≤ ( – αmk )φ(p,xmk ) – αmk 〈zmk – p, Jp〉. (.)

Now, since φ(p,xmk ) ≤ φ(p,xmk+), inequality (.) implies that

αmkφ(p,xmk ) ≤ φ(p,xmk ) – φ(p,xmk+) – αmk 〈zmk – p, Jp〉
≤ –αmk 〈zmk – p, Jp〉.

http://www.journalofinequalitiesandapplications.com/content/2013/1/566
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In particular, since αmk > , we get

φ(p,xmk ) ≤ –〈zmk – p, Jp〉.

Then from (.) we obtain φ(p,xmk ) →  as k → ∞. This together with (.) gives
φ(p,xmk+) →  as k → ∞. But φ(p,xk) ≤ φ(p,xmk+) for all k ∈ N, thus we obtain that
xk → p. Therefore, from the above two cases, we can conclude that {xn} converges strongly
to p, which is the common minimum-norm zero of the family {Ai, i = , , . . . ,N}, and the
proof is complete. �

Wewould like to mention that the method of proof of Theorem . provides the follow-
ing theorem.

Theorem . Let C be a nonempty, closed, and convex subset of a smooth and uniformly
convex real Banach space E. Let Ai : C → E∗, for i = , , . . . ,N , be continuous monotone
mappings satisfying (.).Assume thatF :=

⋂N
i=A–

i () is nonempty. Let {xn} be a sequence
generated by

⎧⎪⎪⎨
⎪⎪⎩
u = x ∈ C, chosen arbitrarily,

yn =�CJ–(αnJu + ( – αn)Jxn),

xn+ = J–(βJyn +
∑N

i= βiJQ
Ai
rn yn), ∀n≥ ,

(.)

whereαn ∈ (, ), {βi}Ni= ⊂ [c,d] ⊂ (, ),and {rn} ⊂ (,∞) satisfy limn→∞ αn = ,
∑∞

n= αn =
∞,

∑N
i= βi = , and limn→∞ rn =∞. Then {xn} converges strongly to �F (u).

If in Theorem ., N = , then we get the following corollary.

Corollary . Let C be a nonempty, closed, and convex subset of a smooth and uniformly
convex real Banach space E. Let A : C → E∗ be a continuous monotone mapping satisfying
(.). Assume that A–() is nonempty. Let {xn} be a sequence generated by

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C, chosen arbitrarily,

yn =�C[( – αn)xn],

xn+ = J–(βJyn + ( – β)JQA
rnyn), ∀n≥ ,

(.)

where αn ∈ (, ), β ∈ (, ), and {rn} ⊂ (,∞) satisfy limn→∞ αn = ,
∑∞

n= αn = ∞, and
limn→∞ rn =∞. Then {xn} converges strongly to the minimum-norm element of A–().

We remark that if A is a maximal monotone mapping, then A–() is closed and convex
(see [] for more details). The following lemma is well known.

Lemma . [] Let E be a smooth, strictly convex, and reflexive Banach space, let C be a
nonempty closed convex subset of E, and let A ⊂ E × E∗ be a monotone mapping. Then A
is maximal if and only if R(J + rA) = E∗ for all r > .

We note from the above lemma that if A is maximal, then it satisfies condition (.) and
hence we have the following corollary.

http://www.journalofinequalitiesandapplications.com/content/2013/1/566
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Corollary . Let C be a nonempty, closed, and convex subset of a smooth and uniformly
convex real Banach space E. Let Ai : C → E∗, i = , , . . . ,N , be maximal monotone map-
pings. Assume that F :=

⋂N
i=A–

i () is nonempty. Let {xn} be a sequence generated by

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C, chosen arbitrarily,

yn =�C[( – αn)xn],

xn+ = J–(βJyn +
∑N

i= βiJQ
Ai
rn yn), ∀n≥ ,

(.)

where αn ∈ (, ), {βi}Ni= ⊂ [c,d] ⊂ (, ) and {rn} ⊂ (,∞) satisfy limn→∞ αn = ,
∑∞

n= αn =
∞,

∑N
i= βi =  and limn→∞ rn = ∞. Then {xn} converges strongly to the minimum-norm

element of F .

