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Abstract
In this paper, we introduce a modified version of ordered partial b-metric spaces. We
demonstrate a fundamental lemma for the convergence of sequences in such spaces.
Using this lemma, we prove some fixed point and common fixed point results for
(ψ ,ϕ)-weakly contractive mappings in the setup of ordered partial b-metric spaces.
Finally, examples are presented to verify the effectiveness and applicability of our
main results.
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1 Introduction
Fixed points theorems in partially ordered metric spaces were firstly obtained in  by
Ran and Reurings [], and then by Nieto and Lopez []. In this direction several authors
obtained further results under weak contractive conditions (see, e.g., [–]).
The concept of b-metric space was introduced by Bakhtin [] and extensively used by

Czerwik in [, ]. After that, several interesting results about the existence of a fixed
point for single-valued andmulti-valued operators in (ordered) b-metric spaces have been
obtained (see, e.g., [–]).

Definition  [] Let X be a (nonempty) set and s ≥  be a given real number. A function
d : X ×X →R+ is a b-metric on X if, for all x, y, z ∈ X, the following conditions hold:

(b) d(x, y) =  if and only if x = y,
(b) d(x, y) = d(y,x),
(b) d(x, z) ≤ s[d(x, y) + d(y, z)].

In this case, the pair (X,d) is called a b-metric space.

On the other hand, Matthews [] introduced the notion of a partial metric space as a
part of the study of denotational semantics of dataflow networks. In partial metric spaces,
self-distance of an arbitrary point need not be equal to zero. Several authors obtained
many useful fixed point results in these spaces - we mention just [–].

Definition  [] A partial metric on a nonempty setX is a mapping p : X×X → R+ such
that for all x, y, z ∈ X:
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(p) x = y if and only if p(x,x) = p(x, y) = p(y, y),
(p) p(x,x)≤ p(x, y),
(p) p(x, y) = p(y,x),
(p) p(x, y) ≤ p(x, z) + p(z, y) – p(z, z).

In this case, (X,p) is called a partial metric space.

It is clear that if p(x, y) = , then from (p) and (p), x = y. But if x = y, p(x, y) may not
be . A basic example of a partial metric space is the pair (R+,p), where p(x, y) =max{x, y}
for all x, y ∈ R+.
Each partial metric p on a set X generates a T topology τp on X which has as a base the

family of open p-balls {Bp(x, ε) : x ∈ X, ε > }, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x,x) + ε}
for all x ∈ X and ε > .

Definition  [] Let (X,p) be a partial metric space, and let {xn} be a sequence in X and
x ∈ X. Then:

(i) The sequence {xn} is said to converge to x with respect to τp if limn→∞ p(xn,x) =
p(x,x).

(ii) The sequence {xn} is said to be Cauchy in (X,p) if limn,m→∞ p(xn,xm) exists and is
finite.

(iii) (X,p) is said to be complete if every Cauchy sequence {xn} in X converges, with
respect to τp, to a point x ∈ X such that limn,m→∞ p(xn,xm) = limn→∞ p(xn,x) =
p(x,x).

The following example shows that a convergent sequence {xn} in a partial metric space
(X,p) may not be Cauchy. In particular, it shows that the limit may not be unique.

Example  [] Let X = [,∞) and p(x, y) =max{x, y}. Let

xn =

⎧⎨
⎩, n = k,

, n = k + .

Then, clearly, {xn} is a convergent sequence and for every x≥ , we have limn→∞ p(xn,x) =
p(x,x). But limn,m→∞ p(xn,xm) does not exist, that is, {xn} is not a Cauchy sequence.

As a generalization and unification of partial metric and b-metric spaces, Shukla []
introduced the concept of partial b-metric space as follows.

Definition  [] A partial b-metric on a nonempty set X is a mapping pb : X ×X →R+

such that for all x, y, z ∈ X:

(pb) x = y if and only if pb(x,x) = pb(x, y) = pb(y, y),
(pb) pb(x,x)≤ pb(x, y),
(pb) pb(x, y) = pb(y,x),
(pb) pb(x, y)≤ s[pb(x, z) + pb(z, y)] – pb(z, z).

A partial b-metric space is a pair (X,pb) such that X is a nonempty set and pb is a partial
b-metric on X. The number s≥  is called the coefficient of (X,pb).
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In a partial b-metric space (X,pb), if x, y ∈ X and pb(x, y) = , then x = y, but the converse
may not be true. It is clear that every partial metric space is a partial b-metric space with
the coefficient s =  and every b-metric space is a partial b-metric space with the same
coefficient and zero self-distance. However, the converse of these facts need not hold.

Example  [] Let X =R+, q >  be a constant and pb : X ×X →R+ be defined by

pb(x, y) =
[
max{x, y}]q + |x – y|q for all x, y ∈ X.

Then (X,pb) is a partial b-metric space with the coefficient s = q– > , but it is neither a
b-metric nor a partial metric space.

Note that in a partial b-metric space the limit of a convergent sequence may not be
unique (see [, Example ]).
Some more examples of partial b-metrics can be constructed with the help of the fol-

lowing propositions.

Proposition  [] Let X be a nonempty set, and let p be a partial metric and d be a
b-metric with the coefficient s ≥  on X. Then the function pb : X × X → R+, defined by
pb(x, y) = p(x, y) + d(x, y) for all x, y ∈ X, is a partial b-metric on X with the coefficient s.

Proposition  [] Let (X,p) be a partial metric space and q ≥ . Then (X,pb) is a partial
b-metric space with the coefficient s = q–, where pb is defined by pb(x, y) = [p(x, y)]q.

Altering distance functions were introduced by Khan et al. in [].

Definition  [] A function ψ : [,∞) → [,∞) is called an altering distance function
if the following properties are satisfied:
. ψ is continuous and nondecreasing;
. ψ(t) =  if and only if t = .

So far, many authors have studied fixed point theorems which are based on altering
distance functions (see, e.g., [, , –]).
In this paper, we introduce a modified version of ordered partial b-metric spaces. We

demonstrate a fundamental lemma for the convergence of sequences in such spaces. Using
this lemma, we prove some fixed point and common fixed point results for (ψ ,ϕ)-weakly
contractivemappings in the setup of ordered partial b-metric spaces. Finally, examples are
presented to verify the effectiveness and applicability of our main results.

2 Definition and basic properties of partial b-metric spaces
In the following definition, we modify Definition  in order to obtain that each partial
b-metric pb generates a b-metric dpb .

Definition  Let X be a (nonempty) set and s ≥  be a given real number. A function
pb : X × X → R+ is a partial b-metric if, for all x, y, z ∈ X, the following conditions are
satisfied:

(pb) x = y⇐⇒ pb(x,x) = pb(x, y) = pb(y, y),
(pb) pb(x,x)≤ pb(x, y),

http://www.journalofinequalitiesandapplications.com/content/2013/1/562
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(pb) pb(x, y) = pb(y,x),
(pb′ ) pb(x, y) ≤ s(pb(x, z) + pb(z, y) – pb(z, z)) + ( –s )(pb(x,x) + pb(y, y)).

