Some common fixed point results in ordered partial b-metric spaces

Zead Mustafa ${ }^{1}$, Jamal Rezaei Roshan ${ }^{2 *}$, Vahid Parvaneh ${ }^{3}$ and Zoran Kadelburg ${ }^{4}$

"Correspondence: jmlroshan@gmail.com; jml.roshan@qaemshahriau.ac.ir
${ }^{2}$ Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran Full list of author information is available at the end of the article

Abstract

In this paper, we introduce a modified version of ordered partial b-metric spaces. We demonstrate a fundamental lemma for the convergence of sequences in such spaces. Using this lemma, we prove some fixed point and common fixed point results for (ψ, φ)-weakly contractive mappings in the setup of ordered partial b-metric spaces. Finally, examples are presented to verify the effectiveness and applicability of our main results. MSC: 47H10; 54H25

Keywords: ordered metric space; partial metric space; b-metric space; common fixed point; altering distance function

1 Introduction

Fixed points theorems in partially ordered metric spaces were firstly obtained in 2004 by Ran and Reurings [1], and then by Nieto and Lopez [2]. In this direction several authors obtained further results under weak contractive conditions (see, e.g., [3-8]).
The concept of b-metric space was introduced by Bakhtin [9] and extensively used by Czerwik in $[10,11]$. After that, several interesting results about the existence of a fixed point for single-valued and multi-valued operators in (ordered) b-metric spaces have been obtained (see, e.g., [12-26]).

Definition 1 [10] Let X be a (nonempty) set and $s \geq 1$ be a given real number. A function $d: X \times X \rightarrow \mathbb{R}^{+}$is a b-metric on X if, for all $x, y, z \in X$, the following conditions hold:
($\left.\mathrm{b}_{1}\right) d(x, y)=0$ if and only if $x=y$,
$\left(\mathrm{b}_{2}\right) d(x, y)=d(y, x)$,
$\left(\mathrm{b}_{3}\right) d(x, z) \leq s[d(x, y)+d(y, z)]$.
In this case, the pair (X, d) is called a b-metric space.

On the other hand, Matthews [27] introduced the notion of a partial metric space as a part of the study of denotational semantics of dataflow networks. In partial metric spaces, self-distance of an arbitrary point need not be equal to zero. Several authors obtained many useful fixed point results in these spaces - we mention just [28-33].

Definition 2 [27] A partial metric on a nonempty set X is a mapping $p: X \times X \rightarrow \mathbb{R}^{+}$such that for all $x, y, z \in X$:
$\left(\mathrm{p}_{1}\right) x=y$ if and only if $p(x, x)=p(x, y)=p(y, y)$,
$\left(\mathrm{p}_{2}\right) p(x, x) \leq p(x, y)$,
$\left(\mathrm{p}_{3}\right) p(x, y)=p(y, x)$,
$\left(\mathrm{p}_{4}\right) p(x, y) \leq p(x, z)+p(z, y)-p(z, z)$.
In this case, (X, p) is called a partial metric space.

It is clear that if $p(x, y)=0$, then from $\left(\mathrm{p}_{1}\right)$ and $\left(\mathrm{p}_{2}\right), x=y$. But if $x=y, p(x, y)$ may not be 0 . A basic example of a partial metric space is the pair $\left(\mathbb{R}^{+}, p\right)$, where $p(x, y)=\max \{x, y\}$ for all $x, y \in \mathbb{R}^{+}$.
Each partial metric p on a set X generates a T_{0} topology τ_{p} on X which has as a base the family of open p-balls $\left\{B_{p}(x, \varepsilon): x \in X, \varepsilon>0\right\}$, where $B_{p}(x, \varepsilon)=\{y \in X: p(x, y)<p(x, x)+\varepsilon\}$ for all $x \in X$ and $\varepsilon>0$.

Definition 3 [27] Let (X, p) be a partial metric space, and let $\left\{x_{n}\right\}$ be a sequence in X and $x \in X$. Then:
(i) The sequence $\left\{x_{n}\right\}$ is said to converge to x with respect to τ_{p} if $\lim _{n \rightarrow \infty} p\left(x_{n}, x\right)=$ $p(x, x)$.
(ii) The sequence $\left\{x_{n}\right\}$ is said to be Cauchy in (X, p) if $\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)$ exists and is finite.
(iii) (X, p) is said to be complete if every Cauchy sequence $\left\{x_{n}\right\}$ in X converges, with respect to τ_{p}, to a point $x \in X$ such that $\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)=\lim _{n \rightarrow \infty} p\left(x_{n}, x\right)=$ $p(x, x)$.

The following example shows that a convergent sequence $\left\{x_{n}\right\}$ in a partial metric space (X, p) may not be Cauchy. In particular, it shows that the limit may not be unique.

Example 1 [32] Let $X=[0, \infty)$ and $p(x, y)=\max \{x, y\}$. Let

$$
x_{n}= \begin{cases}0, & n=2 k, \\ 1, & n=2 k+1 .\end{cases}
$$

Then, clearly, $\left\{x_{n}\right\}$ is a convergent sequence and for every $x \geq 1$, we have $\lim _{n \rightarrow \infty} p\left(x_{n}, x\right)=$ $p(x, x)$. But $\lim _{n, m \rightarrow \infty} p\left(x_{n}, x_{m}\right)$ does not exist, that is, $\left\{x_{n}\right\}$ is not a Cauchy sequence.

As a generalization and unification of partial metric and b-metric spaces, Shukla [34] introduced the concept of partial b-metric space as follows.

Definition 4 [34] A partial b-metric on a nonempty set X is a mapping $p_{b}: X \times X \rightarrow \mathbb{R}^{+}$ such that for all $x, y, z \in X$:
$\left(\mathrm{p}_{b 1}\right) x=y$ if and only if $p_{b}(x, x)=p_{b}(x, y)=p_{b}(y, y)$,
$\left(\mathrm{p}_{b 2}\right) p_{b}(x, x) \leq p_{b}(x, y)$,
$\left(\mathrm{p}_{b 3}\right) p_{b}(x, y)=p_{b}(y, x)$,
$\left(\mathrm{p}_{b 4}\right) p_{b}(x, y) \leq s\left[p_{b}(x, z)+p_{b}(z, y)\right]-p_{b}(z, z)$.
A partial b-metric space is a pair $\left(X, p_{b}\right)$ such that X is a nonempty set and p_{b} is a partial b-metric on X. The number $s \geq 1$ is called the coefficient of $\left(X, p_{b}\right)$.

In a partial b-metric space $\left(X, p_{b}\right)$, if $x, y \in X$ and $p_{b}(x, y)=0$, then $x=y$, but the converse may not be true. It is clear that every partial metric space is a partial b-metric space with the coefficient $s=1$ and every b-metric space is a partial b-metric space with the same coefficient and zero self-distance. However, the converse of these facts need not hold.

Example 2 [34] Let $X=\mathbb{R}^{+}, q>1$ be a constant and $p_{b}: X \times X \rightarrow \mathbb{R}^{+}$be defined by

$$
p_{b}(x, y)=[\max \{x, y\}]^{q}+|x-y|^{q} \quad \text { for all } x, y \in X .
$$

Then $\left(X, p_{b}\right)$ is a partial b-metric space with the coefficient $s=2^{q-1}>1$, but it is neither a b-metric nor a partial metric space.

Note that in a partial b-metric space the limit of a convergent sequence may not be unique (see [34, Example 2]).

Some more examples of partial b-metrics can be constructed with the help of the following propositions.

Proposition 1 [34] Let X be a nonempty set, and let p be a partial metric and d be a b-metric with the coefficient $s \geq 1$ on X. Then the function $p_{b}: X \times X \rightarrow \mathbb{R}^{+}$, defined by $p_{b}(x, y)=p(x, y)+d(x, y)$ for all $x, y \in X$, is a partial b-metric on X with the coefficient s.

Proposition 2 [34] Let (X, p) be a partial metric space and $q \geq 1$. Then $\left(X, p_{b}\right)$ is a partial b-metric space with the coefficient $s=2^{q-1}$, where p_{b} is defined by $p_{b}(x, y)=[p(x, y)]^{q}$.

Altering distance functions were introduced by Khan et al. in [35].

Definition 5 [35] A function $\psi:[0, \infty) \rightarrow[0, \infty)$ is called an altering distance function if the following properties are satisfied:

1. ψ is continuous and nondecreasing;
2. $\psi(t)=0$ if and only if $t=0$.

So far, many authors have studied fixed point theorems which are based on altering distance functions (see, e.g., [12, 28, 36-41]).
In this paper, we introduce a modified version of ordered partial b-metric spaces. We demonstrate a fundamental lemma for the convergence of sequences in such spaces. Using this lemma, we prove some fixed point and common fixed point results for (ψ, φ)-weakly contractive mappings in the setup of ordered partial b-metric spaces. Finally, examples are presented to verify the effectiveness and applicability of our main results.

2 Definition and basic properties of partial b-metric spaces

In the following definition, we modify Definition 4 in order to obtain that each partial b-metric p_{b} generates a b-metric $d_{p_{b}}$.

Definition 6 Let X be a (nonempty) set and $s \geq 1$ be a given real number. A function $p_{b}: X \times X \rightarrow \mathbb{R}^{+}$is a partial b-metric if, for all $x, y, z \in X$, the following conditions are satisfied:
$\left(\mathrm{p}_{b 1}\right) \quad x=y \Longleftrightarrow p_{b}(x, x)=p_{b}(x, y)=p_{b}(y, y)$,
$\left(\mathrm{p}_{b 2}\right) \quad p_{b}(x, x) \leq p_{b}(x, y)$,
$\left(\mathrm{p}_{b 3}\right) \quad p_{b}(x, y)=p_{b}(y, x)$,
$\left(\mathrm{p}_{b 4^{\prime}}\right) p_{b}(x, y) \leq s\left(p_{b}(x, z)+p_{b}(z, y)-p_{b}(z, z)\right)+\left(\frac{1-s}{2}\right)\left(p_{b}(x, x)+p_{b}(y, y)\right)$.
The pair $\left(X, p_{b}\right)$ is called a partial b-metric space.

Since $s \geq 1$, from ($\mathrm{p}_{b 4^{\prime}}$) we have

$$
p_{b}(x, y) \leq s\left(p_{b}(x, z)+p_{b}(z, y)-p_{b}(z, z)\right) \leq s\left(p_{b}(x, z)+p_{b}(z, y)\right)-p_{b}(z, z) .
$$

Hence, a partial b-metric in the sense of Definition 6 is also a partial b-metric in the sense of Definition 4.
It should be noted that the class of partial b-metric spaces is larger than the class of partial metric spaces, since a partial b-metric is a partial metric when $s=1$. We present an example which shows that a partial b-metric on X (in the sense of Definition 6) might be neither a partial metric, nor a b-metric on X.

Example 3 Let (X, d) be a metric space and $p_{b}(x, y)=d(x, y)^{q}+a$, where $q>1$ and $a \geq 0$ are real numbers. We will show that p_{b} is a partial b-metric with $s=2^{q-1}$.

Obviously, conditions $\left(\mathrm{p}_{b 1}\right)-\left(\mathrm{p}_{b 3}\right)$ of Definition 6 are satisfied.
Since $q>1$, the convexity of the function $f(x)=x^{q}(x>0)$ implies that $(a+b)^{q} \leq 2^{q-1}\left(a^{q}+\right.$ b^{q}) holds for $a, b \geq 0$. Thus, for each $x, y, z \in X$, we obtain

$$
\begin{aligned}
p_{b}(x, y) & =d(x, y)^{q}+a \leq(d(x, z)+d(z, y))^{q}+a \\
& \leq 2^{q-1}\left(d(x, z)^{q}+d(z, y)^{q}\right)+a \\
& =2^{q-1}\left(d(x, z)^{q}+a+d(z, y)^{q}+a-a\right)+a-2^{q-1} a \\
& =2^{q-1}\left(p_{b}(x, z)+p_{b}(z, y)-p_{b}(z, z)\right)+\left(\frac{1-2^{q-1}}{2}\right)\left(p_{b}(x, x)+p_{b}(y, y)\right) .
\end{aligned}
$$

Hence, condition ($\mathrm{p}_{b 4^{\prime}}$) of Definition 6 is fulfilled and p_{b} is a partial b-metric on X.
Note that $\left(X, p_{b}\right)$ is not necessarily a partial metric space. For example, if $X=\mathbb{R}$ is the set of real numbers, $d(x, y)=|x-y|, q=2$ and $a=3$, then $p_{b}(x, y)=(x-y)^{2}+3$ is a partial b-metric on X with $s=2^{2-1}=2$, but it is not a partial metric on X. Indeed, the ordinary (partial) triangle inequality does not hold. To see this, let $x=2, y=5$ and $z=\frac{5}{2}$. Then $p_{b}(2,5)=12, p_{b}\left(2, \frac{5}{2}\right)=\frac{13}{4}$ and $p_{b}\left(\frac{5}{2}, 5\right)=\frac{37}{4}$, hence $p_{b}(2,5)=12 \not \leq \frac{38}{4}=p_{b}\left(2, \frac{5}{2}\right)+p_{b}\left(\frac{5}{2}, 5\right)-$ $p_{b}\left(\frac{5}{2}, \frac{5}{2}\right)$.

