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Abstract
This paper is concerned with the asymptotic stability in the pth moment for a class of
jump-diffusions of neutral type with impulses. Sufficient conditions ensuring the
stability of jump-diffusions of neutral type with impulses are established by means of
the Banach fixed point theorem. The results obtained here generalize and improve
some well-known results.
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Introduction
Recently, the existence, uniqueness and stability of solutions of stochastic differential
equations, especially stochastic partial differential equations [–], have been considered
bymany authors []. Besides stochastic effects, impulsive effects also occur in real systems.
The study of impulsive systems in a separableHilbert space ismotivated bymodeling some
evolution phenomena arising in physics, communications, engineering, etc. [–].
In addition, many dynamical systems not only depend on present and past states, but

also involve derivative with delays, and neutral systems are often used to describe such
systems. It should pointed out that there are a few works about the existence and stability
of mild solutions of neutral systems [–]. Meanwhile, there are also a few works on
jump diffusions, and some results on the existence, uniqueness, stability and qualitative
properties of solutions have been obtained. For example, Bao et al. [] studied almost
sure asymptotic stability of stochastic partial differential equations with jumps. Bao et al.
[] discussed stability in distribution of mild solutions to stochastic partial differential
equations with jumps. Cui et al. [] discussed exponential stability for neutral stochastic
partial differential equations with delays and Poisson jumps. Peszat and Zabczyk [] dis-
cussed the theory of stochastic partial differential equations with Lévy noise. Motivated
by the above papers, in the paper we aim to study the existence and asymptotic stability
of a class of jump-diffusions of neutral type with impulses by means of the Banach fixed
point theorem, the results obtained here generalize themain results fromMahmudov [],
Jiang and Shen [], Sakthivel [].
The organization of the paper is as follows. In the next section, we introduce some nota-

tions and definitions ofmild solution and asymptotic stability. Thenwe give sufficient con-
ditions ensuring the stability of jump-diffusions of neutral type with impulses by means
of the Banach fixed point theorem.
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Preliminaries
Throughout this paper, let (�,F , {Ft}t≥,P) be a complete probability space with a filtra-
tion {Ft}t≥ satisfying the usual conditions (i.e., it is increasing and right-continuous while
F contains all P-null sets) []. Moreover, let X, Y be two real separable Hilbert spaces,
and let L(Y ,X) denote the space of all bounded linear operators from Y into X.
For simplicity, we use the notation | · | to denote the norm in X, Y and ‖ · ‖ to denote

the operator norm in L(X,X) and L(Y ,X). Let 〈·〉X , 〈·〉Y denote the inner products of X, Y ,
respectively. Let {w(t) : t ≥ } denote an Y -valuedWiener process defined on the probabil-
ity space (�,F , {Ft}t≥,P) with the covariance operator Q, that is, E〈w(t),x〉Y 〈w(s), y〉Y =
(t ∧ s)〈Qx, y〉Y for all x, y ∈ Y , where Q is a positive, self-adjoint, trace class operator on Y .
In particular, we denote by w(t) a Y -valuedQ-Wiener process with respect to {Ft}t≥. We
assume that there exists a complete orthonormal system {ei} in Y , a bounded sequence
of nonnegative real numbers λi such that Qei = λiei, i = , , . . . , and a sequence {βi}i≥

of independent Brownian motions such that 〈w(t), e〉 = ∑∞
i=

√
λi〈ei, e〉βi(t), e ∈ Y , and

Ft = Fw
t , where Fw

t is the σ -algebra generated by {w(s) :  ≤ s ≤ t}. Let L = L(Q/Y ;X)
be the space of all Hilbert-Schmidt operators from Q/Y to X with the inner product
〈u, ξ〉L = tr[uQξ ]; see, for example, [].
Let p = (p(t)), t ∈ Dp be a stationary Ft-Poisson point process with characteristic mea-

sure λ. Denote by N(dt,dv) the Poisson counting measure associated with p, that is,
N(t,Z) =

∑
s∈Dp ,s≤t IZ (p(s)) with ameasurable setZ ∈ B(Y – {}), which denotes the Borel

σ -field of Y – {}. Let Ñ(dt,dv) = N(dt,dv) – dtλ(dv) be the compensated Poisson mea-
sure, which is independent ofw(t). Denote byP([,T]×Z ;X) the space of all predictable
mappings L : [,T]×Z × � → X for which

∫ T



∫
Z
E
∣∣L(t, v)∣∣ dtλ(dv) <∞.