The pair (X,pb) is called a partial b-metric space.

Since s≥ , from (pb′ ) we have

pb(x, y) ≤ s
(
pb(x, z) + pb(z, y) – pb(z, z)

) ≤ s
(
pb(x, z) + pb(z, y)

)
– pb(z, z).

Hence, a partial b-metric in the sense of Definition  is also a partial b-metric in the sense
of Definition .
It should be noted that the class of partial b-metric spaces is larger than the class of

partial metric spaces, since a partial b-metric is a partial metric when s = . We present an
example which shows that a partial b-metric on X (in the sense of Definition ) might be
neither a partial metric, nor a b-metric on X.

Example  Let (X,d) be a metric space and pb(x, y) = d(x, y)q + a, where q >  and a ≥ 
are real numbers. We will show that pb is a partial b-metric with s = q–.
Obviously, conditions (pb)-(pb) of Definition  are satisfied.
Since q > , the convexity of the function f (x) = xq (x > ) implies that (a+b)q ≤ q–(aq+

bq) holds for a,b ≥ . Thus, for each x, y, z ∈ X, we obtain

pb(x, y) = d(x, y)q + a ≤ (
d(x, z) + d(z, y)

)q + a

≤ q–
(
d(x, z)q + d(z, y)q

)
+ a

= q–
(
d(x, z)q + a + d(z, y)q + a – a

)
+ a – q–a

= q–
(
pb(x, z) + pb(z, y) – pb(z, z)

)
+

(
 – q–



)(
pb(x,x) + pb(y, y)

)
.

Hence, condition (pb′ ) of Definition  is fulfilled and pb is a partial b-metric on X.
Note that (X,pb) is not necessarily a partial metric space. For example, if X = R is the

set of real numbers, d(x, y) = |x – y|, q =  and a = , then pb(x, y) = (x – y) +  is a partial
b-metric on X with s = – = , but it is not a partial metric on X. Indeed, the ordinary
(partial) triangle inequality does not hold. To see this, let x = , y =  and z = 

 . Then
pb(, ) = , pb(,  ) =


 and pb(  , ) =


 , hence pb(, ) = � 

 = pb(,  ) + pb(  , ) –
pb(  ,


 ).

Also, pb is not a b-metric since pb(x,x) 
=  for x ∈ X.

Proposition  Every partial b-metric pb defines a b-metric dpb , where

dpb (x, y) = pb(x, y) – pb(x,x) – pb(y, y)

for all x, y ∈ X.

Proof Let x, y, z ∈ X. Then we have

dpb (x, y)

= pb(x, y) – pb(x,x) – pb(y, y)

http://www.journalofinequalitiesandapplications.com/content/2013/1/562
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≤ 
[
s
(
pb(x, z) + pb(z, y) – pb(z, z)

)
+

(
 – s


)(
pb(x,x) + pb(y, y)

)]

– pb(x,x) – pb(y, y)

= spb(x, z) + spb(z, y) – spb(z, z) + ( – s)
(
pb(x,x) + pb(y, y)

)
– pb(x,x) – pb(y, y)

= spb(x, z) + spb(z, y) – spb(z, z) – spb(x,x) – spb(y, y)

= s
[
pb(x, z) – pb(x,x) – pb(z, z) + pb(z, y) – pb(z, z) – pb(y, y)

]
= s

[
dpb (x, z) + dpb (z, y)

]
. �

Hence, the advantage of our definition of partial b-metric is that by using it we can define
a dependent b-metric which we call the b-metric associated with pb. This allows us to
readily transport many concepts and results from b-metric spaces into a partial b-metric
space.
Now, we present some definitions and propositions in a partial b-metric space.

Definition  Let (X,pb) be a partial b-metric space. Then, for x ∈ X and ε > , the pb-ball
with center x and radius ε is

Bpb (x, ε) =
{
y ∈ X | pb(x, y) < pb(x,x) + ε

}
.

For example, let (X,pb) be the partial b-metric space from Example  (with X =R, q = 
and a = ). Then

Bpb (, ) =
{
y ∈ X | pb(, y) < pb(, ) + 

}
=

{
y ∈ X | (y – ) +  <  + 

}
=

{
y ∈ X | (y – ) < 

}
= (–, ).

Proposition  Let (X,pb) be a partial b-metric space, x ∈ X and r > . If y ∈ Bpb (x, r), then
there exists δ >  such that Bpb (y, δ) ⊆ Bpb (x, r).

Proof Let y ∈ Bpb (x, r). If y = x, then we choose δ = r. Suppose that y 
= x. Then we have
pb(x, y) 
= . Now, we consider two cases.
Case . If pb(x, y) = pb(x,x), then for s =  we choose δ = r. If s > , then we consider the

set

A =
{
n ∈N

∣∣∣ r
sn+(s – )

< pb(x,x)
}
.

By the Archimedean property, A is a nonempty set; then by the well ordering principle, A
has the least element m. Since m –  /∈ A, we have pb(x,x) ≤ r/(sm(s – )) and we choose
δ = r/(sm+). Let z ∈ Bpb (y, δ); by the property (pb), we have

pb(x, z) ≤ s
(
pb(x, y) + pb(y, z) – pb(y, y)

)
≤ s

(
pb(x,x) + δ

)
≤ pb(x,x) +

r
sm

+
r

sm

http://www.journalofinequalitiesandapplications.com/content/2013/1/562
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= pb(x,x) +
r
sm

< pb(x,x) + r.

Hence, Bpb (y, δ) ⊆ Bpb (x, r).
Case . If pb(x, y) 
= pb(x,x), then from the property (pb) we have pb(x,x) < pb(x, y) and

for s =  we consider the set

B =
{
n ∈N

∣∣∣ r
n+

< pb(x, y) – pb(x,x)
}
.

Similarly, by the well ordering principle, there exists an element m such that pb(x, y) –
pb(x,x) ≤ r/(m+), and we choose δ = r/(m+). One can easily obtain that Bpb (y, δ) ⊆
Bpb (x, r).
For s > , we consider the set

C =
{
n ∈N

∣∣∣ r
sn+

< pb(x, y) –

s
pb(x,x)

}

and by thewell ordering principle, there exists an elementm such that pb(x, y)– 
s pb(x,x)≤

r
sm+ and we choose δ = r

sm+ . Let z ∈ Bpb (y, δ). By the property (pb), we have

pb(x, z) ≤ s
(
pb(x, y) + pb(y, z) – pb(y, y)

)
≤ s

(
pb(x, y) + δ

)
≤ pb(x,x) +

r
sm

+
r

sm

= pb(x,x) +
r
sm

< pb(x,x) + r.

Hence, Bpb (y, δ) ⊆ Bpb (x, r). �

Thus, from the above proposition the family of all pb-balls

� =
{
Bpb (x, r) | x ∈ X, r > 

}
is a base of a T topology τpb on X which we call the pb-metric topology.
The topological space (X,pb) is T, but need not be T.