Also, p_{b} is not a b-metric since $p_{b}(x, x) \neq 0$ for $x \in X$.

Proposition 3 Every partial b-metric p_{b} defines a b-metric $d_{p_{b}}$, where

$$
d_{p_{b}}(x, y)=2 p_{b}(x, y)-p_{b}(x, x)-p_{b}(y, y)
$$

for all $x, y \in X$.

Proof Let $x, y, z \in X$. Then we have

$$
\begin{aligned}
& d_{p_{b}}(x, y) \\
& \quad=2 p_{b}(x, y)-p_{b}(x, x)-p_{b}(y, y)
\end{aligned}
$$

$$
\begin{aligned}
\leq & 2\left[s\left(p_{b}(x, z)+p_{b}(z, y)-p_{b}(z, z)\right)+\left(\frac{1-s}{2}\right)\left(p_{b}(x, x)+p_{b}(y, y)\right)\right] \\
& -p_{b}(x, x)-p_{b}(y, y) \\
= & 2 s p_{b}(x, z)+2 s p_{b}(z, y)-2 s p_{b}(z, z)+(1-s)\left(p_{b}(x, x)+p_{b}(y, y)\right) \\
& -p_{b}(x, x)-p_{b}(y, y) \\
= & 2 s p_{b}(x, z)+2 s p_{b}(z, y)-2 s p_{b}(z, z)-s p_{b}(x, x)-s p_{b}(y, y) \\
= & s\left[2 p_{b}(x, z)-p_{b}(x, x)-p_{b}(z, z)+2 p_{b}(z, y)-p_{b}(z, z)-p_{b}(y, y)\right] \\
= & s\left[d_{p_{b}}(x, z)+d_{p_{b}}(z, y)\right] .
\end{aligned}
$$

Hence, the advantage of our definition of partial b-metric is that by using it we can define a dependent b-metric which we call the b-metric associated with p_{b}. This allows us to readily transport many concepts and results from b-metric spaces into a partial b-metric space.
Now, we present some definitions and propositions in a partial b-metric space.

Definition 7 Let $\left(X, p_{b}\right)$ be a partial b-metric space. Then, for $x \in X$ and $\epsilon>0$, the p_{b}-ball with center x and radius ϵ is

$$
B_{p_{b}}(x, \epsilon)=\left\{y \in X \mid p_{b}(x, y)<p_{b}(x, x)+\epsilon\right\} .
$$

For example, let $\left(X, p_{b}\right)$ be the partial b-metric space from Example 3 (with $X=\mathbb{R}, q=2$ and $a=3$). Then

$$
\begin{aligned}
B_{p_{b}}(1,4) & =\left\{y \in X \mid p_{b}(1, y)<p_{b}(1,1)+4\right\}=\left\{y \in X \mid(y-1)^{2}+3<3+4\right\} \\
& =\left\{y \in X \mid(y-1)^{2}<4\right\}=(-1,3) .
\end{aligned}
$$

Proposition 4 Let $\left(X, p_{b}\right)$ be a partial b-metric space, $x \in X$ and $r>0$. If $y \in B_{p_{b}}(x, r)$, then there exists $\delta>0$ such that $B_{p_{b}}(y, \delta) \subseteq B_{p_{b}}(x, r)$.

Proof Let $y \in B_{p_{b}}(x, r)$. If $y=x$, then we choose $\delta=r$. Suppose that $y \neq x$. Then we have $p_{b}(x, y) \neq 0$. Now, we consider two cases.

Case 1. If $p_{b}(x, y)=p_{b}(x, x)$, then for $s=1$ we choose $\delta=r$. If $s>1$, then we consider the set

$$
A=\left\{n \in \mathbb{N} \left\lvert\, \frac{r}{2 s^{n+1}(s-1)}<p_{b}(x, x)\right.\right\} .
$$

By the Archimedean property, A is a nonempty set; then by the well ordering principle, A has the least element m. Since $m-1 \notin A$, we have $p_{b}(x, x) \leq r /\left(2 s^{m}(s-1)\right)$ and we choose $\delta=r /\left(2 s^{m+1}\right)$. Let $z \in B_{p_{b}}(y, \delta)$; by the property $\left(\mathrm{p}_{b 4}\right)$, we have

$$
\begin{aligned}
p_{b}(x, z) & \leq s\left(p_{b}(x, y)+p_{b}(y, z)-p_{b}(y, y)\right) \\
& \leq s\left(p_{b}(x, x)+\delta\right) \\
& \leq p_{b}(x, x)+\frac{r}{2 s^{m}}+\frac{r}{2 s^{m}}
\end{aligned}
$$

$$
\begin{aligned}
& =p_{b}(x, x)+\frac{r}{s^{m}} \\
& <p_{b}(x, x)+r .
\end{aligned}
$$

Hence, $B_{p_{b}}(y, \delta) \subseteq B_{p_{b}}(x, r)$.
Case 2. If $p_{b}(x, y) \neq p_{b}(x, x)$, then from the property $\left(\mathrm{p}_{b 2}\right)$ we have $p_{b}(x, x)<p_{b}(x, y)$ and for $s=1$ we consider the set

$$
B=\left\{n \in \mathbb{N} \left\lvert\, \frac{r}{2^{n+3}}<p_{b}(x, y)-p_{b}(x, x)\right.\right\} .
$$

Similarly, by the well ordering principle, there exists an element m such that $p_{b}(x, y)-$ $p_{b}(x, x) \leq r /\left(2^{m+2}\right)$, and we choose $\delta=r /\left(2^{m+2}\right)$. One can easily obtain that $B_{p_{b}}(y, \delta) \subseteq$ $B_{p_{b}}(x, r)$.

For $s>1$, we consider the set

$$
C=\left\{n \in \mathbb{N} \left\lvert\, \frac{r}{2 s^{n+2}}<p_{b}(x, y)-\frac{1}{s} p_{b}(x, x)\right.\right\}
$$

and by the well ordering principle, there exists an element m such that $p_{b}(x, y)-\frac{1}{s} p_{b}(x, x) \leq$ $\frac{r}{2 s^{n+1}}$ and we choose $\delta=\frac{r}{2 s^{m+1}}$. Let $z \in B_{p_{b}}(y, \delta)$. By the property ($\mathrm{p}_{b 4}$), we have

$$
\begin{aligned}
p_{b}(x, z) & \leq s\left(p_{b}(x, y)+p_{b}(y, z)-p_{b}(y, y)\right) \\
& \leq s\left(p_{b}(x, y)+\delta\right) \\
& \leq p_{b}(x, x)+\frac{r}{2 s^{m}}+\frac{r}{2 s^{m}} \\
& =p_{b}(x, x)+\frac{r}{s^{m}} \\
& <p_{b}(x, x)+r .
\end{aligned}
$$

Hence, $B_{p_{b}}(y, \delta) \subseteq B_{p_{b}}(x, r)$.
Thus, from the above proposition the family of all p_{b}-balls

$$
\Delta=\left\{B_{p_{b}}(x, r) \mid x \in X, r>0\right\}
$$

is a base of a T_{0} topology $\tau_{p_{b}}$ on X which we call the p_{b}-metric topology.
The topological space (X, p_{b}) is T_{0}, but need not be T_{1}.
Definition 8 A sequence $\left\{x_{n}\right\}$ in a partial b-metric space $\left(X, p_{b}\right)$ is said to be:
(i) p_{b}-convergent to a point $x \in X$ if $\lim _{n \rightarrow \infty} p_{b}\left(x, x_{n}\right)=p_{b}(x, x)$;
(ii) a p_{b}-Cauchy sequence if $\lim _{n, m \rightarrow \infty} p_{b}\left(x_{n}, x_{m}\right)$ exists (and is finite).
(iii) A partial b-metric space (X, p_{b}) is said to be p_{b}-complete if every p_{b}-Cauchy sequence $\left\{x_{n}\right\}$ in $X p_{b}$-converges to a point $x \in X$ such that $\lim _{n, m \rightarrow \infty} p_{b}\left(x_{n}, x_{m}\right)=$ $\lim _{n, m \rightarrow \infty} p_{b}\left(x_{n}, x\right)=p_{b}(x, x)$.

The following lemma shows the relationship between the concepts of p_{b}-convergence, p_{b}-Cauchyness and p_{b}-completeness in two spaces $\left(X, p_{b}\right)$ and $\left(X, d_{p_{b}}\right)$ which we state and prove according to Lemma 2.2 of [31].

Lemma 1

(1) A sequence $\left\{x_{n}\right\}$ is a p_{b}-Cauchy sequence in a partial b-metric space $\left(X, p_{b}\right)$ if and only if it is a b-Cauchy sequence in the b-metric space $\left(X, d_{p_{b}}\right)$.
(2) A partial b-metric space $\left(X, p_{b}\right)$ is p_{b}-complete if and only if the b-metric space $\left(X, d_{p_{b}}\right)$ is b-complete. Moreover, $\lim _{n \rightarrow \infty} d_{p_{b}}\left(x, x_{n}\right)=0$ if and only if

$$
\lim _{n \rightarrow \infty} p_{b}\left(x, x_{n}\right)=\lim _{n, m \rightarrow \infty} p_{b}\left(x_{n}, x_{m}\right)=p_{b}(x, x) .
$$

Proof First, we show that every p_{b}-Cauchy sequence in $\left(X, p_{b}\right)$ is a b-Cauchy sequence in $\left(X, d_{p_{b}}\right)$. Let $\left\{x_{n}\right\}$ be a p_{b}-Cauchy sequence in $\left(X, p_{b}\right)$. Then, there exists $\alpha \in \mathbb{R}$ such that, for arbitrary $\varepsilon>0$, there is $n_{\varepsilon} \in \mathbb{N}$ with

$$
\left|p_{b}\left(x_{n}, x_{m}\right)-\alpha\right|<\frac{\varepsilon}{4}
$$

for all $n, m \geq n_{\varepsilon}$. Hence,

$$
\begin{aligned}
& \left|d_{p_{b}}\left(x_{n}, x_{m}\right)\right| \\
& \quad=2 p_{b}\left(x_{n}, x_{m}\right)-p_{b}\left(x_{n}, x_{n}\right)-p_{b}\left(x_{m}, x_{m}\right) \\
& \quad=\left|p_{b}\left(x_{n}, x_{m}\right)-\alpha+\alpha-p_{b}\left(x_{n}, x_{n}\right)+p_{b}\left(x_{m}, x_{n}\right)-\alpha+\alpha-p_{b}\left(x_{m}, x_{m}\right)\right| \\
& \quad \leq\left|p_{b}\left(x_{n}, x_{m}\right)-\alpha\right|+\left|\alpha-p_{b}\left(x_{n}, x_{n}\right)\right|+\left|p_{b}\left(x_{m}, x_{n}\right)-\alpha\right|+\left|\alpha-p_{b}\left(x_{m}, x_{m}\right)\right| \\
& \quad<\varepsilon
\end{aligned}
$$

for all $n, m \geq n_{\varepsilon}$. Hence, we conclude that $\left\{x_{n}\right\}$ is a b-Cauchy sequence in $\left(X, d_{p_{b}}\right)$.
Next, we prove that b-completeness of $\left(X, d_{p_{b}}\right)$ implies p_{b}-completeness of $\left(X, p_{b}\right)$. Indeed, if $\left\{x_{n}\right\}$ is a p_{b}-Cauchy sequence in $\left(X, p_{b}\right)$, then according to the above discussion, it is also a b-Cauchy sequence in $\left(X, d_{p_{b}}\right)$. Since the b-metric space $\left(X, d_{p_{b}}\right)$ is b-complete, we deduce that there exists $y \in X$ such that $\lim _{n \rightarrow \infty} d_{p_{b}}\left(y, x_{n}\right)=0$. Hence,

$$
\lim _{n \rightarrow \infty}\left[p_{b}\left(x_{n}, y\right)-p_{b}(y, y)+p_{b}\left(y, x_{n}\right)-p_{b}\left(x_{n}, x_{n}\right)\right]=0
$$

therefore, $\lim _{n \rightarrow \infty}\left[p_{b}\left(x_{n}, y\right)-p_{b}(y, y)\right]=0$. Further, we have

$$
\lim _{n \rightarrow \infty}\left[p_{b}\left(y, x_{n}\right)-p_{b}\left(x_{n}, x_{n}\right)\right]=0
$$

Consequently,

$$
\lim _{n \rightarrow \infty} p_{b}\left(x_{n}, y\right)=p_{b}(y, y)=\lim _{n \rightarrow \infty} p_{b}\left(x_{n}, x_{n}\right) .
$$