Wemay then define the X-valued stochastic integral
∫ T


∫
Z L(t, v)Ñ(dt,dv), which is a cen-

tered square-integrablemartingale [].We always assume thatw(t) and Ñ are independent
of F.
Now consider a class of jump-diffusions of neutral type with impulses of the form

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
d[x(t) – u(t,x(t – ρ(t)))] = [Ax(t) + f (t,x(t – τ (t)))]dt

+ g(t,x(t – δ(t)))dw(t)
+

∫
Z h(t,x(t – κ(t)), v)Ñ(dt,dv), t ≥ , t �= tk ,

x(tk) = x(t+k ) – x(t–k ) = Ik(x(t–k )), t = tk ,k = , , . . . ,m,

()

with the initial data x(t) = ϕ ∈ Cb
F

([–τ , ],X), where u : R+ × X → X, f : R+ × X → X, g :
R+ ×X → L(Y ,X), h : R+ ×X ×Z → X are all Borel measurable; ρ : R+ → [, τ ], τ : R+ →
[, τ ], δ : R+ → [, τ ], κ : R+ → [, τ ] are continuous; A is the infinitesimal generator of a
semigroup of bounded linear operators S(t), t ≥ , inX; Ik : X → X. Furthermore, the fixed
moments of times tk satisfy  < t < · · · < tm < limk→∞ tk =∞, x(t+k ) and x(t–k ) represent the
right and left limits of x(t) at t = tk , respectively. Also x(tk) = x(t+k ) – x(t–k ) represents
the jump in the state x at time tk with Ik determining the size of the jump. τ >  and C =
C([–τ , ];X) denotes a family of all right-continuous functionswith left-hand limits η from
[–τ , ] to X. Denote the norm of η(t) by ‖η‖C = supt∈[–τ ,] E|η(t)|. Here, Cb

F
([–τ , ],X) is
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a family of all almost surely bounded, F-measurable, continuous random variables from
[–τ , ] to X.
Suppose that {S(t), t ≥ } is an analytic semigroup with its infinitesimal generator A.

For a basic reference, the reader is referred to Pazy []. We always assume  ∈ (A), the
resolvent set of –A. For any α ∈ [, ], it is possible to define the fractional power (–A)α

which is a closed linear operator with its domain D((–A)α).

Definition  A process {x(t), t ∈ [,T]}, ≤ T <∞, is called a mild solution of Eq. () if
(i) x(t) is adapted to Ft , t ≥  with

∫ T
 |x(t)| dt <∞ a.s.;

(ii) x(t) ∈ X has càdlàg paths on t ∈ [,T] a.s. and for each t ∈ [,T], x(t) satisfies the
integral equation

x(t) = S(t)
[
ϕ() – u

(
,x

(
–ρ()

))]
+ u

(
t,x

(
t – ρ(t)

))
+

∫ t


AS(t – s)u

(
s,x

(
s – ρ(s)

))
ds

+
∫ t


S(t – s)f

(
s,x

(
s – τ (s)

))
ds

+
∫ t


S(t – s)g

(
s,x

(
s – δ(s)

))
dw(s)

+
∫ t



∫
Z
S(t – s)h

(
s,x

(
s – κ(s), v

))
Ñ(ds,dv)

+
∑
<tk<t

S(t – tk)Ik
(
x
(
t–k

))
, ()

and ϕ ∈ Cb
F

([–τ , ],X).

Moreover, for the purposes of stability, we always assume that u(t, ) = , f (t, ) = ,
g(t, ) = , h(t, , v) = , Ik() =  (k = , , . . .). Hence Eq. () has a trivial solution when
ϕ = .