Definition  A sequence {xn} in a partial b-metric space (X,pb) is said to be:
(i) pb-convergent to a point x ∈ X if limn→∞ pb(x,xn) = pb(x,x);
(ii) a pb-Cauchy sequence if limn,m→∞ pb(xn,xm) exists (and is finite).
(iii) A partial b-metric space (X,pb) is said to be pb-complete if every pb-Cauchy

sequence {xn} in X pb-converges to a point x ∈ X such that limn,m→∞ pb(xn,xm) =
limn,m→∞ pb(xn,x) = pb(x,x).

The following lemma shows the relationship between the concepts of pb-convergence,
pb-Cauchyness and pb-completeness in two spaces (X,pb) and (X,dpb ) which we state and
prove according to Lemma . of [].

http://www.journalofinequalitiesandapplications.com/content/2013/1/562
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Lemma 
() A sequence {xn} is a pb-Cauchy sequence in a partial b-metric space (X,pb) if and

only if it is a b-Cauchy sequence in the b-metric space (X,dpb ).
() A partial b-metric space (X,pb) is pb-complete if and only if the b-metric space

(X,dpb ) is b-complete.Moreover, limn→∞ dpb (x,xn) =  if and only if

lim
n→∞pb(x,xn) = lim

n,m→∞pb(xn,xm) = pb(x,x).

Proof First, we show that every pb-Cauchy sequence in (X,pb) is a b-Cauchy sequence in
(X,dpb ). Let {xn} be a pb-Cauchy sequence in (X,pb). Then, there exists α ∈ R such that,
for arbitrary ε > , there is nε ∈N with

∣∣pb(xn,xm) – α
∣∣ < ε



for all n,m ≥ nε . Hence,

∣∣dpb (xn,xm)∣∣
= pb(xn,xm) – pb(xn,xn) – pb(xm,xm)

=
∣∣pb(xn,xm) – α + α – pb(xn,xn) + pb(xm,xn) – α + α – pb(xm,xm)

∣∣
≤ ∣∣pb(xn,xm) – α

∣∣ + ∣∣α – pb(xn,xn)
∣∣ + ∣∣pb(xm,xn) – α

∣∣ + ∣∣α – pb(xm,xm)
∣∣

< ε

for all n,m ≥ nε . Hence, we conclude that {xn} is a b-Cauchy sequence in (X,dpb ).
Next, we prove that b-completeness of (X,dpb ) implies pb-completeness of (X,pb). In-

deed, if {xn} is a pb-Cauchy sequence in (X,pb), then according to the above discussion,
it is also a b-Cauchy sequence in (X,dpb ). Since the b-metric space (X,dpb ) is b-complete,
we deduce that there exists y ∈ X such that limn→∞ dpb (y,xn) = . Hence,

lim
n→∞

[
pb(xn, y) – pb(y, y) + pb(y,xn) – pb(xn,xn)

]
= ,

therefore, limn→∞[pb(xn, y) – pb(y, y)] = . Further, we have

lim
n→∞

[
pb(y,xn) – pb(xn,xn)

]
= .

Consequently,

lim
n→∞pb(xn, y) = pb(y, y) = lim

n→∞pb(xn,xn).

On the other hand,

lim
n,m→∞pb(xn,xm) ≤ lim

n,m→∞ spb(xn, y) + lim
n,m→∞ spb(xm, y) – spb(y, y)

+
(
 – s


)(
pb(xn,xn) + pb(xm,xm)

)
= pb(y, y).

http://www.journalofinequalitiesandapplications.com/content/2013/1/562
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Also, from (pb),

pb(y, y) ≤ lim
n,m→∞pb(xn, y) = lim

n,m→∞pb(xn,xn) ≤ lim
n,m→∞pb(xn,xm).

Hence, we obtain that {xn} is a pb-convergent sequence in (X,pb).
Now, we prove that every b-Cauchy sequence {xn} in (X,dpb ) is a pb-Cauchy sequence

in (X,pb). Let ε = 
 . Then there exists n ∈ N such that dpb (xn,xm) <


 for all n,m ≥ n.

Since

pb(xn,xn ) – pb(xn ,xn )≤ dpb (xn,xn ) <


,

hence

pb(xn,xn) ≤ pb(xn,xn ) ≤ dpb (xn,xn ) + pb(xn ,xn ) <


+ pb(xn ,xn ).

Consequently, the sequence {pb(xn,xn)} is bounded in R, and so there exists a ∈ R such
that a subsequence {pb(xnk ,xnk )} of {pb(xn,xn)} is convergent to a, i.e.,

lim
k→∞

pb(xnk ,xnk ) = a.

Now, we prove that {pb(xn,xn)} is a Cauchy sequence in R. Since {xn} is a b-Cauchy
sequence in (X,dpb ) for given ε > , there exists nε ∈ N such that dpb (xn,xm) < ε for all
n,m ≥ nε . Thus, for all n,m ≥ nε ,

pb(xn,xn) – pb(xm,xm) ≤ pb(xn,xm) – pb(xm,xm)

≤ dpb (xm,xn) < ε.

Therefore, limn→∞ pb(xn,xn) = a.
On the other hand,

∣∣pb(xn,xm) – a
∣∣ = ∣∣pb(xn,xm) – pb(xn,xn) + pb(xn,xn) – a

∣∣
≤ dpb (xm,xn) +

∣∣pb(xn,xn) – a
∣∣

for all n,m ≥ nε . Hence, limn,m→∞ pb(xn,xm) = a, and consequently, {xn} is a pb-Cauchy
sequence in (X,pb).
Conversely, let {xn} be a b-Cauchy sequence in (X,dpb ). Then {xn} is a pb-Cauchy se-

quence in (X,pb), and so it is convergent to a point x ∈ X with

lim
n→∞pb(x,xn) = lim

n,m→∞pb(xm,xn) = pb(x,x).

Then, for given ε > , there exists nε ∈N such that

pb(x,xn) – pb(x,x) <
ε



and

pb(xn,xn) – pb(x,x)≤ pb(xm,xn) – pb(x,x) <
ε


.

http://www.journalofinequalitiesandapplications.com/content/2013/1/562
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Therefore,

∣∣dpb (xn,x)∣∣ = ∣∣pb(xn,x) – pb(xn,xn) + pb(xn,x) – pb(x,x)
∣∣

≤ ∣∣pb(xn,x) – pb(x,x)
∣∣ + ∣∣pb(x,x) – pb(xn,xn)

∣∣ + ∣∣pb(xn,x) – pb(x,x)
∣∣

< ε,

whenever n≥ nε . Therefore, (X,dpb ) is complete.
Finally, let limn→∞ dpb (xn,x) = . So,

lim
n→∞

[
pb(xn,x) – pb(xn,xn)

]
+ lim

n→∞
[
pb(xn,x) – pb(x,x)

]
= .