On the other hand,

$$
\begin{aligned}
\lim _{n, m \rightarrow \infty} p_{b}\left(x_{n}, x_{m}\right) \leq & \lim _{n, m \rightarrow \infty} s p_{b}\left(x_{n}, y\right)+\lim _{n, m \rightarrow \infty} s p_{b}\left(x_{m}, y\right)-s p_{b}(y, y) \\
& +\left(\frac{1-s}{2}\right)\left(p_{b}\left(x_{n}, x_{n}\right)+p_{b}\left(x_{m}, x_{m}\right)\right) \\
= & p_{b}(y, y) .
\end{aligned}
$$

Also, from ($\mathrm{p}_{b 2}$),

$$
p_{b}(y, y) \leq \lim _{n, m \rightarrow \infty} p_{b}\left(x_{n}, y\right)=\lim _{n, m \rightarrow \infty} p_{b}\left(x_{n}, x_{n}\right) \leq \lim _{n, m \rightarrow \infty} p_{b}\left(x_{n}, x_{m}\right) .
$$

Hence, we obtain that $\left\{x_{n}\right\}$ is a p_{b}-convergent sequence in $\left(X, p_{b}\right)$.
Now, we prove that every b-Cauchy sequence $\left\{x_{n}\right\}$ in $\left(X, d_{p_{b}}\right)$ is a p_{b}-Cauchy sequence in $\left(X, p_{b}\right)$. Let $\varepsilon=\frac{1}{2}$. Then there exists $n_{0} \in \mathbb{N}$ such that $d_{p_{b}}\left(x_{n}, x_{m}\right)<\frac{1}{2}$ for all $n, m \geq n_{0}$. Since

$$
p_{b}\left(x_{n}, x_{n_{0}}\right)-p_{b}\left(x_{n_{0}}, x_{n_{0}}\right) \leq d_{p_{b}}\left(x_{n}, x_{n_{0}}\right)<\frac{1}{2},
$$

hence

$$
p_{b}\left(x_{n}, x_{n}\right) \leq p_{b}\left(x_{n}, x_{n_{0}}\right) \leq d_{p_{b}}\left(x_{n}, x_{n_{0}}\right)+p_{b}\left(x_{n_{0}}, x_{n_{0}}\right)<\frac{1}{2}+p_{b}\left(x_{n_{0}}, x_{n_{0}}\right) .
$$

Consequently, the sequence $\left\{p_{b}\left(x_{n}, x_{n}\right)\right\}$ is bounded in \mathbb{R}, and so there exists $a \in \mathbb{R}$ such that a subsequence $\left\{p_{b}\left(x_{n_{k}}, x_{n_{k}}\right)\right\}$ of $\left\{p_{b}\left(x_{n}, x_{n}\right)\right\}$ is convergent to a, i.e.,

$$
\lim _{k \rightarrow \infty} p_{b}\left(x_{n_{k}}, x_{n_{k}}\right)=a .
$$

Now, we prove that $\left\{p_{b}\left(x_{n}, x_{n}\right)\right\}$ is a Cauchy sequence in \mathbb{R}. Since $\left\{x_{n}\right\}$ is a b-Cauchy sequence in $\left(X, d_{p_{b}}\right)$ for given $\varepsilon>0$, there exists $n_{\varepsilon} \in \mathbb{N}$ such that $d_{p_{b}}\left(x_{n}, x_{m}\right)<\varepsilon$ for all $n, m \geq n_{\varepsilon}$. Thus, for all $n, m \geq n_{\varepsilon}$,

$$
\begin{aligned}
p_{b}\left(x_{n}, x_{n}\right)-p_{b}\left(x_{m}, x_{m}\right) & \leq p_{b}\left(x_{n}, x_{m}\right)-p_{b}\left(x_{m}, x_{m}\right) \\
& \leq d_{p_{b}}\left(x_{m}, x_{n}\right)<\varepsilon .
\end{aligned}
$$

Therefore, $\lim _{n \rightarrow \infty} p_{b}\left(x_{n}, x_{n}\right)=a$.
On the other hand,

$$
\begin{aligned}
\left|p_{b}\left(x_{n}, x_{m}\right)-a\right| & =\left|p_{b}\left(x_{n}, x_{m}\right)-p_{b}\left(x_{n}, x_{n}\right)+p_{b}\left(x_{n}, x_{n}\right)-a\right| \\
& \leq d_{p_{b}}\left(x_{m}, x_{n}\right)+\left|p_{b}\left(x_{n}, x_{n}\right)-a\right|
\end{aligned}
$$

for all $n, m \geq n_{\varepsilon}$. Hence, $\lim _{n, m \rightarrow \infty} p_{b}\left(x_{n}, x_{m}\right)=a$, and consequently, $\left\{x_{n}\right\}$ is a p_{b}-Cauchy sequence in $\left(X, p_{b}\right)$.

Conversely, let $\left\{x_{n}\right\}$ be a b-Cauchy sequence in $\left(X, d_{p_{b}}\right)$. Then $\left\{x_{n}\right\}$ is a p_{b}-Cauchy sequence in $\left(X, p_{b}\right)$, and so it is convergent to a point $x \in X$ with

$$
\lim _{n \rightarrow \infty} p_{b}\left(x, x_{n}\right)=\lim _{n, m \rightarrow \infty} p_{b}\left(x_{m}, x_{n}\right)=p_{b}(x, x) .
$$

Then, for given $\varepsilon>0$, there exists $n_{\varepsilon} \in \mathbb{N}$ such that

$$
p_{b}\left(x, x_{n}\right)-p_{b}(x, x)<\frac{\varepsilon}{4}
$$

and

$$
p_{b}\left(x_{n}, x_{n}\right)-p_{b}(x, x) \leq p_{b}\left(x_{m}, x_{n}\right)-p_{b}(x, x)<\frac{\varepsilon}{4} .
$$

Therefore,

$$
\begin{aligned}
\left|d_{p_{b}}\left(x_{n}, x\right)\right| & =\left|p_{b}\left(x_{n}, x\right)-p_{b}\left(x_{n}, x_{n}\right)+p_{b}\left(x_{n}, x\right)-p_{b}(x, x)\right| \\
& \leq\left|p_{b}\left(x_{n}, x\right)-p_{b}(x, x)\right|+\left|p_{b}(x, x)-p_{b}\left(x_{n}, x_{n}\right)\right|+\left|p_{b}\left(x_{n}, x\right)-p_{b}(x, x)\right| \\
& <\varepsilon,
\end{aligned}
$$

whenever $n \geq n_{\varepsilon}$. Therefore, $\left(X, d_{p_{b}}\right)$ is complete.
Finally, let $\lim _{n \rightarrow \infty} d_{p_{b}}\left(x_{n}, x\right)=0$. So,

$$
\lim _{n \rightarrow \infty}\left[p_{b}\left(x_{n}, x\right)-p_{b}\left(x_{n}, x_{n}\right)\right]+\lim _{n \rightarrow \infty}\left[p_{b}\left(x_{n}, x\right)-p_{b}(x, x)\right]=0 .
$$

On the other hand,

$$
\begin{aligned}
& \lim _{n, m \rightarrow \infty}\left[p_{b}\left(x_{n}, x_{m}\right)-p_{b}(x, x)\right] \\
& \quad \leq \lim _{n \rightarrow \infty}\left[s p_{b}\left(x_{n}, x\right)+s p_{b}\left(x, x_{m}\right)-s p_{b}(x, x)\right. \\
& \left.\quad+\left(\frac{1-s}{2}\right)\left(p_{b}\left(x_{n}, x_{n}\right)+p_{b}\left(x_{m}, x_{m}\right)\right)-p_{b}(x, x)\right] \\
& \quad=0 .
\end{aligned}
$$

Definition 9 Let $\left(X, p_{b}\right)$ and $\left(X^{\prime}, p_{b}^{\prime}\right)$ be two partial b-metric spaces, and let $f:\left(X, p_{b}\right) \rightarrow$ $\left(X^{\prime}, p_{b}^{\prime}\right)$ be a mapping. Then f is said to be p_{b}-continuous at a point $a \in X$ if for a given $\varepsilon>0$, there exists $\delta>0$ such that $x \in X$ and $p_{b}(a, x)<\delta+p_{b}(a, a)$ imply that $p_{b}^{\prime}(f(a), f(x))<$ $\varepsilon+p_{b}^{\prime}(f(a), f(a))$. The mapping f is p_{b}-continuous on X if it is p_{b}-continuous at all $a \in X$.

Proposition 5 Let $\left(X, p_{b}\right)$ and $\left(X^{\prime}, p_{b}^{\prime}\right)$ be two partial b-metric spaces. Then a mapping $f: X \rightarrow X^{\prime}$ is p_{b}-continuous at a point $x \in X$ if and only if it is p_{b}-sequentially continuous at x; that is, whenever $\left\{x_{n}\right\}$ is p_{b}-convergent to $x,\left\{f\left(x_{n}\right)\right\}$ is p_{b}^{\prime}-convergent to $f(x)$.

Definition 10 A triple $\left(X, \preceq, p_{b}\right)$ is called an ordered partial b-metric space if (X, \preceq) is a partially ordered set and p_{b} is a partial b-metric on X.

3 Fixed point results in partial b-metric spaces

The following crucial lemma is useful in proving our main results.

Lemma 2 Let $\left(X, p_{b}\right)$ be a partial b-metric space with the coefficient $s>1$ and suppose that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are convergent to x and y, respectively. Then we have

$$
\begin{aligned}
\frac{1}{s^{2}} p_{b}(x, y)-\frac{1}{s} p_{b}(x, x)-p_{b}(y, y) & \leq \liminf _{n \rightarrow \infty} p_{b}\left(x_{n}, y_{n}\right) \leq \limsup _{n \rightarrow \infty} p_{b}\left(x_{n}, y_{n}\right) \\
& \leq s p_{b}(x, x)+s^{2} p_{b}(y, y)+s^{2} p_{b}(x, y) .
\end{aligned}
$$

In particular, if $p_{b}(x, y)=0$, then we have $\lim _{n \rightarrow \infty} p_{b}\left(x_{n}, y_{n}\right)=0$.

Moreover, for each $z \in X$, we have

$$
\begin{aligned}
\frac{1}{s} p_{b}(x, z)-p_{b}(x, x) & \leq \liminf _{n \rightarrow \infty} p_{b}\left(x_{n}, z\right) \leq \limsup _{n \rightarrow \infty} p_{b}\left(x_{n}, z\right) \\
& \leq s p_{b}(x, z)+s p_{b}(x, x)
\end{aligned}
$$

In particular, if $p_{b}(x, x)=0$, then we have

$$
\frac{1}{s} p_{b}(x, z) \leq \liminf _{n \rightarrow \infty} p_{b}\left(x_{n}, z\right) \leq \limsup _{n \rightarrow \infty} p_{b}\left(x_{n}, z\right) \leq s p_{b}(x, z) .
$$

Proof Using the triangle inequality in a partial b-metric space, it is easy to see that

$$
p_{b}(x, y) \leq s p_{b}\left(x, x_{n}\right)+s^{2} p_{b}\left(x_{n}, y_{n}\right)+s^{2} p_{b}\left(y_{n}, y\right)
$$

and

$$
p_{b}\left(x_{n}, y_{n}\right) \leq s p_{b}\left(x_{n}, x\right)+s^{2} p_{b}(x, y)+s^{2} p_{b}\left(y, y_{n}\right) .
$$

Taking the lower limit as $n \rightarrow \infty$ in the first inequality and the upper limit as $n \rightarrow \infty$ in the second inequality, we obtain the first desired result. If $p_{b}(x, y)=0$, then by the triangle inequality we get $p_{b}(x, x)=0$ and $p_{b}(y, y)=0$. Therefore, we have $\lim _{n \rightarrow \infty} p_{b}\left(x_{n}, y_{n}\right)=0$. Similarly, using again the triangle inequality, the other assertions follow.

Let $\left(X, \preceq, p_{b}\right)$ be an ordered partial b-metric space, and let $f: X \rightarrow X$ be a mapping. Set

$$
M_{s}^{f}(x, y)=\max \left\{p_{b}(x, y), p_{b}(x, f x), p_{b}(y, f y), \frac{p_{b}(x, f y)+p_{b}(y, f x)}{2 s}\right\} .
$$

Definition 11 Let $\left(X, p_{b}\right)$ be an ordered partial b-metric space. We say that a mapping $f: X \rightarrow X$ is a generalized $(\psi, \varphi)_{s}$-weakly contractive mapping if there exist two altering distance functions ψ and φ such that

$$
\begin{equation*}
\psi\left(s p_{b}(f x, f y)\right) \leq \psi\left(M_{s}^{f}(x, y)\right)-\varphi\left(M_{s}^{f}(x, y)\right) \tag{3.1}
\end{equation*}
$$

for all comparable $x, y \in X$.

First, we prove the following result.

Theorem 1 Let $\left(X, \preceq, p_{b}\right)$ be a p_{b}-complete ordered partial b-metric space. Let $f: X \rightarrow X$ be a nondecreasing, with respect to \preceq, continuous mapping. Suppose thatf is a generalized $(\psi, \varphi)_{s}$-weakly contractive mapping. If there exists $x_{0} \in X$ such that $x_{0} \leq f x_{0}$, then f has a fixed point.