Definition  Let p ≥  be an integer. The trivial solution of Eq. () or Eq. () itself is said
to be stable in the pth moment if for arbitrarily given ε > , there exists δ >  such that
‖ϕ‖C < δ guarantees that

E
(
sup
t≥

∣∣x(t)∣∣p) < ε.

Definition  Let p ≥  be an integer. The trivial solution of Eq. () or Eq. () itself is said
to be asymptotically stable (or globally asymptotically stable) in the pth moment if it is
stable in the pth moment and for any ϕ ∈ Cb

F
([–τ , ],X),

lim
T→∞E

(
sup
t≥T

∣∣x(t)∣∣p) = .

When p = , we say Eq. () is mean square asymptotically stable (or mean square globally
asymptotically stable).
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Jiang et al. Journal of Inequalities and Applications 2013, 2013:561 Page 4 of 9
http://www.journalofinequalitiesandapplications.com/content/2013/1/561

To establish the stability of Eq. (), we employ the following assumptions.
(H) A is the infinitesimal generator of a semigroup of bounded linear operators S(t),

t ≥ , in X satisfying |S(t)| ≤ Me–at , t ≥ , for some constants M ≥  and
 < a ∈ R+.

(H) The functions f , g and h satisfy the following conditions: there exists a constant K
such that for any x, y ∈ X and t ≥ ,

∣∣f (t,x) – f (t, y)
∣∣ ≤ K |x – y|,∥∥g(t,x) – g(t, y)
∥∥ ≤ K |x – y|,∫

Z

∣∣h(t,x, v) – h(t, y, v)
∣∣λ(dv)≤ K |x – y|.

(H) There exist a number α ∈ [, ] and a positive constant K such that for any x, y ∈ X
and t ≥ , u(t,x) ∈D((–A)α) and

∣∣(–A)αu(t,x) – (–A)αu(t, y)
∣∣ ≤ K |x – y|.

(H) There exists a constant qk such that |Ik(x) – Ik(y)| ≤ qk|x – y| for each x, y ∈ X
(k = , . . . ,m).

Asymptotic stability
In this section, we consider the asymptotic stability of Eq. () by means of the fixed point
theory. Let H be the space of all F-adapted processes ψ(t,w) : [,∞)× � → R which is
almost certainly continuous in t for fixed w ∈ �. Moreover, ψ(s,w) = ϕ(s) for s ∈ [–τ , ]
and E|ψ(t,w)| →  as t → ∞.
Now let us state the following well-known lemma [], which will be used in the sequel

in the proof of the main result.

Lemma  If (H) holds and  ∈ (A), then for any β ∈ (, ],
(i) for each x ∈D((–A)β ), S(t)(–A)βx = (–A)βS(t)x;
(ii) there exist constantsMβ >  and a ∈ R+ such that ‖(–A)βS(t)‖ ≤ Mβ t–βe–at , t > .

We can now state our main result of this paper.

Theorem  If (H)-(H) hold for some α ∈ (/, ], then Eq. () is mean square globally
asymptotically stable provided

K
∣∣(–A)–α

∣∣ +KM
–αa

–α�(α – ) +MKa– +KMa– +ML < /, ()

where L = e–aTE(
∑m

k= |qk|).

Proof Define an operator π :H →H by π (x)(t) = �(t) for t ∈ [–τ , ] and for t ≥ ,

(πx)(t) = S(t)
[
ϕ() – u

(
,x

(
–ρ()

))]
+ u

(
t,x

(
t – ρ(t)

))
+

∫ t


AS(t – s)u

(
s,x

(
s – ρ(s)

))
ds
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+
∫ t


S(t – s)f

(
s,x

(
s – τ (s)

))
ds +

∫ t


S(t – s)g

(
s,x

(
s – δ(s)

))
dw(s)

×
∫ t



∫
Z
S(t – s)h(s,x

(
s – κ(s), v

)
Ñ(ds,dv) +

∑
<tk<t

S(t – tk)Ik
(
x
(
t–k

))