If in Corollary ., N = , then we get the following corollary.

Corollary . Let C be a nonempty, closed and convex subset of a smooth and uniformly
convex real Banach space E. Let A : C → E∗ be a maximal monotone mapping. Assume
that A–() is nonempty. Let {xn} be a sequence generated by

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C, chosen arbitrarily,

yn =�C[( – αn)xn],

xn+ = J–(βJyn + ( – β)JQA
rnyn), ∀n≥ ,

(.)

where αn ∈ (, ), β ∈ (, ), and {rn} ⊂ (,∞) satisfy limn→∞ αn = ,
∑∞

n= αn = ∞, and
limn→∞ rn =∞. Then {xn} converges strongly to the minimum-norm element of A–().

If E =H , a real Hilbert space, then E is uniformly convex and smooth real Banach space.
In this case, J = I , identity map on H , and �C = PC , projection mapping from H onto C.
Furthermore, (.) reduces to (.). Thus, the following corollaries hold.

Corollary . Let C be a nonempty, closed, and convex subset of a real Hilbert space H . Let
Ai : C → E∗, for i = , , . . . ,N , be continuous monotone mappings satisfying (.). Assume
that F :=

⋂N
i=A–

i () is nonempty. Let {xn} be a sequence generated by

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C, chosen arbitrarily,

yn = PC[( – αn)xn],

xn+ = βyn +
∑N

i= βiQ
Ai
rn yn, ∀n≥ ,

(.)

where QA
r := (I + rA)–, αn ∈ (, ), {βi}Ni= ⊂ [c,d] ⊂ (, ), and {rn} ⊂ (,∞) satisfy

limn→∞ αn = ,
∑∞

n= αn =∞,
∑N

i= βi = ,and limn→∞ rn =∞.Then {xn} converges strongly
to the minimum-norm element of F .

Corollary . Let C be a nonempty, closed, and convex subset of a real Hilbert space H . Let
Ai : C → H , i = , , . . . ,N , be maximal monotone mappings. Assume that F :=

⋂N
i=A–

i ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/566
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is nonempty. Let {xn} be a sequence generated by

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C, chosen arbitrarily,

yn = PC[( – αn)xn],

xn+ = βyn +
∑N

i= βiQ
Ai
rn yn, ∀n≥ ,

(.)

where QA
r := (I + rA)–, αn ∈ (, ), {βi}Ni= ⊂ [c,d] ⊂ (, ), and {rn} ⊂ (,∞) satisfy

limn→∞ αn = ,
∑∞

n= αn =∞,
∑N

i= βi = ,and limn→∞ rn =∞.Then {xn} converges strongly
to the minimum-norm element of F .

4 Application
In this section, we study the problem of finding a minimizer of a continuously Fréchet dif-
ferentiable convex functional which has minimum-norm in Banach spaces. The following
is deduced from Corollary ..

Theorem . Let E be a uniformly convex and uniformly smooth real Banach space. Let
fi be a continuously Fréchet differentiable convex functional on E, and let �fi be maximal
monotone with F :=

⋂N
i=(�fi)–() = ∅, where (�fi)–() = {z ∈ E : fi(z) = miny∈E fi(y)}, for

i = , , . . . ,N . Let {xn} be a sequence generated by

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C, chosen arbitrarily,

yn =�C[( – αn)xn],

xn+ = J–(βJyn +
∑N

i= βiJ(J + rn � fi)–Jyn), ∀n≥ ,

(.)

whereαn ∈ (, ), {βi}Ni= ⊂ [c,d] ⊂ (, ),and {rn} ⊂ (,∞) satisfy limn→∞ αn = ,
∑∞

n= αn =
∞,

∑N
i= βi = , and limn→∞ rn = ∞. Then {xn} converges strongly to the minimum-norm

element of F .

Remark . Theorem . provides convergence scheme to the commonminimum-norm
zero of a finite family of monotonemappings which improves the results of Bauschke et al.
[] to Banach spaces more general than Hilbert spaces. We also note that our results com-
plement the results of Zegeye and Shahzad [] andHu and Liu [] which are convergence
results for accretive mappings.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to this work. All authors read and approved final manuscript.