Proof Let $x_{0} \in X$ be such that $x_{0} \leq f x_{0}$. Then we define a sequence $\left(x_{n}\right)$ in X such that $x_{n+1}=f x_{n}$ for all $n \geq 0$. Since $x_{0} \leq f x_{0}=x_{1}$ and f is nondecreasing, we have $x_{1}=f x_{0} \leq x_{2}=$
$f x_{1}$. Again, as $x_{1} \preceq x_{2}$ and f is nondecreasing, we have $x_{2}=f x_{1} \preceq x_{3}=f x_{2}$. By induction, we have

$$
x_{0} \leq x_{1} \preceq \cdots \leq x_{n} \leq x_{n+1} \preceq \cdots
$$

If $x_{n}=x_{n+1}$ for some $n \in \mathbb{N}$, then $x_{n}=f x_{n}$ and hence x_{n} is a fixed point of f. So, we may assume that $x_{n} \neq x_{n+1}$ for all $n \in \mathbb{N}$. By (3.1), we have

$$
\begin{align*}
\psi\left(p_{b}\left(x_{n}, x_{n+1}\right)\right) & \leq \psi\left(s p_{b}\left(x_{n}, x_{n+1}\right)\right) \\
& =\psi\left(s p_{b}\left(f x_{n-1}, f x_{n}\right)\right) \\
& \leq \psi\left(M_{s}^{f}\left(x_{n-1}, x_{n}\right)\right)-\varphi\left(M_{s}^{f}\left(x_{n-1}, x_{n}\right)\right) \tag{3.2}
\end{align*}
$$

where

$$
\begin{aligned}
M_{s}^{f}\left(x_{n-1}, x_{n}\right)= & \max \left\{p_{b}\left(x_{n-1}, x_{n}\right), p_{b}\left(x_{n-1}, f x_{n-1}\right), p_{b}\left(x_{n}, f x_{n}\right),\right. \\
& \left.\frac{p_{b}\left(x_{n-1}, f x_{n}\right)+p_{b}\left(x_{n}, f x_{n-1}\right)}{2 s}\right\} \\
= & \max \left\{p_{b}\left(x_{n-1}, x_{n}\right), p_{b}\left(x_{n}, x_{n+1}\right), \frac{p_{b}\left(x_{n-1}, x_{n+1}\right)+p_{b}\left(x_{n}, x_{n}\right)}{2 s}\right\} \\
\leq & \max \left\{p_{b}\left(x_{n-1}, x_{n}\right), p_{b}\left(x_{n}, x_{n+1}\right),\right. \\
& \left.\frac{s p_{b}\left(x_{n-1}, x_{n}\right)+s p_{b}\left(x_{n}, x_{n+1}\right)+(1-s) p_{b}\left(x_{n}, x_{n}\right)}{2 s}\right\} \\
= & \max \left\{p_{b}\left(x_{n-1}, x_{n}\right), p_{b}\left(x_{n}, x_{n+1}\right)\right\} .
\end{aligned}
$$

So, we have

$$
\begin{equation*}
M_{s}^{f}\left(x_{n-1}, x_{n}\right)=\max \left\{p_{b}\left(x_{n-1}, x_{n}\right), p_{b}\left(x_{n}, x_{n+1}\right)\right\} . \tag{3.3}
\end{equation*}
$$

From (3.2), (3.3) we get

$$
\begin{align*}
\psi\left(p_{b}\left(x_{n}, x_{n+1}\right)\right) \leq & \psi\left(\max \left\{p_{b}\left(x_{n-1}, x_{n}\right), p_{b}\left(x_{n}, x_{n+1}\right)\right\}\right) \\
& -\varphi\left(\max \left\{p_{b}\left(x_{n-1}, x_{n}\right), p_{b}\left(x_{n}, x_{n+1}\right)\right\}\right) . \tag{3.4}
\end{align*}
$$

If

$$
\max \left\{p_{b}\left(x_{n-1}, x_{n}\right), p_{b}\left(x_{n}, x_{n+1}\right)\right\}=p_{b}\left(x_{n}, x_{n+1}\right),
$$

then by (3.4) and properties of φ, we have

$$
\begin{aligned}
\psi\left(p_{b}\left(x_{n}, x_{n+1}\right)\right) & \leq \psi\left(p_{b}\left(x_{n}, x_{n+1}\right)\right)-\varphi\left(p_{b}\left(x_{n}, x_{n+1}\right)\right) \\
& <\psi\left(p_{b}\left(x_{n}, x_{n+1}\right)\right)
\end{aligned}
$$

which gives a contradiction. Thus,

$$
\begin{equation*}
\psi\left(p_{b}\left(x_{n}, x_{n+1}\right)\right) \leq \psi\left(p_{b}\left(x_{n-1}, x_{n}\right)\right)-\varphi\left(p_{b}\left(x_{n-1}, x_{n}\right)\right) . \tag{3.5}
\end{equation*}
$$

Therefore, $\left\{p_{b}\left(x_{n}, x_{n+1}\right): n \in \mathbb{N} \cup\{0\}\right\}$ is a nonincreasing sequence of positive numbers. So, there exists $r \geq 0$ such that

$$
\lim _{n \rightarrow \infty} p_{b}\left(x_{n}, x_{n+1}\right)=r .
$$

Letting $n \rightarrow \infty$ in (3.5), we get

$$
\psi(r) \leq \psi(r)-\varphi(r) \leq \psi(r) .
$$

Therefore, $\varphi(r)=0$, and hence $r=0$. Thus, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} p_{b}\left(x_{n}, x_{n+1}\right)=0 . \tag{3.6}
\end{equation*}
$$

Next, we show that $\left\{x_{n}\right\}$ is a p_{b}-Cauchy sequence in X. For this, we have to show that $\left\{x_{n}\right\}$ is a b-Cauchy sequence in $\left(X, d_{p_{b}}\right)$ (see Lemma 1). Suppose the contrary; that is, $\left\{x_{n}\right\}$ is not a b-Cauchy sequence. Then there exists $\varepsilon>0$ for which we can find two subsequences $\left\{x_{m_{i}}\right\}$ and $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ such that n_{i} is the smallest index for which

$$
\begin{equation*}
n_{i}>m_{i}>i, \quad d_{p_{b}}\left(x_{m_{i}}, x_{n_{i}}\right) \geq \varepsilon \tag{3.7}
\end{equation*}
$$

This means that

$$
\begin{equation*}
d_{p_{b}}\left(x_{m_{i}}, x_{n_{i}-1}\right)<\varepsilon . \tag{3.8}
\end{equation*}
$$

From (3.7) and using the triangular inequality, we get

$$
\begin{equation*}
\varepsilon \leq d_{p_{b}}\left(x_{m_{i}}, x_{n_{i}}\right) \leq s d_{p_{b}}\left(x_{m_{i}}, x_{n_{i}-1}\right)+s d_{p_{b}}\left(x_{n_{i}-1}, x_{n_{i}}\right) . \tag{3.9}
\end{equation*}
$$

Taking the upper limit as $i \rightarrow \infty$ and using (3.8), we get

$$
\begin{equation*}
\frac{\varepsilon}{s} \leq \liminf _{i \rightarrow \infty} d_{p_{b}}\left(x_{m_{i}}, x_{n_{i}-1}\right) \leq \limsup _{i \rightarrow \infty} d_{p_{b}}\left(x_{m_{i}}, x_{n_{i}-1}\right) \leq \varepsilon . \tag{3.10}
\end{equation*}
$$

Also, from (3.9) and (3.10),

$$
\varepsilon \leq \limsup _{i \rightarrow \infty} d_{p_{b}}\left(x_{m_{i}}, x_{n_{i}}\right) \leq s \varepsilon .
$$

Further,

$$
d_{p_{b}}\left(x_{m_{i}+1}, x_{n_{i}}\right) \leq s d_{p_{b}}\left(x_{m_{i}+1}, x_{m_{i}}\right)+s d_{p_{b}}\left(x_{m_{i}}, x_{n_{i}}\right),
$$

and hence

$$
\limsup _{i \rightarrow \infty} d_{p_{b}}\left(x_{m_{i}+1}, x_{n_{i}}\right) \leq s^{2} \varepsilon .
$$

Finally,

$$
d_{p_{b}}\left(x_{m_{i}+1}, x_{n_{i}-1}\right) \leq s d_{p_{b}}\left(x_{m_{i}+1}, x_{m_{i}}\right)+s d_{p_{b}}\left(x_{m_{i}}, x_{n_{i}-1}\right),
$$

and hence

$$
\limsup _{i \rightarrow \infty} d_{p_{b}}\left(x_{m_{i}+1}, x_{n_{i}-1}\right) \leq s \varepsilon .
$$

On the other hand, by the definition of $d_{p_{b}}$ and (3.6),

$$
\limsup _{i \rightarrow \infty} d_{p_{b}}\left(x_{m_{i}}, x_{n_{i}-1}\right)=2 \limsup _{i \rightarrow \infty} p_{b}\left(x_{m_{i}}, x_{n_{i}-1}\right)
$$

Hence, by (3.10),

$$
\begin{equation*}
\frac{\varepsilon}{2 s} \leq \liminf _{i \rightarrow \infty} p_{b}\left(x_{m_{i}}, x_{n_{i}-1}\right) \leq \limsup _{i \rightarrow \infty} p_{b}\left(x_{m_{i}}, x_{n_{i}-1}\right) \leq \frac{\varepsilon}{2} \tag{3.11}
\end{equation*}
$$

Similarly,

$$
\begin{align*}
& \limsup _{i \rightarrow \infty} p_{b}\left(x_{m_{i}}, x_{n_{i}}\right) \leq \frac{s \varepsilon}{2} \tag{3.12}\\
& \frac{\varepsilon}{2 s} \leq \limsup _{i \rightarrow \infty} p_{b}\left(x_{m_{i}+1}, x_{n_{i}}\right), \tag{3.13}\\
& \limsup _{i \rightarrow \infty} p_{b}\left(x_{m_{i}+1}, x_{n_{i}-1}\right) \leq \frac{s \varepsilon}{2} . \tag{3.14}
\end{align*}
$$

From (3.1), we have

$$
\begin{align*}
\psi\left(s p_{b}\left(x_{m_{i}+1}, x_{n_{i}}\right)\right) & =\psi\left(s p_{b}\left(f x_{m_{i}}, f x_{n_{i}-1}\right)\right) \\
& \leq \psi\left(M_{s}^{f}\left(x_{m_{i}}, x_{n_{i}-1}\right)\right)-\varphi\left(M_{s}^{f}\left(x_{m_{i}}, x_{n_{i}-1}\right)\right) \tag{3.15}
\end{align*}
$$

where

$$
\begin{align*}
M_{s}^{f} & \left(x_{m_{i}}, x_{n_{i}-1}\right) \\
= & \max \left\{p_{b}\left(x_{m_{i}}, x_{n_{i}-1}\right), p_{b}\left(x_{m_{i}}, f x_{m_{i}}\right), p_{b}\left(x_{n_{i}-1}, f x_{n_{i}-1}\right),\right. \\
& \left.\frac{p_{b}\left(x_{m_{i}}, f x_{n_{i}-1}\right)+p_{b}\left(f x_{m_{i}}, x_{n_{i}-1}\right)}{2 s}\right\} \\
= & \max \left\{p_{b}\left(x_{m_{i}}, x_{n_{i}-1}\right), p_{b}\left(x_{m_{i}}, x_{m_{i}+1}\right), p_{b}\left(x_{n_{i}-1}, x_{n_{i}}\right),\right. \\
& \left.\frac{p_{b}\left(x_{m_{i}}, x_{n_{i}}\right)+p_{b}\left(x_{m_{i}+1}, x_{n_{i}-1}\right)}{2 s}\right\} . \tag{3.16}
\end{align*}
$$

Taking the upper limit as $i \rightarrow \infty$ in (3.16) and using (3.6), (3.11), (3.12) and (3.14), we get

$$
\begin{align*}
\limsup _{i \rightarrow \infty} M_{s}^{f}\left(x_{m_{i}}, x_{n_{i}-1}\right)= & \max \left\{\limsup _{i \rightarrow \infty} p_{b}\left(x_{m_{i}}, x_{n_{i}-1}\right), 0,0\right. \\
& \left.\frac{\lim \sup _{i \rightarrow \infty} p_{b}\left(x_{m_{i}}, x_{n_{i}}\right)+\lim \sup _{i \rightarrow \infty} p_{b}\left(x_{m_{i}+1}, x_{n_{i}-1}\right)}{2 s}\right\} \\
\leq & \max \left\{\frac{\varepsilon}{2}, \frac{\frac{\varepsilon s+\varepsilon s}{2}}{2 s}\right\}=\frac{\varepsilon}{2} . \tag{3.17}
\end{align*}
$$