On the other hand,

lim
n,m→∞

[
pb(xn,xm) – pb(x,x)

]

≤ lim
n→∞

[
spb(xn,x) + spb(x,xm) – spb(x,x)

+
(
 – s


)(
pb(xn,xn) + pb(xm,xm)

)
– pb(x,x)

]

= . �

Definition  Let (X,pb) and (X ′,p′
b) be two partial b-metric spaces, and let f : (X,pb) →

(X ′,p′
b) be a mapping. Then f is said to be pb-continuous at a point a ∈ X if for a given

ε > , there exists δ >  such that x ∈ X and pb(a,x) < δ + pb(a,a) imply that p′
b(f (a), f (x)) <

ε + p′
b(f (a), f (a)). The mapping f is pb-continuous on X if it is pb-continuous at all a ∈ X.

Proposition  Let (X,pb) and (X ′,p′
b) be two partial b-metric spaces. Then a mapping

f : X → X′ is pb-continuous at a point x ∈ X if and only if it is pb-sequentially continuous
at x; that is, whenever {xn} is pb-convergent to x, {f (xn)} is p′

b-convergent to f (x).

Definition  A triple (X,�,pb) is called an ordered partial b-metric space if (X,�) is a
partially ordered set and pb is a partial b-metric on X.

3 Fixed point results in partial b-metric spaces
The following crucial lemma is useful in proving our main results.

Lemma  Let (X,pb) be a partial b-metric space with the coefficient s >  and suppose that
{xn} and {yn} are convergent to x and y, respectively. Then we have


s
pb(x, y) –


s
pb(x,x) – pb(y, y) ≤ lim inf

n→∞ pb(xn, yn)≤ lim sup
n→∞

pb(xn, yn)

≤ spb(x,x) + spb(y, y) + spb(x, y).

In particular, if pb(x, y) = , then we have limn→∞ pb(xn, yn) = .
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Moreover, for each z ∈ X, we have


s
pb(x, z) – pb(x,x)≤ lim inf

n→∞ pb(xn, z) ≤ lim sup
n→∞

pb(xn, z)

≤ spb(x, z) + spb(x,x).

In particular, if pb(x,x) = , then we have


s
pb(x, z) ≤ lim inf

n→∞ pb(xn, z) ≤ lim sup
n→∞

pb(xn, z) ≤ spb(x, z).

Proof Using the triangle inequality in a partial b-metric space, it is easy to see that

pb(x, y) ≤ spb(x,xn) + spb(xn, yn) + spb(yn, y)

and

pb(xn, yn) ≤ spb(xn,x) + spb(x, y) + spb(y, yn).

Taking the lower limit as n → ∞ in the first inequality and the upper limit as n → ∞ in
the second inequality, we obtain the first desired result. If pb(x, y) = , then by the triangle
inequality we get pb(x,x) =  and pb(y, y) = . Therefore, we have limn→∞ pb(xn, yn) = .
Similarly, using again the triangle inequality, the other assertions follow. �

Let (X,�,pb) be an ordered partial b-metric space, and let f : X → X be a mapping. Set

Mf
s (x, y) =max

{
pb(x, y),pb(x, fx),pb(y, fy),

pb(x, fy) + pb(y, fx)
s

}
.

Definition  Let (X,pb) be an ordered partial b-metric space. We say that a mapping
f : X → X is a generalized (ψ ,ϕ)s-weakly contractive mapping if there exist two altering
distance functions ψ and ϕ such that

ψ
(
spb(fx, fy)

) ≤ ψ
(
Mf

s (x, y)
)
– ϕ

(
Mf

s (x, y)
)

(.)

for all comparable x, y ∈ X.

First, we prove the following result.

Theorem  Let (X,�,pb) be a pb-complete ordered partial b-metric space. Let f : X → X
be a nondecreasing, with respect to �, continuous mapping. Suppose that f is a generalized
(ψ ,ϕ)s-weakly contractive mapping. If there exists x ∈ X such that x � fx, then f has a
fixed point.

Proof Let x ∈ X be such that x � fx. Then we define a sequence (xn) in X such that
xn+ = fxn for all n≥ . Since x � fx = x and f is nondecreasing, we have x = fx � x =

http://www.journalofinequalitiesandapplications.com/content/2013/1/562
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fx. Again, as x � x and f is nondecreasing, we have x = fx � x = fx. By induction, we
have

x � x � · · · � xn � xn+ � · · · .

If xn = xn+ for some n ∈ N, then xn = fxn and hence xn is a fixed point of f . So, we may
assume that xn 
= xn+ for all n ∈ N. By (.), we have

ψ
(
pb(xn,xn+)

) ≤ ψ
(
spb(xn,xn+)

)
=ψ

(
spb(fxn–, fxn)

)
≤ ψ

(
Mf

s (xn–,xn)
)
– ϕ

(
Mf

s (xn–,xn)
)
, (.)

where

Mf
s (xn–,xn) = max

{
pb(xn–,xn),pb(xn–, fxn–),pb(xn, fxn),

pb(xn–, fxn) + pb(xn, fxn–)
s

}

= max

{
pb(xn–,xn),pb(xn,xn+),

pb(xn–,xn+) + pb(xn,xn)
s

}

≤ max

{
pb(xn–,xn),pb(xn,xn+),

spb(xn–,xn) + spb(xn,xn+) + ( – s)pb(xn,xn)
s

}

= max
{
pb(xn–,xn),pb(xn,xn+)

}
.

So, we have

Mf
s (xn–,xn) =max

{
pb(xn–,xn),pb(xn,xn+)

}
. (.)

From (.), (.) we get

ψ
(
pb(xn,xn+)

) ≤ ψ
(
max

{
pb(xn–,xn),pb(xn,xn+)

})
– ϕ

(
max

{
pb(xn–,xn),pb(xn,xn+)

})
. (.)

If

max
{
pb(xn–,xn),pb(xn,xn+)

}
= pb(xn,xn+),

then by (.) and properties of ϕ, we have

ψ
(
pb(xn,xn+)

) ≤ ψ
(
pb(xn,xn+)

)
– ϕ

(
pb(xn,xn+)

)
< ψ

(
pb(xn,xn+)

)
,
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which gives a contradiction. Thus,

ψ
(
pb(xn,xn+)

) ≤ ψ
(
pb(xn–,xn)

)
– ϕ

(
pb(xn–,xn)

)
. (.)

Therefore, {pb(xn,xn+) : n ∈N∪{}} is a nonincreasing sequence of positive numbers. So,
there exists r ≥  such that

lim
n→∞pb(xn,xn+) = r.

Letting n → ∞ in (.), we get

ψ(r)≤ ψ(r) – ϕ(r)≤ ψ(r).

Therefore, ϕ(r) = , and hence r = . Thus, we have

lim
n→∞pb(xn,xn+) = . (.)