Author details
1Department of Mathematics, University of Botswana, Pvt. Bag 00704, Gaborone, Botswana. 2Department of
Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.

Acknowledgements
This article was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah. The second
author acknowledges with thanks DSR for financial support.

Received: 2 September 2013 Accepted: 22 October 2013 Published: 27 Nov 2013

http://www.journalofinequalitiesandapplications.com/content/2013/1/566


Zegeye and Shahzad Journal of Inequalities and Applications 2013, 2013:566 Page 12 of 12
http://www.journalofinequalitiesandapplications.com/content/2013/1/566

References
1. Byrne, C: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18(2), 441-453

(2002)
2. Censor, Y, Elfving, T: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms

8(2-4), 221-239 (1994)
3. Qin, X, Kang, JI, Cho, YJ: On quasi-variational inclusions and asymptotically strict pseudo-contractions. J. Nonlinear

Convex Anal. 11, 441-453 (2010)
4. Takahashi, S, Takahashi, W, Toyoda, M: Strong convergence theorems for maximal monotone operators with

nonlinear mappings in Hilbert spaces. J. Optim. Theory Appl. 147, 27-41 (2010)
5. Zhang, M: Iterative algorithms for common elements in fixed point sets and zero point sets with applications. Fixed

Point Theory Appl. 2012, 21 (2012)
6. Takahashi, W: Nonlinear Functional Analysis. Kindikagaku, Tokyo (1988) (Japanese)
7. Bauschke, HH, Combettes, PL, Reich, S: The asymptotic behavior of the composition of two resolvents. Nonlinear

Anal. 60(2), 283-301 (2005)
8. Hundal, H: An alternating projection that does not converge in norm. Nonlinear Anal. 57, 35-61 (2004)
9. Zegeye, H, Shahzad, N: Strong convergence theorems for a common zero of a finite family ofm-accretive mappings.

Nonlinear Anal. 66, 1161-1169 (2007)
10. Hu, L, Liu, L: A new iterative algorithm for common solutions of a finite family of accretive operators. Nonlinear Anal.

70, 2344-2351 (2009)
11. Aoyama, K, Kohsaka, F, Takahashi, W: Proximal point method for monotone operators in Banach spaces. Taiwan.

J. Math. 15(1), 259-281 (2011)
12. Alber, Y: Metric and generalized projection operators in Banach spaces: properties and applications. In: Kartsatos, AG

(ed.) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. Lecture Notes in Pure and
Appl. Math., vol. 178, pp. 15-50. Dekker, New York (1996)

13. Kamimura, S, Kohsaka, F, Takahashi, W: Weak and strong convergence theorems for maximonotone operators in a
Banach spaces. Set-Valued Anal. 12, 417-429 (2004)

14. Matsushita, S, Takahashi, W: A strong convergence theorem for relatively nonexpansive mappings in a Banach space.
J. Approx. Theory 134, 257-266 (2005)

15. Kamimura, S, Takahashi, W: Strong convergence of proximal-type algorithm in a Banach space. SIAM J. Optim. 13,
938-945 (2002)

16. Zegeye, H, Ofoedu, EU, Shahzad, N: Convergence theorems for equilibrium problem, variational inequality problem
and countably infinite relatively quasi-nonexpansive mappings. Appl. Math. Comput. 216, 3439-3449 (2010)

17. Xu, HK: Another control condition in an iterative method for nonexpansive mappings. Bull. Aust. Math. Soc. 65,
109-113 (2002)

18. Maingé, PE: Strong convergence of projected subgradient methods for nonsmooth and non-strictly convex
minimization. Set-Valued Anal. 16, 89-912 (2008)

19. Rockafellar, RT: Monotone operators and proximal point algorithm. Trans. Am. Math. Soc. 194, 75-88 (1970)

10.1186/1029-242X-2013-566
Cite this article as: Zegeye and Shahzad: An algorithm for a commonminimum-norm zero of a finite family of
monotone mappings in Banach spaces. Journal of Inequalities and Applications 2013, 2013:566

http://www.journalofinequalitiesandapplications.com/content/2013/1/566

	An algorithm for a common minimum-norm zero of a ﬁnite family of monotone mappings in Banach spaces
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Main result
	Application
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