Now, taking the upper limit as $i \rightarrow \infty$ in (3.15) and using (3.13) and (3.17), we have

$$
\begin{aligned}
\psi\left(s \frac{\varepsilon}{2 s}\right) & \leq \psi\left(s \limsup _{i \rightarrow \infty} p_{b}\left(x_{m_{i}+1}, x_{n_{i}}\right)\right) \\
& \leq \psi\left(\limsup _{i \rightarrow \infty} M_{s}^{f}\left(x_{m_{i}}, x_{n_{i}-1}\right)\right)-\liminf _{i \rightarrow \infty} \varphi\left(M_{s}^{f}\left(x_{m_{i}}, x_{n_{i}-1}\right)\right) \\
& \leq \psi\left(\frac{\varepsilon}{2}\right)-\varphi\left(\liminf _{i \rightarrow \infty} M_{s}^{f}\left(x_{m_{i}}, x_{n_{i}-1}\right)\right)
\end{aligned}
$$

which further implies that

$$
\varphi\left(\liminf _{i \rightarrow \infty} M_{s}^{f}\left(x_{m_{i}}, x_{n_{i}-1}\right)\right)=0
$$

so $\liminf _{i \rightarrow \infty} M_{s}^{f}\left(x_{m_{i}}, x_{n_{i}-1}\right)=0$, and by (3.16) we get $\liminf _{i \rightarrow \infty} d_{p_{b}}\left(x_{m_{i}}, x_{n_{i}-1}\right)=0$, a contradiction with (3.11).
Thus, we have proved that $\left\{x_{n}\right\}$ is a b-Cauchy sequence in the b-metric space $\left(X, d_{p_{b}}\right)$. Since $\left(X, p_{b}\right)$ is p_{b}-complete, then from Lemma $1,\left(X, d_{p_{b}}\right)$ is a b-complete b-metric space. Therefore, the sequence $\left\{x_{n}\right\}$ converges to some $z \in X$, that is, $\lim _{n \rightarrow \infty} d_{p_{b}}\left(x_{n}, z\right)=0$. Again, from Lemma 1,

$$
\lim _{n \rightarrow \infty} p_{b}\left(z, x_{n}\right)=\lim _{n \rightarrow \infty} p_{b}\left(x_{n}, x_{n}\right)=p_{b}(z, z) .
$$

On the other hand, thanks to (3.6) and condition $\left(\mathrm{p}_{b 2}\right), \lim _{n \rightarrow \infty} p_{b}\left(x_{n}, x_{n}\right)=0$, which yields that

$$
\lim _{n \rightarrow \infty} p_{b}\left(z, x_{n}\right)=\lim _{n \rightarrow \infty} p_{b}\left(x_{n}, x_{n}\right)=p_{b}(z, z)=0 .
$$

Using the triangular inequality, we get

$$
p_{b}(z, f z) \leq s p_{b}\left(z, f x_{n}\right)+s p_{b}\left(f x_{n}, f z\right) .
$$

Letting $n \rightarrow \infty$ and using the continuity of f, we get

$$
\begin{equation*}
p_{b}(z, f z) \leq s \lim _{n \rightarrow \infty} p_{b}\left(z, f x_{n}\right)+s \lim _{n \rightarrow \infty} p_{b}\left(f x_{n}, f z\right)=s p_{b}(f z, f z) . \tag{3.18}
\end{equation*}
$$

Note that from (3.1), we have

$$
\begin{equation*}
\psi\left(s p_{b}(f z, f z)\right) \leq \psi\left(M_{s}^{f}(z, z)\right)-\varphi\left(M_{s}^{f}(z, z)\right) \tag{3.19}
\end{equation*}
$$

where

$$
M_{s}^{f}(z, z)=\max \left\{p_{b}(z, z), p_{b}(z, f z), p_{b}(z, f z), \frac{p_{b}(z, f z)+p_{b}(z, f z)}{2 s}\right\}=p_{b}(f z, z)
$$

Hence, as ψ is nondecreasing, we have $s p_{b}(f z, f z) \leq p_{b}(f z, z)$. Thus, by (3.18) we obtain that $s p_{b}(f z, f z)=p_{b}(f z, z)$. But then, using (3.19), we get that $\varphi\left(M_{s}^{f}(z, z)\right)=0$.
Hence, we have $p_{b}(f z, z)=0$ and $f z=z$. Thus, z is a fixed point of f.

We will show now that the continuity of f in Theorem 1 is not necessary and can be replaced by another assumption.

Theorem 2 Under the hypotheses of Theorem 1, without the continuity assumption on f, assume that whenever $\left\{x_{n}\right\}$ is a nondecreasing sequence in X such that $x_{n} \rightarrow x \in X$, one has $x_{n} \preceq x$ for all $n \in \mathbb{N}$. Then f has a fixed point in X.

Proof Following similar arguments as those given in Theorem 1, we construct an increasing sequence $\left\{x_{n}\right\}$ in X such that $x_{n} \rightarrow z$ for some $z \in X$. Using the assumption on X, we have $x_{n} \preceq z$ for all $n \in \mathbb{N}$. Now, we show that $f z=z$. By (3.1), we have

$$
\begin{align*}
\psi\left(s p_{b}\left(x_{n+1}, f z\right)\right) & =\psi\left(s p_{b}\left(f x_{n}, f z\right)\right) \\
& \leq \psi\left(M_{s}^{f}\left(x_{n}, z\right)\right)-\varphi\left(M_{s}^{f}\left(x_{n}, z\right)\right), \tag{3.20}
\end{align*}
$$

where

$$
\begin{align*}
M_{s}^{f}\left(x_{n}, z\right) & =\max \left\{p_{b}\left(x_{n}, z\right), p_{b}\left(x_{n}, f x_{n}\right), p_{b}(z, f z), \frac{p_{b}\left(x_{n}, f z\right)+p_{b}\left(f x_{n}, z\right)}{2 s}\right\} \\
& =\max \left\{p_{b}\left(x_{n}, z\right), p_{b}\left(x_{n}, x_{n+1}\right), p_{b}(z, f z), \frac{p_{b}\left(x_{n}, f z\right)+p_{b}\left(x_{n+1}, z\right)}{2 s}\right\} . \tag{3.21}
\end{align*}
$$

Letting $n \rightarrow \infty$ in (3.21) and using Lemma 2, we get

$$
\begin{align*}
\frac{p_{b}(z, f z)}{2 s^{2}} & =\min \left\{p_{b}(z, f z), \frac{\frac{p_{b}(z f z)}{s}}{2 s}\right\} \leq \liminf _{i \rightarrow \infty} M_{s}^{f}\left(x_{n}, z\right) \leq \limsup _{i \rightarrow \infty} M_{s}^{f}\left(x_{n}, z\right) \\
& \leq \max \left\{p_{b}(z, f z), \frac{s p_{b}(z, f z)}{2 s}\right\}=p_{b}(z, f z) . \tag{3.22}
\end{align*}
$$

Again, taking the upper limit as $n \rightarrow \infty$ in (3.20) and using Lemma 2 and (3.22), we get

$$
\begin{aligned}
\psi\left(p_{b}(z, f z)\right) & =\psi\left(s \frac{1}{s} p_{b}(z, f z)\right) \leq \psi\left(s \limsup _{n \rightarrow \infty} p_{b}\left(x_{n+1}, f z\right)\right) \\
& \leq \psi\left(\limsup _{n \rightarrow \infty} M_{s}^{f}\left(x_{n}, z\right)\right)-\liminf _{n \rightarrow \infty} \varphi\left(M_{s}^{f}\left(x_{n}, z\right)\right) \\
& \leq \psi\left(p_{b}(z, f z)\right)-\varphi\left(\liminf _{n \rightarrow \infty} M_{s}^{f}\left(x_{n}, z\right)\right) .
\end{aligned}
$$

Therefore, $\varphi\left(\liminf _{n \rightarrow \infty} M_{s}^{f}\left(x_{n}, z\right)\right) \leq 0$, equivalently, $\liminf _{n \rightarrow \infty} M_{s}^{f}\left(x_{n}, z\right)=0$. Thus, from (3.22) we get $z=f z$, and hence z is a fixed point of f.

Corollary 1 Let $\left(X, \preceq, p_{b}\right)$ be a p_{b}-complete ordered partial b-metric space. Let $f: X \rightarrow X$ be a continuous mapping, nondecreasing with respect to \preceq. Suppose that there exists $k \in$ $[0,1)$ such that

$$
p_{b}(f x, f y) \leq \frac{k}{s} \max \left\{p_{b}(x, y), p_{b}(x, f x), p_{b}(y, f y), \frac{p_{b}(x, f y)+p_{b}(y, f x)}{2 s}\right\}
$$

for all comparable elements $x, y \in X$. If there exists $x_{0} \in X$ such that $x_{0} \preceq f x_{0}$, then f has a fixed point.

Proof Follows from Theorem 1 by taking $\psi(t)=t$ and $\varphi(t)=(1-k) t$, for all $t \in[0,+\infty)$.

Corollary 2 Under the hypotheses of Corollary 1, without the continuity assumption on f, for any nondecreasing sequence $\left\{x_{n}\right\}$ in X such that $x_{n} \rightarrow x \in X$, let us have $x_{n} \leq x$ for all $n \in \mathbb{N}$. Then f has a fixed point in X.

Now, in order to support the usability of our results, we present the following example.

Example 4 Let $X=[0,+\infty)$ be equipped with the partial order \preceq defined by

$$
x \preceq y \quad \Longleftrightarrow \quad x=y \vee(x, y \in[0,1] \wedge x \leq y),
$$

and with the partial b-metric p_{b} given by $p_{b}(x, y)=[\max \{x, y\}]^{2}$ (with $s=2$). Consider the mapping $f: X \rightarrow X$ given by

$$
f x= \begin{cases}\frac{x}{\sqrt{2} \sqrt{1+x}}, & x \in[0,1], \\ \frac{x}{2}, & x>1\end{cases}
$$

Then f is continuous and increasing, and $0 \preceq f 0$. Take altering distance functions

$$
\psi(t)=t, \quad \varphi(t)= \begin{cases}\frac{t \sqrt{t}}{1+\sqrt{t}}, & 0 \leq t \leq 1 \\ \frac{t}{2}, & t>1 .\end{cases}
$$

In order to check the contractive condition (3.1) of Theorem 1, without loss of generality, we may take $x, y \in X$ such that $y \leq x$. Consider the following two possible cases.

Case $1.0 \leq y \leq x \leq 1$. Then

$$
p_{b}(f x, f y)=\left[\max \left\{\frac{x}{\sqrt{2} \sqrt{1+x}}, \frac{y}{\sqrt{2} \sqrt{1+y}}\right\}\right]^{2}=\frac{x^{2}}{2(1+x)}
$$

and

$$
M_{s}^{f}(x, y)=\max \left\{x^{2}, x^{2}, y^{2}, \frac{x^{2}+\max ^{2}\left\{y, \frac{x}{\sqrt{2} \sqrt{1+x}}\right\}}{2 s}\right\}=x^{2}
$$

Thus, (3.1) reduces to

$$
\psi\left(2 \cdot \frac{x^{2}}{2(1+x)}\right)=\frac{x^{2}}{1+x} \leq x^{2}-\frac{x^{3}}{1+x}=\psi\left(x^{2}\right)-\varphi\left(x^{2}\right)
$$

Case 2. $x=y \geq 1$. Then $p_{b}(f x, f y)=\frac{x^{2}}{4}$ and $M_{s}^{f}(x, y)=x^{2}$, so (3.1) reduces to

$$
\psi\left(2 \cdot \frac{x^{2}}{4}\right)=\frac{x^{2}}{2} \leq x^{2}-\frac{x^{2}}{2}=\psi\left(x^{2}\right)-\varphi\left(x^{2}\right)
$$

Hence, all the conditions of Theorem 1 are satisfied and f has a fixed point (which is $z=0$).

4 Common fixed point results in partial \boldsymbol{b}-metric spaces

Let $\left(X, \preceq, p_{b}\right)$ be an ordered partial b-metric space with the coefficient $s \geq 1$, and let f, g : $X \rightarrow X$ be two mappings. Set

$$
M_{s}^{f, g}(x, y)=\max \left\{p_{b}(x, y), p_{b}(x, f x), p_{b}(y, g y), \frac{p_{b}(x, g y)+p_{b}(y, f x)}{2 s}\right\}
$$

Now, we present the following definition.

Definition 12 Let $\left(X, \preceq, p_{b}\right)$ be an ordered partial b-metric space, and let ψ and φ be altering distance functions. We say that a pair (f, g) of self-mappings $f, g: X \rightarrow X$ is a generalized $(\psi, \varphi)_{s}$-contraction pair if

$$
\begin{equation*}
\psi\left(s^{2} p_{b}(f x, g y)\right) \leq \psi\left(M_{s}^{f, g}(x, y)\right)-\varphi\left(M_{s}^{f, g}(x, y)\right) \tag{4.1}
\end{equation*}
$$

for all comparable $x, y \in X$.