Next, we show that {xn} is a pb-Cauchy sequence in X. For this, we have to show that
{xn} is a b-Cauchy sequence in (X,dpb ) (see Lemma ). Suppose the contrary; that is, {xn} is
not a b-Cauchy sequence. Then there exists ε >  for which we can find two subsequences
{xmi} and {xni} of {xn} such that ni is the smallest index for which

ni >mi > i, dpb (xmi ,xni ) ≥ ε. (.)

This means that

dpb (xmi ,xni–) < ε. (.)

From (.) and using the triangular inequality, we get

ε ≤ dpb (xmi ,xni ) ≤ sdpb (xmi ,xni–) + sdpb (xni–,xni ). (.)

Taking the upper limit as i → ∞ and using (.), we get

ε

s
≤ lim inf

i→∞ dpb (xmi ,xni–) ≤ lim sup
i→∞

dpb (xmi ,xni–) ≤ ε. (.)

Also, from (.) and (.),

ε ≤ lim sup
i→∞

dpb (xmi ,xni ) ≤ sε.

Further,

dpb (xmi+,xni ) ≤ sdpb (xmi+,xmi ) + sdpb (xmi ,xni ),

and hence

lim sup
i→∞

dpb (xmi+,xni ) ≤ sε.

http://www.journalofinequalitiesandapplications.com/content/2013/1/562
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Finally,

dpb (xmi+,xni–) ≤ sdpb (xmi+,xmi ) + sdpb (xmi ,xni–),

and hence

lim sup
i→∞

dpb (xmi+,xni–)≤ sε.

On the other hand, by the definition of dpb and (.),

lim sup
i→∞

dpb (xmi ,xni–) =  lim sup
i→∞

pb(xmi ,xni–).

Hence, by (.),

ε

s
≤ lim inf

i→∞ pb(xmi ,xni–) ≤ lim sup
i→∞

pb(xmi ,xni–) ≤
ε


. (.)

Similarly,

lim sup
i→∞

pb(xmi ,xni ) ≤
sε

, (.)

ε

s
≤ lim sup

i→∞
pb(xmi+,xni ), (.)

lim sup
i→∞

pb(xmi+,xni–)≤
sε

. (.)

From (.), we have

ψ
(
spb(xmi+,xni )

)
=ψ

(
spb(fxmi , fxni–)

)
≤ ψ

(
Mf

s (xmi ,xni–)
)
– ϕ

(
Mf

s (xmi ,xni–)
)
, (.)

where

Mf
s (xmi ,xni–)

=max

{
pb(xmi ,xni–),pb(xmi , fxmi ),pb(xni–, fxni–),

pb(xmi , fxni–) + pb(fxmi ,xni–)
s

}

=max

{
pb(xmi ,xni–),pb(xmi ,xmi+),pb(xni–,xni ),

pb(xmi ,xni ) + pb(xmi+,xni–)
s

}
. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/562
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Taking the upper limit as i → ∞ in (.) and using (.), (.), (.) and (.), we get

lim sup
i→∞

Mf
s (xmi ,xni–) = max

{
lim sup
i→∞

pb(xmi ,xni–), , ,

lim supi→∞ pb(xmi ,xni ) + lim supi→∞ pb(xmi+,xni–)
s

}

≤ max

{
ε


,

εs+εs

s

}
=

ε


. (.)

Now, taking the upper limit as i→ ∞ in (.) and using (.) and (.), we have

ψ

(
s

ε

s

)
≤ ψ

(
s lim sup

i→∞
pb(xmi+,xni )

)

≤ ψ
(
lim sup
i→∞

Mf
s (xmi ,xni–)

)
– lim inf

i→∞ ϕ
(
Mf

s (xmi ,xni–)
)

≤ ψ

(
ε



)
– ϕ

(
lim inf
i→∞ Mf

s (xmi ,xni–)
)
,

which further implies that

ϕ
(
lim inf
i→∞ Mf

s (xmi ,xni–)
)
= ,

so lim infi→∞ Mf
s (xmi ,xni–) = , and by (.) we get lim infi→∞ dpb (xmi ,xni–) = , a con-

tradiction with (.).
Thus, we have proved that {xn} is a b-Cauchy sequence in the b-metric space (X,dpb ).

Since (X,pb) is pb-complete, then from Lemma , (X,dpb ) is a b-complete b-metric space.
Therefore, the sequence {xn} converges to some z ∈ X, that is, limn→∞ dpb (xn, z) = . Again,
from Lemma ,

lim
n→∞pb(z,xn) = lim

n→∞pb(xn,xn) = pb(z, z).

On the other hand, thanks to (.) and condition (pb), limn→∞ pb(xn,xn) = , which yields
that

lim
n→∞pb(z,xn) = lim

n→∞pb(xn,xn) = pb(z, z) = .

Using the triangular inequality, we get

pb(z, fz) ≤ spb(z, fxn) + spb(fxn, fz).

Letting n → ∞ and using the continuity of f , we get

pb(z, fz) ≤ s lim
n→∞pb(z, fxn) + s lim

n→∞pb(fxn, fz) = spb(fz, fz). (.)

Note that from (.), we have

ψ
(
spb(fz, fz)

) ≤ ψ
(
Mf

s (z, z)
)
– ϕ

(
Mf

s (z, z)
)
, (.)
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where

Mf
s (z, z) =max

{
pb(z, z),pb(z, fz),pb(z, fz),

pb(z, fz) + pb(z, fz)
s

}
= pb(fz, z).

Hence, as ψ is nondecreasing, we have spb(fz, fz) ≤ pb(fz, z). Thus, by (.) we obtain that
spb(fz, fz) = pb(fz, z). But then, using (.), we get that ϕ(Mf

s (z, z)) = .
Hence, we have pb(fz, z) =  and fz = z. Thus, z is a fixed point of f . �

We will show now that the continuity of f in Theorem  is not necessary and can be
replaced by another assumption.

Theorem  Under the hypotheses of Theorem , without the continuity assumption on f ,
assume that whenever {xn} is a nondecreasing sequence in X such that xn → x ∈ X, one has
xn � x for all n ∈N. Then f has a fixed point in X .

Proof Following similar arguments as those given in Theorem , we construct an increas-
ing sequence {xn} in X such that xn → z for some z ∈ X. Using the assumption on X, we
have xn � z for all n ∈N. Now, we show that fz = z. By (.), we have

ψ
(
spb(xn+, fz)

)
=ψ

(
spb(fxn, fz)

)
≤ ψ

(
Mf

s (xn, z)
)
– ϕ

(
Mf

s (xn, z)
)
, (.)

where

Mf
s (xn, z) =max

{
pb(xn, z),pb(xn, fxn),pb(z, fz),

pb(xn, fz) + pb(fxn, z)
s

}

=max

{
pb(xn, z),pb(xn,xn+),pb(z, fz),

pb(xn, fz) + pb(xn+, z)
s

}
. (.)

Letting n → ∞ in (.) and using Lemma , we get

pb(z, fz)
s

=min

{
pb(z, fz),

pb(z,fz)
s
s

}
≤ lim inf

i→∞ Mf
s (xn, z) ≤ lim sup

i→∞
Mf

s (xn, z)

≤max

{
pb(z, fz),

spb(z, fz)
s

}
= pb(z, fz). (.)