Definition 13 [42] Let (X, \preceq) be a partially ordered set. Then two mappings $f, g: X \rightarrow X$ are said to be weakly increasing if $f x \preceq g f x$ and $g x \preceq f g x$ for all $x \in X$.

Theorem 3 Let $\left(X, \preceq, p_{b}\right)$ be a p_{b}-complete ordered partial b-metric space with the coefficient $s \geq 1$, and let $f, g: X \rightarrow X$ be two weakly increasing mappings with respect to \preceq. Suppose that (f, g) is a generalized $(\psi, \varphi)_{s}$-contraction pair for some altering distance functions ψ and φ. Iff and g are continuous, then f and g have a common fixed point.

Proof Let us divide the proof into two parts as follows.
First part. We prove that $u \in X$ is a fixed point of f if and only if it is a fixed point of g.
Suppose that u is a fixed point of f, that is, $f u=u$. As $u \preceq u$, by (4.1), we have

$$
\begin{aligned}
& \psi\left(s^{2} p_{b}(u, g u)\right)=\psi\left(s^{2} p_{b}(f u, g u)\right) \\
& \leq \psi\left(\max \left\{p_{b}(u, u), p_{b}(u, f u), p_{b}(u, g u), \frac{1}{2 s}\left(p_{b}(u, g u)+p_{b}(u, f u)\right)\right\}\right) \\
&-\varphi\left(\max \left\{p_{b}(u, u), p_{b}(u, f u), p_{b}(u, g u), \frac{1}{2 s}\left(p_{b}(u, g u)+p_{b}(u, f u)\right)\right\}\right) \\
& \leq \psi\left(p_{b}(u, g u)\right)-\varphi\left(\max \left\{p_{b}(u, u), p_{b}(u, f u), p_{b}(u, g u), \frac{1}{2 s}\left(p_{b}(u, g u)+p_{b}(u, f u)\right)\right\}\right) \\
& \leq \psi\left(s^{2} p_{b}(u, g u)\right) \\
&-\varphi\left(\max \left\{p_{b}(u, u), p_{b}(u, f u), p_{b}(u, g u), \frac{1}{2 s}\left(p_{b}(u, g u)+p_{b}(u, f u)\right)\right\}\right) .
\end{aligned}
$$

Therefore, $p_{b}(u, g u)=0$ and hence $g u=u$. Similarly, we can show that if u is a fixed point of g, then u is a fixed point of f.
Second part (construction of a sequence by iterative technique).
Let $x_{0} \in X$. We construct a sequence $\left\{x_{n}\right\}$ in X such that $x_{2 n+1}=f x_{2 n}$ and $x_{2 n+2}=g x_{2 n+1}$ for all nonnegative integers n. As f and g are weakly increasing with respect to \preceq, we have

$$
\begin{gathered}
x_{1}=f x_{0} \preceq g f x_{0}=x_{2}=g x_{1} \preceq f g x_{1}=x_{3} \preceq \cdots \\
\preceq x_{2 n+1}=f x_{2 n} \preceq g f x_{2 n}=x_{2 n+2} \preceq \cdots .
\end{gathered}
$$

If $x_{2 n}=x_{2 n+1}$ for some $n \in \mathbb{N}$, then $x_{2 n}=f x_{2 n}$. Thus $x_{2 n}$ is a fixed point of f. By the first part, we conclude that $x_{2 n}$ is also a fixed point of g.
If $x_{2 n+1}=x_{2 n+2}$ for some $n \in \mathbb{N}$, then $x_{2 n+1}=g x_{2 n+1}$. Thus, $x_{2 n+1}$ is a fixed point of g. By the first part, we conclude that $x_{2 n+1}$ is also a fixed point of f. Therefore, we assume that $x_{n} \neq x_{n+1}$ for all $n \in \mathbb{N}$. Now, we complete the proof in the following steps.

Step 1: We will prove that

$$
\lim _{n \rightarrow \infty} p_{b}\left(x_{n}, x_{n+1}\right)=0
$$

As $x_{2 n+1}$ and $x_{2 n+2}$ are comparable, by (4.1), we have

$$
\begin{aligned}
\psi\left(p_{b}\left(x_{2 n+1}, x_{2 n+2}\right)\right) & \leq \psi\left(s^{2} p_{b}\left(x_{2 n+1}, x_{2 n+2}\right)\right) \\
& =\psi\left(s^{2} p_{b}\left(f x_{2 n}, g x_{2 n+1}\right)\right) \\
& \leq \psi\left(M_{s}^{f, g}\left(x_{2 n}, x_{2 n+1}\right)\right)-\varphi\left(M_{s}^{f, g}\left(x_{2 n}, x_{2 n+1}\right)\right),
\end{aligned}
$$

where

$$
\begin{aligned}
M_{s}^{f, g}\left(x_{2 n}, x_{2 n+1}\right)= & \max \left\{p_{b}\left(x_{2 n}, x_{2 n+1}\right), p_{b}\left(x_{2 n}, f x_{2 n}\right), p_{b}\left(x_{2 n+1}, g x_{2 n+1}\right)\right. \\
& \left.\frac{p_{b}\left(f x_{2 n}, x_{2 n+1}\right)+p_{b}\left(x_{2 n}, g x_{2 n+1}\right)}{2 s}\right\} \\
= & \max \left\{p_{b}\left(x_{2 n}, x_{2 n+1}\right), p_{b}\left(x_{2 n+1}, x_{2 n+2}\right),\right. \\
& \left.\frac{p_{b}\left(x_{2 n+1}, x_{2 n+1}\right)+p_{b}\left(x_{2 n}, x_{2 n+2}\right)}{2 s}\right\} \\
\leq & \max \left\{p_{b}\left(x_{2 n}, x_{2 n+1}\right), p_{b}\left(x_{2 n+1}, x_{2 n+2}\right)\right. \\
& \left.\frac{s p_{b}\left(x_{2 n}, x_{2 n+1}\right)+s p_{b}\left(x_{2 n+1}, x_{2 n+2}\right)}{2 s}\right\} \\
= & \max \left\{p_{b}\left(x_{2 n}, x_{2 n+1}\right), p_{b}\left(x_{2 n+1}, x_{2 n+2}\right)\right\} .
\end{aligned}
$$

Hence, we have

$$
\begin{align*}
\psi\left(p_{b}\left(x_{2 n+1}, x_{2 n+2}\right)\right) \leq & \psi\left(\max \left\{p_{b}\left(x_{2 n}, x_{2 n+1}\right), p_{b}\left(x_{2 n+1}, x_{2 n+2}\right)\right\}\right) \\
& -\varphi\left(\max \left\{p_{b}\left(x_{2 n}, x_{2 n+1}\right), p_{b}\left(x_{2 n+1}, x_{2 n+2}\right)\right\}\right) . \tag{4.2}
\end{align*}
$$

If

$$
\max \left\{p_{b}\left(x_{2 n}, x_{2 n+1}\right), p_{b}\left(x_{2 n+1}, x_{2 n+2}\right)\right\}=p_{b}\left(x_{2 n+1}, x_{2 n+2}\right),
$$

then (4.2) becomes

$$
\begin{aligned}
\psi\left(p_{b}\left(x_{2 n+1}, x_{2 n+2}\right)\right) & \leq \psi\left(p_{b}\left(x_{2 n+1}, x_{2 n+2}\right)\right)-\varphi\left(p_{b}\left(x_{2 n+1}, x_{2 n+2}\right)\right) \\
& <\psi\left(p_{b}\left(x_{2 n+1}, x_{2 n+2}\right)\right),
\end{aligned}
$$

which gives a contradiction. Hence,

$$
\max \left\{p_{b}\left(x_{2 n}, x_{2 n+1}\right), p_{b}\left(x_{2 n+1}, x_{2 n+2}\right)\right\}=p_{b}\left(x_{2 n}, x_{2 n+1}\right),
$$

and (4.2) becomes

$$
\begin{align*}
\psi\left(p_{b}\left(x_{2 n+1}, x_{2 n+2}\right)\right) & \leq \psi\left(p_{b}\left(x_{2 n}, x_{2 n+1}\right)\right)-\varphi\left(p_{b}\left(x_{2 n}, x_{2 n+1}\right)\right) \\
& \leq \psi\left(p_{b}\left(x_{2 n}, x_{2 n+1}\right)\right) . \tag{4.3}
\end{align*}
$$

Similarly, we can show that

$$
\begin{equation*}
\psi\left(p_{b}\left(x_{2 n+1}, x_{2 n}\right)\right) \leq \psi\left(p_{b}\left(x_{2 n-1}, x_{2 n}\right)\right)-\varphi\left(p_{b}\left(x_{2 n-1}, x_{2 n}\right)\right) \leq \psi\left(p_{b}\left(x_{2 n-1}, x_{2 n}\right)\right) . \tag{4.4}
\end{equation*}
$$

By (4.3) and (4.4), we get that $\left\{p_{b}\left(x_{n}, x_{n+1}\right): n \in \mathbb{N}\right\}$ is a nonincreasing sequence of positive numbers. Hence, there is $r \geq 0$ such that

$$
\lim _{n \rightarrow \infty} p_{b}\left(x_{n}, x_{n+1}\right)=r .
$$

Letting $n \rightarrow \infty$ in (4.3), we get

$$
\psi(r) \leq \psi(r)-\varphi(r) \leq \psi(r),
$$

which implies that $\varphi(r)=0$ and hence $r=0$. So, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} p_{b}\left(x_{n}, x_{n}\right) \leq \lim _{n \rightarrow \infty} p_{b}\left(x_{n}, x_{n+1}\right)=0 . \tag{4.5}
\end{equation*}
$$

Step 2 . We will prove that $\left\{x_{n}\right\}$ is a p_{b}-Cauchy sequence. Because of (4.5), it is sufficient to show that $\left\{x_{2 n}\right\}$ is a p_{b}-Cauchy sequence. By Lemma 1 , we should show that $\left\{x_{2 n}\right\}$ is b-Cauchy in ($X, d_{p_{b}}$). Suppose the contrary, i.e., that $\left\{x_{2 n}\right\}$ is not a b-Cauchy sequence in $\left(X, d_{p_{b}}\right)$. Then there exists $\varepsilon>0$ for which we can find two subsequences $\left\{x_{2 m_{i}}\right\}$ and $\left\{x_{2 n_{i}}\right\}$ of $\left\{x_{2 n}\right\}$ such that n_{i} is the smallest index for which

$$
\begin{equation*}
n_{i}>m_{i}>i, \quad d_{p_{b}}\left(x_{2 m_{i}}, x_{2 n_{i}}\right) \geq \varepsilon . \tag{4.6}
\end{equation*}
$$

This means that

$$
\begin{equation*}
d_{p_{b}}\left(x_{2 m_{i}}, x_{2 n_{i}-2}\right)<\varepsilon . \tag{4.7}
\end{equation*}
$$

From (4.6) and using the triangular inequality, we get

$$
\varepsilon \leq d_{p_{b}}\left(x_{2 m_{i}}, x_{2 n_{i}}\right) \leq s d_{p_{b}}\left(x_{2 m_{i}}, x_{2 m_{i}+1}\right)+s d_{p_{b}}\left(x_{2 m_{i}+1}, x_{2 n_{i}}\right) .
$$

Using (4.5) and taking the upper limit as $i \rightarrow \infty$, we get

$$
\frac{\varepsilon}{s} \leq \limsup _{i \rightarrow \infty} d_{p_{b}}\left(x_{2 m_{i}+1}, x_{2 n_{i}}\right) .
$$

On the other hand, we have

$$
d_{p_{b}}\left(x_{2 m_{i}}, x_{2 n_{i}-1}\right) \leq s d_{p_{b}}\left(x_{2 m_{i}}, x_{2 n_{i}-2}\right)+s d_{p_{b}}\left(x_{2 n_{i}-2}, x_{2 n_{i}-1}\right) .
$$

Using (4.5), (4.7) and taking the upper limit as $i \rightarrow \infty$, we get

$$
\begin{equation*}
\limsup _{i \rightarrow \infty} d_{p_{b}}\left(x_{2 m_{i}}, x_{2 n_{i}-1}\right) \leq \varepsilon s . \tag{4.8}
\end{equation*}
$$

Again, using the triangular inequality, we have

$$
\begin{aligned}
d_{p_{b}}\left(x_{2 m_{i}}, x_{2 n_{i}}\right) & \leq s d_{p_{b}}\left(x_{2 m_{i}}, x_{2 n_{i}-2}\right)+s d_{p_{b}}\left(x_{2 n_{i}-2}, x_{2 n_{i}}\right) \\
& \leq s d_{p_{b}}\left(x_{2 m_{i}}, x_{2 n_{i}-2}\right)+s^{2} d_{p_{b}}\left(x_{2 n_{i}-2}, x_{2 n_{i}-1}\right)+s^{2} d_{p_{b}}\left(x_{2 n_{i}-1}, x_{2 n_{i}}\right)
\end{aligned}
$$

and

$$
d_{p_{b}}\left(x_{2 m_{i}+1}, x_{2 n_{i}-1}\right) \leq s d_{p_{b}}\left(x_{2 m_{i}+1}, x_{2 m_{i}}\right)+s d_{p_{b}}\left(x_{2 m_{i}}, x_{2 n_{i}-1}\right) .
$$

Taking the upper limit as $i \rightarrow \infty$ in the above inequalities and using (4.5), (4.7) and (4.8), we get

$$
\limsup _{i \rightarrow \infty} d_{p_{b}}\left(x_{2 m_{i}}, x_{2 n_{i}}\right) \leq \varepsilon s
$$

and

$$
\limsup _{i \rightarrow \infty} d_{p_{b}}\left(x_{2 m_{i}+1}, x_{2 n_{i}-1}\right) \leq \varepsilon s^{2}
$$

From the definition of $d_{p_{b}}$ and (4.5), we have the following relations:

$$
\begin{align*}
& \frac{\varepsilon}{2 s} \leq \limsup _{i \rightarrow \infty} p_{b}\left(x_{2 m_{i}+1}, x_{2 n_{i}}\right) \tag{4.9}\\
& \frac{\varepsilon}{2 s} \leq \liminf _{i \rightarrow \infty} p_{b}\left(x_{2 m_{i}}, x_{2 n_{i}-1}\right) \leq \limsup _{i \rightarrow \infty} p_{b}\left(x_{2 m_{i}}, x_{2 n_{i}-1}\right) \leq \frac{s \varepsilon}{2}, \tag{4.10}\\
& \limsup _{i \rightarrow \infty} p_{b}\left(x_{2 m_{i}}, x_{2 n_{i}}\right) \leq \frac{s \varepsilon}{2} \tag{4.11}\\
& \limsup _{i \rightarrow \infty} p_{b}\left(x_{2 m_{i}+1}, x_{2 n_{i}-1}\right) \leq \frac{s^{2} \varepsilon}{2} . \tag{4.12}
\end{align*}
$$

Since $x_{2 m_{i}}$ and $x_{2 n_{i}-1}$ are comparable, using (4.1) we have

$$
\begin{align*}
\psi\left(s^{2} p_{b}\left(x_{2 m_{i}+1}, x_{2 n_{i}}\right)\right) & =\psi\left(s^{2} p_{b}\left(f x_{2 m_{i}}, g x_{2 n_{i}-1}\right)\right) \\
& \leq \psi\left(M_{s}^{f, g}\left(x_{2 m_{i}}, x_{2 n_{i}-1}\right)\right)-\varphi\left(M_{s}^{f, g}\left(x_{2 m_{i}}, x_{2 n_{i}-1}\right)\right) \tag{4.13}
\end{align*}
$$

where

$$
\begin{align*}
M_{s}^{f, g}\left(x_{2 m_{i}}, x_{2 n_{i}-1}\right)= & \max \left\{p_{b}\left(x_{2 m_{i}}, x_{2 n_{i}-1}\right), p_{b}\left(x_{2 m_{i}}, x_{2 m_{i}+1}\right), p_{b}\left(x_{2 n_{i}-1}, x_{2 n_{i}}\right),\right. \\
& \left.\frac{p_{b}\left(x_{2 m_{i}}, x_{2 n_{i}}\right)+p_{b}\left(x_{2 m_{i}+1}, x_{2 n_{i}-1}\right)}{2 s}\right\} . \tag{4.14}
\end{align*}
$$

Taking the upper limit in (4.14) and using (4.5) and (4.10)-(4.12), we get

$$
\begin{align*}
\limsup _{i \rightarrow \infty} M_{s}^{f, g}\left(x_{2 m_{i}}, x_{2 n_{i}-1}\right)= & \max \left\{\limsup _{i \rightarrow \infty} p_{b}\left(x_{2 m_{i}}, x_{2 n_{i}-1}\right), 0,0\right. \\
& \left.\frac{\limsup _{i \rightarrow \infty} p_{b}\left(x_{2 m_{i}}, x_{2 n_{i}}\right)+\limsup _{i \rightarrow \infty} p_{b}\left(x_{2 m_{i}+1}, x_{2 n_{i}-1}\right)}{2 s}\right\} \\
\leq & \max \left\{\frac{s \varepsilon}{2}, \frac{\frac{\varepsilon s+\varepsilon s^{2}}{2}}{2 s}\right\}=\frac{s \varepsilon}{2} . \tag{4.15}
\end{align*}
$$

Now, taking the upper limit as $i \rightarrow \infty$ in (4.13) and using (4.9) and (4.15), we have

$$
\begin{aligned}
\psi\left(\frac{s \varepsilon}{2}\right) & =\psi\left(s^{2} \frac{\varepsilon}{2 s}\right) \leq \psi\left(s^{2} \limsup _{i \rightarrow \infty} p_{b}\left(x_{2 m_{i}+1}, x_{2 n_{i}}\right)\right) \\
& \leq \psi\left(\limsup _{i \rightarrow \infty} M_{s}^{f, g}\left(x_{2 m_{i}}, x_{2 n_{i}-1}\right)\right)-\varphi\left(\liminf _{i \rightarrow \infty} M_{s}^{f, g}\left(x_{2 m_{i}}, x_{2 n_{i}-1}\right)\right) \\
& \leq \psi\left(\frac{s \varepsilon}{2}\right)-\varphi\left(\liminf _{i \rightarrow \infty} M_{s}^{f, g}\left(x_{2 m_{i}}, x_{2 n_{i}-1}\right)\right),
\end{aligned}
$$

which implies that $\varphi\left(\liminf _{i \rightarrow \infty} M_{s}^{f, g}\left(x_{2 m_{i}}, x_{2 n_{i}-1}\right)\right)=0$. By (4.14), it follows that

$$
\liminf _{i \rightarrow \infty} p_{b}\left(x_{2 m_{i}}, x_{2 n_{i}-1}\right)=0
$$

which is in contradiction with (4.10). Thus, we have proved that $\left\{x_{n}\right\}$ is a b-Cauchy sequence in the metric space $\left(X, d_{p_{b}}\right)$. Since $\left(X, p_{b}\right)$ is p_{b}-complete, then from Lemma 1 , $\left(X, d_{p_{b}}\right)$ is a b-complete b-metric space. Therefore, the sequence $\left\{x_{n}\right\}$ converges to some $z \in X$, that is, $\lim _{n \rightarrow \infty} d_{p_{b}}\left(x_{n}, z\right)=0$. Again, from Lemma 1,

$$
\lim _{n \rightarrow \infty} p_{b}\left(z, x_{n}\right)=\lim _{n \rightarrow \infty} p_{b}\left(x_{n}, x_{n}\right)=p_{b}(z, z) .
$$

On the other hand, from (4.5) we get that

$$
\lim _{n \rightarrow \infty} p_{b}\left(z, x_{n}\right)=\lim _{n \rightarrow \infty} p_{b}\left(x_{n}, x_{n}\right)=p_{b}(z, z)=0 .
$$

Step 3 (Existence of a common fixed point). Using the triangular inequality, we get

$$
\begin{aligned}
& p_{b}(z, f z) \leq s p_{b}\left(z, f x_{2 n}\right)+s p_{b}\left(f x_{2 n}, f z\right), \\
& p_{b}(z, g z) \leq s p_{b}\left(z, g x_{2 n+1}\right)+s p_{b}\left(g x_{2 n+1}, g z\right) .
\end{aligned}
$$

Letting $n \rightarrow \infty$ and using the continuity of f and g, we get

$$
\begin{aligned}
& p_{b}(z, f z) \leq s \lim _{n \rightarrow \infty} p_{b}\left(z, f x_{2 n}\right)+s \lim _{n \rightarrow \infty} p_{b}\left(f x_{2 n}, f z\right)=s p_{b}(f z, f z) \\
& p_{b}(z, g z) \leq s \lim _{n \rightarrow \infty} p_{b}\left(z, g x_{2 n+1}\right)+s \lim _{n \rightarrow \infty} p_{b}\left(g x_{2 n+1}, g z\right)=s p_{b}(g z, g z) .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\max \left\{p_{b}(z, f z), p_{b}(z, g z)\right\} \leq \max \left\{s p_{b}(f z, f z), s p_{b}(g z, g z)\right\} \leq s^{2} p_{b}(g z, f z) . \tag{4.16}
\end{equation*}
$$

From (4.1), we have

$$
\begin{equation*}
\psi\left(s^{2} p_{b}(f z, g z)\right) \leq \psi\left(M_{s}^{f, g}(z, z)\right)-\varphi\left(M_{s}^{f, g}(z, z)\right) \tag{4.17}
\end{equation*}
$$

where

$$
\begin{aligned}
M_{s}^{f, g}(z, z) & =\max \left\{p_{b}(z, z), p_{b}(z, f z), p_{b}(z, g z), \frac{p_{b}(z, g z)+p_{b}(z, f z)}{2 s}\right\} \\
& =\max \left\{p_{b}(z, f z), p_{b}(z, g z)\right\} .
\end{aligned}
$$

As ψ is nondecreasing, we have $s^{2} p_{b}(f z, g z) \leq \max \left\{p_{b}(z, f z), p_{b}(z, g z)\right\}$. Hence, by (4.16) we obtain that $s^{2} p_{b}(f z, g z)=\max \left\{p_{b}(z, f z), p_{b}(z, g z)\right\}$. But then, using (4.17), we get that $\varphi\left(M_{s}^{f, g}(z, z)\right)=0$. Thus, we have $f z=g z=z$ and z is a common fixed point of f and g.

The continuity of functions f and g in Theorem 3 can be replaced by another condition.

Theorem 4 Under the hypotheses of Theorem 3, without the continuity assumption on the functions f and g, for any nondecreasing sequence $\left\{x_{n}\right\}$ in X such that $x_{n} \rightarrow x \in X$, let us have $x_{n} \leq x$ for all $n \in \mathbb{N}$. Then f and g have a common fixed point in X.

Proof Reviewing the proof of Theorem 3, we construct an increasing sequence $\left\{x_{n}\right\}$ in X such that $x_{n} \rightarrow z$ for some $z \in X$. Using the given assumption on X, we have $x_{n} \preceq z$ for all $n \in \mathbb{N}$. Now, we show that $f z=g z=z$. By (4.1), we have

$$
\begin{align*}
\psi\left(s^{2} p_{b}\left(x_{2 n+1}, g z\right)\right) & =\psi\left(s^{2} p_{b}\left(f x_{2 n}, g z\right)\right) \\
& \leq \psi\left(M_{s}^{f, g}\left(x_{2 n}, z\right)\right)-\varphi\left(M_{s}^{f, g}\left(x_{2 n}, z\right)\right) \tag{4.18}
\end{align*}
$$

where

$$
\begin{align*}
M_{s}^{f, g}\left(x_{2 n}, z\right) & =\max \left\{p_{b}\left(x_{2 n}, z\right), p_{b}\left(x_{2 n}, f x_{2 n}\right), p_{b}(z, g z), \frac{p_{b}\left(x_{2 n}, g z\right)+p_{b}\left(f x_{2 n}, z\right)}{2 s}\right\} \\
& =\max \left\{p_{b}\left(x_{2 n}, z\right), p_{b}\left(x_{2 n}, x_{2 n+1}\right), p_{b}(z, g z), \frac{p_{b}\left(x_{2 n}, g z\right)+p_{b}\left(x_{2 n+1}, z\right)}{2 s}\right\} . \tag{4.19}
\end{align*}
$$

Letting $n \rightarrow \infty$ in (4.19) and using Lemma 2, we get

$$
\begin{align*}
\frac{p_{b}(z, g z)}{s^{2}} & \leq \max \left\{p_{b}(z, g z), \frac{\frac{p_{b}(z, g z)}{s}}{2 s}\right\} \leq \liminf _{n \rightarrow \infty} M_{s}^{f, g}\left(x_{2 n}, z\right) \\
& \leq \limsup _{n \rightarrow \infty} M_{s}^{f, g}\left(x_{2 n}, z\right) \leq \max \left\{p_{b}(z, g z), \frac{s p_{b}(z, g z)}{2 s}\right\}=p_{b}(z, g z) \tag{4.20}
\end{align*}
$$

Again, taking the upper limit as $n \rightarrow \infty$ in (4.18) and using Lemma 2 and (4.20), we get

$$
\begin{aligned}
\psi\left(p_{b}(z, g z)\right) & =\psi\left(s^{2} \frac{1}{s^{2}} p_{b}(z, g z)\right) \leq \psi\left(s^{2} \limsup _{n \rightarrow \infty} d\left(x_{2 n+1}, g z\right)\right) \\
& \leq \psi\left(\limsup _{n \rightarrow \infty} M_{s}^{f, g}\left(x_{2 n}, z\right)\right)-\varphi\left(\liminf _{n \rightarrow \infty} M_{s}^{f, g}\left(x_{2 n}, z\right)\right) \\
& \leq \psi\left(p_{b}(z, g z)\right)-\varphi\left(\liminf _{n \rightarrow \infty} M_{s}^{f, g}\left(x_{2 n}, z\right)\right) .
\end{aligned}
$$

Therefore, $\varphi\left(\liminf _{n \rightarrow \infty} M_{s}^{f, g}\left(x_{2 n}, z\right)\right) \leq 0$, equivalently, $\liminf _{n \rightarrow \infty} M_{s}^{f, g}\left(x_{2 n}, z\right)=0$. Thus, from (4.20) we get $z=g z$ and hence z is a fixed point of g. On the other hand, similar to the first part of the proof of Theorem 3, we can show that $f z=z$. Hence, z is a common fixed point of f and g.