Again, taking the upper limit as n → ∞ in (.) and using Lemma  and (.), we get

ψ
(
pb(z, fz)

)
=ψ

(
s

s
pb(z, fz)

)
≤ ψ

(
s lim sup

n→∞
pb(xn+, fz)

)

≤ ψ
(
lim sup
n→∞

Mf
s (xn, z)

)
– lim inf

n→∞ ϕ
(
Mf

s (xn, z)
)

≤ ψ
(
pb(z, fz)

)
– ϕ

(
lim inf
n→∞ Mf

s (xn, z)
)
.

Therefore, ϕ(lim infn→∞ Mf
s (xn, z)) ≤ , equivalently, lim infn→∞ Mf

s (xn, z) = . Thus, from
(.) we get z = fz, and hence z is a fixed point of f . �
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Corollary  Let (X,�,pb) be a pb-complete ordered partial b-metric space. Let f : X → X
be a continuous mapping, nondecreasing with respect to �. Suppose that there exists k ∈
[, ) such that

pb(fx, fy) ≤ k
s
max

{
pb(x, y),pb(x, fx),pb(y, fy),

pb(x, fy) + pb(y, fx)
s

}

for all comparable elements x, y ∈ X. If there exists x ∈ X such that x � fx, then f has a
fixed point.

Proof Follows from Theorem  by taking ψ(t) = t and ϕ(t) = ( – k)t, for all t ∈ [, +∞).�

Corollary  Under the hypotheses of Corollary , without the continuity assumption on f ,
for any nondecreasing sequence {xn} in X such that xn → x ∈ X, let us have xn � x for all
n ∈N. Then f has a fixed point in X .

Now, in order to support the usability of our results, we present the following example.

Example  Let X = [,+∞) be equipped with the partial order � defined by

x � y ⇐⇒ x = y∨ (
x, y ∈ [, ]∧ x ≤ y

)
,

and with the partial b-metric pb given by pb(x, y) = [max{x, y}] (with s = ). Consider the
mapping f : X → X given by

fx =

⎧⎨
⎩

x√

√
+x , x ∈ [, ],

x
 , x > .

Then f is continuous and increasing, and  � f . Take altering distance functions

ψ(t) = t, ϕ(t) =

⎧⎨
⎩

t
√
t

+
√
t , ≤ t ≤ ,

t
 , t > .

In order to check the contractive condition (.) of Theorem , without loss of generality,
we may take x, y ∈ X such that y� x. Consider the following two possible cases.
Case . ≤ y ≤ x ≤ . Then

pb(fx, fy) =
[
max

{
x√


√
 + x

,
y√


√
 + y

}]

=
x

( + x)

and

Mf
s (x, y) =max

{
x,x, y,

x +max{y, x√

√
+x }

s

}
= x.

Thus, (.) reduces to

ψ

(
 · x

( + x)

)
=

x

 + x
≤ x –

x

 + x
=ψ

(
x

)
– ϕ

(
x

)
.
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Case . x = y≥ . Then pb(fx, fy) = x
 andMf

s (x, y) = x, so (.) reduces to

ψ

(
 · x





)
=
x


≤ x –

x


=ψ

(
x

)
– ϕ

(
x

)
.

Hence, all the conditions of Theorem  are satisfied and f has a fixed point (which is z = ).

4 Common fixed point results in partial b-metric spaces
Let (X,�,pb) be an ordered partial b-metric space with the coefficient s ≥ , and let f , g :
X → X be two mappings. Set

Mf ,g
s (x, y) =max

{
pb(x, y),pb(x, fx),pb(y, gy),

pb(x, gy) + pb(y, fx)
s

}
.

Now, we present the following definition.

Definition  Let (X,�,pb) be an ordered partial b-metric space, and let ψ and ϕ be
altering distance functions. We say that a pair (f , g) of self-mappings f , g : X → X is a
generalized (ψ ,ϕ)s-contraction pair if

ψ
(
spb(fx, gy)

) ≤ ψ
(
Mf ,g

s (x, y)
)
– ϕ

(
Mf ,g

s (x, y)
)

(.)

for all comparable x, y ∈ X.

Definition  [] Let (X,�) be a partially ordered set. Then two mappings f , g : X → X
are said to be weakly increasing if fx � gfx and gx� fgx for all x ∈ X.

Theorem  Let (X,�,pb) be a pb-complete ordered partial b-metric space with the coef-
ficient s ≥ , and let f , g : X → X be two weakly increasing mappings with respect to �.
Suppose that (f , g) is a generalized (ψ ,ϕ)s-contraction pair for some altering distance func-
tions ψ and ϕ. If f and g are continuous, then f and g have a common fixed point.

Proof Let us divide the proof into two parts as follows.
First part. We prove that u ∈ X is a fixed point of f if and only if it is a fixed point of g .

Suppose that u is a fixed point of f , that is, fu = u. As u� u, by (.), we have

ψ
(
spb(u, gu)

)
= ψ

(
spb(fu, gu)

)
≤ ψ

(
max

{
pb(u,u),pb(u, fu),pb(u, gu),


s

(
pb(u, gu) + pb(u, fu)

)})

– ϕ

(
max

{
pb(u,u),pb(u, fu),pb(u, gu),


s

(
pb(u, gu) + pb(u, fu)

)})

≤ ψ
(
pb(u, gu)

)
– ϕ

(
max

{
pb(u,u),pb(u, fu),pb(u, gu),


s

(
pb(u, gu) + pb(u, fu)

)})

≤ ψ
(
spb(u, gu)

)
– ϕ

(
max

{
pb(u,u),pb(u, fu),pb(u, gu),


s

(
pb(u, gu) + pb(u, fu)

)})
.
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Therefore, pb(u, gu) =  and hence gu = u. Similarly, we can show that if u is a fixed point
of g , then u is a fixed point of f .
Second part (construction of a sequence by iterative technique).
Let x ∈ X. We construct a sequence {xn} in X such that xn+ = fxn and xn+ = gxn+

for all nonnegative integers n. As f and g are weakly increasing with respect to �, we have

x = fx � gfx = x = gx � fgx = x � · · ·
� xn+ = fxn � gfxn = xn+ � · · · .

If xn = xn+ for some n ∈N, then xn = fxn. Thus xn is a fixed point of f . By the first part,
we conclude that xn is also a fixed point of g .
If xn+ = xn+ for some n ∈ N, then xn+ = gxn+. Thus, xn+ is a fixed point of g . By

the first part, we conclude that xn+ is also a fixed point of f . Therefore, we assume that
xn 
= xn+ for all n ∈N. Now, we complete the proof in the following steps.
Step : We will prove that

lim
n→∞pb(xn,xn+) = .

As xn+ and xn+ are comparable, by (.), we have

ψ
(
pb(xn+,xn+)

) ≤ ψ
(
spb(xn+,xn+)

)
=ψ

(
spb(fxn, gxn+)

)
≤ ψ

(
Mf ,g

s (xn,xn+)
)
– ϕ

(
Mf ,g

s (xn,xn+)
)
,

where

Mf ,g
s (xn,xn+) = max

{
pb(xn,xn+),pb(xn, fxn),pb(xn+, gxn+),

pb(fxn,xn+) + pb(xn, gxn+)
s

}

= max

{
pb(xn,xn+),pb(xn+,xn+),

pb(xn+,xn+) + pb(xn,xn+)
s

}

≤ max

{
pb(xn,xn+),pb(xn+,xn+),

spb(xn,xn+) + spb(xn+,xn+)
s

}

= max
{
pb(xn,xn+),pb(xn+,xn+)

}
.

Hence, we have

ψ
(
pb(xn+,xn+)

) ≤ ψ
(
max

{
pb(xn,xn+),pb(xn+,xn+)

})
– ϕ

(
max

{
pb(xn,xn+),pb(xn+,xn+)

})
. (.)
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If

max
{
pb(xn,xn+),pb(xn+,xn+)

}
= pb(xn+,xn+),

then (.) becomes

ψ
(
pb(xn+,xn+)

) ≤ ψ
(
pb(xn+,xn+)

)
– ϕ

(
pb(xn+,xn+)

)
< ψ

(
pb(xn+,xn+)

)
,

which gives a contradiction. Hence,

max
{
pb(xn,xn+),pb(xn+,xn+)

}
= pb(xn,xn+),

and (.) becomes

ψ
(
pb(xn+,xn+)

) ≤ ψ
(
pb(xn,xn+)

)
– ϕ

(
pb(xn,xn+)

)
≤ ψ

(
pb(xn,xn+)

)
. (.)

Similarly, we can show that

ψ
(
pb(xn+,xn)

) ≤ ψ
(
pb(xn–,xn)

)
– ϕ

(
pb(xn–,xn)

) ≤ ψ
(
pb(xn–,xn)

)
. (.)

By (.) and (.), we get that {pb(xn,xn+) : n ∈N} is a nonincreasing sequence of positive
numbers. Hence, there is r ≥  such that

lim
n→∞pb(xn,xn+) = r.

Letting n → ∞ in (.), we get

ψ(r)≤ ψ(r) – ϕ(r)≤ ψ(r),

which implies that ϕ(r) =  and hence r = . So, we have

lim
n→∞pb(xn,xn) ≤ lim

n→∞pb(xn,xn+) = . (.)

Step . We will prove that {xn} is a pb-Cauchy sequence. Because of (.), it is sufficient
to show that {xn} is a pb-Cauchy sequence. By Lemma , we should show that {xn} is
b-Cauchy in (X,dpb ). Suppose the contrary, i.e., that {xn} is not a b-Cauchy sequence in
(X,dpb ). Then there exists ε >  for which we can find two subsequences {xmi} and {xni}
of {xn} such that ni is the smallest index for which

ni >mi > i, dpb (xmi ,xni ) ≥ ε. (.)

This means that

dpb (xmi ,xni–) < ε. (.)
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From (.) and using the triangular inequality, we get

ε ≤ dpb (xmi ,xni )≤ sdpb (xmi ,xmi+) + sdpb (xmi+,xni ).

Using (.) and taking the upper limit as i→ ∞, we get

ε

s
≤ lim sup

i→∞
dpb (xmi+,xni ).

On the other hand, we have

dpb (xmi ,xni–) ≤ sdpb (xmi ,xni–) + sdpb (xni–,xni–).

Using (.), (.) and taking the upper limit as i→ ∞, we get

lim sup
i→∞

dpb (xmi ,xni–) ≤ εs. (.)

Again, using the triangular inequality, we have

dpb (xmi ,xni ) ≤ sdpb (xmi ,xni–) + sdpb (xni–,xni )

≤ sdpb (xmi ,xni–) + sdpb (xni–,xni–) + sdpb (xni–,xni )

and

dpb (xmi+,xni–) ≤ sdpb (xmi+,xmi ) + sdpb (xmi ,xni–).

Taking the upper limit as i→ ∞ in the above inequalities and using (.), (.) and (.),
we get

lim sup
i→∞

dpb (xmi ,xni ) ≤ εs

and

lim sup
i→∞

dpb (xmi+,xni–) ≤ εs.

From the definition of dpb and (.), we have the following relations:

ε

s
≤ lim sup

i→∞
pb(xmi+,xni ), (.)

ε

s
≤ lim inf

i→∞ pb(xmi ,xni–) ≤ lim sup
i→∞

pb(xmi ,xni–) ≤
sε

, (.)

lim sup
i→∞

pb(xmi ,xni )≤
sε

, (.)

lim sup
i→∞

pb(xmi+,xni–) ≤
sε


. (.)
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Since xmi and xni– are comparable, using (.) we have

ψ
(
spb(xmi+,xni )

)
=ψ

(
spb(fxmi , gxni–)

)
≤ ψ

(
Mf ,g

s (xmi ,xni–)
)
– ϕ

(
Mf ,g

s (xmi ,xni–)
)
, (.)

where

Mf ,g
s (xmi ,xni–) = max

{
pb(xmi ,xni–),pb(xmi ,xmi+),pb(xni–,xni ),

pb(xmi ,xni ) + pb(xmi+,xni–)
s

}
. (.)

Taking the upper limit in (.) and using (.) and (.)-(.), we get

lim sup
i→∞

Mf ,g
s (xmi ,xni–) = max

{
lim sup
i→∞

pb(xmi ,xni–), , ,

lim supi→∞ pb(xmi ,xni ) + lim supi→∞ pb(xmi+,xni–)
s

}

≤ max

{
sε

,

εs+εs

s

}
=
sε

. (.)

Now, taking the upper limit as i→ ∞ in (.) and using (.) and (.), we have

ψ

(
sε


)
=ψ

(
s

ε

s

)
≤ ψ

(
s lim sup

i→∞
pb(xmi+,xni )

)

≤ ψ
(
lim sup
i→∞

Mf ,g
s (xmi ,xni–)

)
– ϕ

(
lim inf
i→∞ Mf ,g

s (xmi ,xni–)
)

≤ ψ

(
sε


)
– ϕ

(
lim inf
i→∞ Mf ,g

s (xmi ,xni–)
)
,

which implies that ϕ(lim infi→∞ Mf ,g
s (xmi ,xni–)) = . By (.), it follows that

lim inf
i→∞ pb(xmi ,xni–) = ,

which is in contradiction with (.). Thus, we have proved that {xn} is a b-Cauchy se-
quence in the metric space (X,dpb ). Since (X,pb) is pb-complete, then from Lemma ,
(X,dpb ) is a b-complete b-metric space. Therefore, the sequence {xn} converges to some
z ∈ X, that is, limn→∞ dpb (xn, z) = . Again, from Lemma ,

lim
n→∞pb(z,xn) = lim

n→∞pb(xn,xn) = pb(z, z).