Also, we have the following results.

Corollary 3 Let $\left(X, \preceq, p_{b}\right)$ be a p_{b}-complete ordered partial b-metric space with the coefficient $s \geq 1$, and let $f, g: X \rightarrow X$ be two weakly increasing mappings with respect to \preceq. Suppose that there exists $k \in[0,1)$ such that

$$
p_{b}(f x, g y) \leq \frac{k}{s^{2}} \max \left\{p_{b}(x, y), p_{b}(x, f x), p_{b}(y, g y), \frac{p_{b}(x, g y)+p_{b}(f x, y)}{2 s}\right\}
$$

for all comparable elements $x, y \in X$. Iff and g are continuous, then f and g have a common fixed point.

Corollary 4 Under the hypotheses of Corollary 3, without the continuity assumption on the functions f and g, assume that whenever $\left\{x_{n}\right\}$ is a nondecreasing sequence in X such that $x_{n} \rightarrow x \in X$, then $x_{n} \preceq x$ for all $n \in \mathbb{N}$. Then f and g have a common fixed point in X.

Remark 1 Recall that a subset W of a partially ordered set X is said to be well ordered if every two elements of W are comparable. Note that in Theorems 1 and 2, it can be proved in a standard way that f has a unique fixed point provided that the fixed points of f are comparable. Similarly, in Theorems 3 and 4, the set of common fixed points of f and g is well ordered if and only if f and g have one and only one common fixed point.

The usability of these results is demonstrated by the following example.

Example 5 Let $X=\{0,1,2,3,4\}$ be equipped with the following partial order \preceq :

$$
\preceq:=\{(0,0),(1,1),(1,2),(2,2),(3,3),(4,2),(4,4)\} .
$$

Define a partial b-metric $p_{b}: X \times X \rightarrow \mathbb{R}^{+}$by

$$
p_{b}(x, y)= \begin{cases}0 & \text { if } x=y \\ (x+y)^{2} & \text { if } x \neq y\end{cases}
$$

It is easy to see that $\left(X, p_{b}\right)$ is a p_{b}-complete partial b-metric space, with $s=49 / 25$.
Define self-maps f and g by

$$
f=\left(\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
0 & 2 & 2 & 1 & 2
\end{array}\right), \quad g=\left(\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
0 & 2 & 2 & 1 & 1
\end{array}\right)
$$

We see that f and g are weakly increasing mappings with respect to \preceq and that f and g are continuous.
Define $\psi, \varphi:[0, \infty) \rightarrow[0, \infty)$ by $\psi(t)=\sqrt{t}$ and $\varphi(t)=\frac{t}{300}$. In order to check that (f, g) is a generalized $(\psi, \varphi)_{s}$-contractive pair, only the case $x=2, y=4$ is nontrivial (when x and y are comparable and the left-hand side of condition (4.1) is positive). Then

$$
\psi\left(s^{2} p_{b}(f 2, g 4)\right)=\sqrt{s^{2} \cdot 3^{2}}=\frac{147}{25}=\sqrt{36}-\frac{36}{300}=\psi\left(M_{s}^{f, g}(2,4)\right)-\varphi\left(M_{s}^{f, g}(2,4)\right)
$$

Thus, all the conditions of Theorem 3 are satisfied and hence f and g have common fixed points. Indeed, 0 and 2 are two common fixed points of f and g. Note that the ordered set $(\{0,2\}, \preceq)$ is not well ordered.
Note that if the same example is considered in the space without order, then the contractive condition is not satisfied. For example,

$$
\begin{aligned}
\psi\left(s^{2} p_{b}(f 1, g 4)\right) & =\sqrt{s^{2} \cdot 3^{2}}=\frac{147}{25} \\
& >\frac{59}{12}=\sqrt{25}-\frac{25}{300}=\psi\left(M_{s}^{f, g}(1,4)\right)-\varphi\left(M_{s}^{f, g}(1,4)\right) .
\end{aligned}
$$

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Author details

${ }^{1}$ Department of Mathematics, The Hashemite University, P.O. 330127, Zarqa, 13115, Jordan. ${ }^{2}$ Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran. ${ }^{3}$ Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran. ${ }^{4}$ Faculty of Mathematics, University of Belgrade, Beograd, Serbia.

Acknowledgements

The fourth author is thankful to the Ministry of Education, Science and Technological Development of Serbia.

Received: 11 October 2013 Accepted: 31 October 2013 Published: 25 Nov 2013

References

1. Ran, ACM, Reurings, MCB: A fixed point theorem in partially ordered sets and some application to matrix equations. Proc. Am. Math. Soc. 132, 1435-1443 (2004)
2. Nieto, JJ, Lopez, RR: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 22, 223-239 (2005)
3. Abbas, M, Nazir, T, Radenović, S: Common fixed points of four maps in partially ordered metric spaces. Appl. Math. Lett. 24, 1520-1526 (2011)
4. Aghajani, A, Radenović, S, Roshan, JR: Common fixed point results for four mappings satisfying almost generalized (S, T)-contractive condition in partially ordered metric spaces. Appl. Math. Comput. 218, 5665-5670 (2012)
5. Ćirić, Lj, Abbas, M, Saadati, R, Hussain, N : Common fixed points of almost generalized contractive mappings in ordered metric spaces. Appl. Math. Comput. 217, 5784-5789 (2011)
6. Radenović, S, Kadelburg, Z: Generalized weak contractions in partially ordered metric spaces. Comput. Math. Appl. 60, 1776-1783 (2010)
7. Radenović, S, Kadelburg, Z, Jandrlić, D, Jandrlić, A: Some results on weak contraction maps. Bull. Iran. Math. Soc. 38, 625-645 (2012)
8. Shatanawi, W, Mustafa, Z, Tahat, N: Some coincidence point theorems for nonlinear contractions in ordered metric spaces. Fixed Point Theory Appl. 2011, 68 (2011). doi:10.1186/1687-1812-2011-68
9. Bakhtin, IA: The contraction principle in quasimetric spaces. Funct. Anal. 30, 26-37 (1989)
10. Czerwik, S: Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1, 5-11 (1993)
11. Czerwik, S: Nonlinear set-valued contraction mappings in b-metric spaces. Atti Semin. Mat. Fis. Univ. Modena 46, 263-276 (1998)
12. Aghajani, A, Abbas, M, Roshan, JR: Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces. Math. Slovaca (2012, in press)
13. Parvaneh, V, Roshan, JR, Radenović, S: Existence of tripled coincidence points in ordered b-metric spaces and an application to a system of integral equations. Fixed Point Theory Appl. 2013, 130 (2013). doi:10.1186/1687-1812-2013-130
14. Roshan, JR, Parvaneh, V, Sedghi, S, Shobkolaei, N, Shatanawi, W: Common fixed points of almost generalized $(\psi, \varphi)_{s}$-contractive mappings in ordered b-metric spaces. Fixed Point Theory Appl. 2013, 159 (2013). doi:10.1186/1687-1812-2013-159
15. Aydi, H, Bota, M-F, Karapinar, E, Moradi, S: A common fixed point for weak $\boldsymbol{\phi}$-contractions on b-metric spaces. Fixed Point Theory 13(2), 337-346 (2012)
16. Aydi, H, Bota, M-F, Karapınar, E, Mitrović, S: A fixed point theorem for set-valued quasi-contractions in b-metric spaces. Fixed Point Theory Appl. 2012, 88 (2012). doi:10.1186/1687-1812-2012-88
17. Boriceanu, M: Fixed point theory for multivalued generalized contractions on a set with two b-metrics. Stud. Univ. Babeş-Bolyai, Math. LIV(3), 3-14 (2009)
18. Boriceanu, M: Strict fixed point theorems for multivalued operators in b-metric spaces. Int. J. Mod. Math. 4(3), 285-301 (2009)
19. Hussain, N, Đorić, D, Kadelburg, Z, Radenović, S: Suzuki-type fixed point results in metric type spaces. Fixed Point Theory Appl. 2012, 126 (2012). doi:10.1186/1687-1812-2012-126
20. Hussain, N, Shah, MH: KKM mappings in cone b-metric spaces. Comput. Math. Appl. 62, 1677-1684 (2011)
21. Khamsi, MA, Hussain, N: KKM mappings in metric type spaces. Nonlinear Anal. 73, 3123-3129 (2010)
22. Khamsi, MA: Remarks on cone metric spaces and fixed point theorems of contractive mappings. Fixed Point Theory Appl. 2010, Article ID 315398 (2010). doi:10.1155/2010/315398
23. Jovanović, M, Kadelburg, Z, Radenović, S: Common fixed point results in metric-type spaces. Fixed Point Theory Appl. 2010, Article ID 978121 (2010). doi:10.1155/2010/978121
24. Pacurar, M: Sequences of almost contractions and fixed points in b-metric spaces. An. Univ. Vest. Timiş., Ser. Mat.-Inform. 3, 125-137 (2010)
25. Roshan, JR, Shobkolaei, N, Sedghi, S, Abbas, M: Common fixed point of four maps in b-metric spaces. Hacet. J. Math. Stat. (2013, in press)
26. Singh, SL, Prasad, B: Some coincidence theorems and stability of iterative procedures. Comput. Math. Appl. 55, 2512-2520 (2008)
27. Matthews, SG: Partial metric topology. Proc. 8th Summer Conference on General Topology and Applications. Ann. N.Y. Acad. Sci. 728, 183-197 (1994)
28. Aydi, H: Common fixed point results for mappings satisfying (ψ, φ)-weak contractions in ordered partial metric spaces. Int. J. Math. Stat. 12, 2 (2012)
29. Kadelburg, Z, Nashine, HK, Radenović, S: Fixed point results under various contractive conditions in partial metric spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 107, 241-256 (2013)
30. Nashine, HK, Kadelburg, Z, Radenović, S: Common fixed point theorems for weakly isotone increasing mappings in ordered partial metric spaces. Math. Comput. Model. 57, 2355-2365 (2013)
31. Oltra, S, Valero, O: Banach's fixed point theorem for partial metric spaces. Rend. Ist. Mat. Univ. Trieste 36, 17-26 (2004)
32. Sedghi, S, Shobkolaei, N: Common fixed point of maps in complete partial metric spaces. East Asian Math. J. 29, 1-12 (2013)
33. Shobkolaei, N, Sedghi, S, Roshan, JR, Altun, I: Common fixed point of mappings satisfying almost generalized (S, T)-contractive condition in partially ordered partial metric spaces. Appl. Math. Comput. 219, 443-452 (2012)
34. Shukla, S: Partial b-metric spaces and fixed point theorems. Mediterr. J. Math. (to appear). doi:10.1007/s00009-013-0327-4
35. Khan, MS, Swaleh, M, Sessa, S: Fixed point theorems by altering distances between the points. Bull. Aust. Math. Soc. 30, 1-9 (1984)
36. Đorić, D: Common fixed point for generalized (ψ, φ)-weak contraction. Appl. Math. Lett. 22, 1896-1900 (2009)
37. Karapinar, E, Sadarangani, K: Fixed point theory for cyclic (ψ, φ)-contractions. Fixed Point Theory Appl. 2011, 69 (2011). doi:10.1186/1687-1812-2011-69
38. Nashine, NH, Samet, B: Fixed point results for mappings satisfying (ψ, φ)-weakly contractive condition in partially ordered metric spaces. Nonlinear Anal. 74, 2201-2209 (2011)
39. Nashine, NH, Samet, B, Kim, J: Fixed point results for contractions involving generalized altering distances in ordered metric spaces. Fixed Point Theory Appl. 2011, 5 (2011). doi:10.1186/1687-1812-2011-5
40. Popescu, O: Fixed points for (ψ, φ)-weak contractions. Appl. Math. Lett. 24, 1-4 (2011)
41. Shatanawi, W, Samet, B: On (ψ, φ)-weakly contractive condition in partially ordered metric spaces. Comput. Math. Appl. 62, 3204-3214 (2011)
42. Altun, I, Damjanović, B, Đorić, D: Fixed point and common fixed point theorems on ordered cone metric spaces. Appl. Math. Lett. 23, 310-316 (2010)
[^0]
Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

[^0]: 10.1186/1029-242X-2013-562

 Cite this article as: Mustafa et al.: Some common fixed point results in ordered partial b-metric spaces. Journal of Inequalities and Applications 2013, 2013:562