On the other hand, from (.) we get that

lim
n→∞pb(z,xn) = lim

n→∞pb(xn,xn) = pb(z, z) = .
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Step  (Existence of a common fixed point). Using the triangular inequality, we get

pb(z, fz) ≤ spb(z, fxn) + spb(fxn, fz),

pb(z, gz) ≤ spb(z, gxn+) + spb(gxn+, gz).

Letting n → ∞ and using the continuity of f and g , we get

pb(z, fz) ≤ s lim
n→∞pb(z, fxn) + s lim

n→∞pb(fxn, fz) = spb(fz, fz),

pb(z, gz) ≤ s lim
n→∞pb(z, gxn+) + s lim

n→∞pb(gxn+, gz) = spb(gz, gz).

Therefore,

max
{
pb(z, fz),pb(z, gz)

} ≤max
{
spb(fz, fz), spb(gz, gz)

} ≤ spb(gz, fz). (.)

From (.), we have

ψ
(
spb(fz, gz)

) ≤ ψ
(
Mf ,g

s (z, z)
)
– ϕ

(
Mf ,g

s (z, z)
)
, (.)

where

Mf ,g
s (z, z) =max

{
pb(z, z),pb(z, fz),pb(z, gz),

pb(z, gz) + pb(z, fz)
s

}

=max
{
pb(z, fz),pb(z, gz)

}
.

As ψ is nondecreasing, we have spb(fz, gz) ≤ max{pb(z, fz),pb(z, gz)}. Hence, by (.)
we obtain that spb(fz, gz) = max{pb(z, fz),pb(z, gz)}. But then, using (.), we get that
ϕ(Mf ,g

s (z, z)) = . Thus, we have fz = gz = z and z is a common fixed point of f and g . �

The continuity of functions f and g in Theorem  can be replaced by another condition.

Theorem  Under the hypotheses of Theorem ,without the continuity assumption on the
functions f and g , for any nondecreasing sequence {xn} in X such that xn → x ∈ X, let us
have xn � x for all n ∈N. Then f and g have a common fixed point in X.

Proof Reviewing the proof of Theorem , we construct an increasing sequence {xn} in X
such that xn → z for some z ∈ X. Using the given assumption on X, we have xn � z for all
n ∈N. Now, we show that fz = gz = z. By (.), we have

ψ
(
spb(xn+, gz)

)
=ψ

(
spb(fxn, gz)

)
≤ ψ

(
Mf ,g

s (xn, z)
)
– ϕ

(
Mf ,g

s (xn, z)
)
, (.)

where

Mf ,g
s (xn, z) =max

{
pb(xn, z),pb(xn, fxn),pb(z, gz),

pb(xn, gz) + pb(fxn, z)
s

}

=max

{
pb(xn, z),pb(xn,xn+),pb(z, gz),

pb(xn, gz) + pb(xn+, z)
s

}
. (.)
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Letting n → ∞ in (.) and using Lemma , we get

pb(z, gz)
s

≤max

{
pb(z, gz),

pb(z,gz)
s
s

}
≤ lim inf

n→∞ Mf ,g
s (xn, z)

≤ lim sup
n→∞

Mf ,g
s (xn, z) ≤max

{
pb(z, gz),

spb(z, gz)
s

}
= pb(z, gz). (.)

Again, taking the upper limit as n → ∞ in (.) and using Lemma  and (.), we get

ψ
(
pb(z, gz)

)
=ψ

(
s


s
pb(z, gz)

)
≤ ψ

(
s lim sup

n→∞
d(xn+, gz)

)

≤ ψ
(
lim sup
n→∞

Mf ,g
s (xn, z)

)
– ϕ

(
lim inf
n→∞ Mf ,g

s (xn, z)
)

≤ ψ
(
pb(z, gz)

)
– ϕ

(
lim inf
n→∞ Mf ,g

s (xn, z)
)
.

Therefore, ϕ(lim infn→∞ Mf ,g
s (xn, z)) ≤ , equivalently, lim infn→∞ Mf ,g

s (xn, z) = . Thus,
from (.) we get z = gz and hence z is a fixed point of g . On the other hand, similar to
the first part of the proof of Theorem , we can show that fz = z. Hence, z is a common
fixed point of f and g . �

Also, we have the following results.

Corollary  Let (X,�,pb) be a pb-complete ordered partial b-metric space with the co-
efficient s ≥ , and let f , g : X → X be two weakly increasing mappings with respect to �.
Suppose that there exists k ∈ [, ) such that

pb(fx, gy) ≤ k
s

max

{
pb(x, y),pb(x, fx),pb(y, gy),

pb(x, gy) + pb(fx, y)
s

}

for all comparable elements x, y ∈ X. If f and g are continuous, then f and g have a common
fixed point.

Corollary  Under the hypotheses of Corollary , without the continuity assumption on
the functions f and g , assume that whenever {xn} is a nondecreasing sequence in X such
that xn → x ∈ X, then xn � x for all n ∈ N. Then f and g have a common fixed point in X.

Remark  Recall that a subset W of a partially ordered set X is said to be well ordered if
every two elements ofW are comparable. Note that in Theorems  and , it can be proved
in a standard way that f has a unique fixed point provided that the fixed points of f are
comparable. Similarly, in Theorems  and , the set of common fixed points of f and g is
well ordered if and only if f and g have one and only one common fixed point.

The usability of these results is demonstrated by the following example.

Example  Let X = {, , , , } be equipped with the following partial order �:

�:=
{
(, ), (, ), (, ), (, ), (, ), (, ), (, )

}
.
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Define a partial b-metric pb : X ×X →R+ by

pb(x, y) =

⎧⎨
⎩ if x = y,

(x + y) if x 
= y.

It is easy to see that (X,pb) is a pb-complete partial b-metric space, with s = /.
Define self-maps f and g by

f =

(
    
    

)
, g =

(
    
    

)
.

We see that f and g are weakly increasing mappings with respect to � and that f and g are
continuous.
Define ψ ,ϕ : [,∞) → [,∞) by ψ(t) =

√
t and ϕ(t) = t

 . In order to check that (f , g) is
a generalized (ψ ,ϕ)s-contractive pair, only the case x = , y =  is nontrivial (when x and
y are comparable and the left-hand side of condition (.) is positive). Then

ψ
(
spb(f , g)

)
=

√
s ·  = 


=

√
 –




=ψ
(
Mf ,g

s (, )
)
– ϕ

(
Mf ,g

s (, )
)
.

Thus, all the conditions of Theorem  are satisfied and hence f and g have common fixed
points. Indeed,  and  are two common fixed points of f and g . Note that the ordered set
({, },�) is not well ordered.
Note that if the same example is considered in the space without order, then the con-

tractive condition is not satisfied. For example,

ψ
(
spb(f , g)

)
=

√
s ·  = 



>



=
√
 –




=ψ
(
Mf ,g

s (, )
)
– ϕ

(
Mf ,g

s (, )
)
.
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