:=
∑
i=

Fi(t). ()

We divide the proof into three steps.
Step . We claim that π is mean square continuous on [,∞). Let x ∈ H , t ≥ , and |h|

be sufficiently small, then

E
∣∣(πx)(t + h) – (πx)(t)

∣∣ ≤ 
∑
i=

E
∣∣Fi(t + h) – Fi(t)

∣∣

:= 
∑
i=

E
∣∣Fi(t)

∣∣.
We can easily see that E|Fi(t)| → , i = , , , , , as h → . Moreover, by the proper-
ties of the martingales [, ], we have

E
∣∣F(t)

∣∣
≤ 

(∫ t



(
E
∣∣(S(t + h – s) – S(t – s)

)
g
(
s,x

(
s – δ(s)

))∣∣)ds)

+ 
(∫ t+h

t

(
E
∣∣S(t + h – s)g

(
s,x

(
s – δ(s)

))∣∣)ds)

→  as h→ .

E
∣∣F(t)

∣∣
≤ 

∫ t



∫
Z
E
∣∣(S(t + h – s) – S(t – s)

)
h
(
s,x

(
s – κ(s), v

))∣∣λ(dv)ds
+ 

∫ t+h

t

∫
Z
E
∣∣(S(t + h – s) – S(t – s)

)
h
(
s,x

(
s – κ(s), v

))∣∣λ(dv)ds
→  as h→ .

Consequently, π is mean square continuous on [,∞).
Step . We claim that π (H) ⊂H . From (), we have

E
∣∣(πx)(t)∣∣ ≤ E

∣∣S(t)[ϕ() – u
(
,x

(
–ρ()

))]∣∣ + E
∣∣u(

t,x
(
t – ρ(t)

))∣∣
+ E

∣∣∣∣
∫ t


AS(t – s)u

(
s,x

(
s – ρ(s)

))
ds

∣∣∣∣

+ E
∣∣∣∣
∫ t


S(t – s)f

(
s,x

(
s – τ (s)

))
ds

∣∣∣∣

+ E
∣∣∣∣
∫ t


S(t – s)g

(
s,x

(
s – δ(s)

))
dw(s)

∣∣∣∣

http://www.journalofinequalitiesandapplications.com/content/2013/1/561
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+ E
∣∣∣∣
∫ t



∫
Z
S(t – s)h(s,x

(
s – κ(s), v

)
Ñ(ds,dv)

∣∣∣∣

+ E
∣∣∣∣ ∑
<tk<t

S(t – tk)Ik
(
x
(
t–k

))∣∣∣∣ :=
∑
i=

Gi(t). ()

Note that x(t) ∈H . By (H), (H), (H) and Lemma , we have

G(t) ≤ Me–at
(
 +

√
K

∣∣(–A)–α
∣∣)‖ϕ‖C →  as t → ∞, ()

G(t)≤ K
∣∣(–A)–α

∣∣E∣∣x(t – ρ(t)
)∣∣ →  as t → ∞, ()

G(t) ≤ Me–atqkE
∣∣x(t–k )∣∣ →  as t → ∞. ()

By Lemma , (H) and the Hölder inequality, we obtain

G(t) ≤ E
(∫ t



∣∣(–A)–αS(t – s)(–A)αu
(
s,x

(
s – ρ(s)

))∣∣ds)

≤ M
–αK

(∫ t


e–a(t–s)(t – s)α– ds

)∫ t


e–a(t–s)E

∣∣x(s – ρ(s)
)∣∣ ds

≤ M
–αKa–α�(α – )

∫ t


e–a(t–s)E

∣∣x(s – ρ(s)
)∣∣ ds. ()

For any x(t) ∈ H and ε > , there exists t >  such that E|x(t – ρ(t))| < ε for t ≥ t. We
thus obtain

G(t) ≤ M
–αKa–α�(α – )

∫ t


e–a(t–s)E

∣∣x(s – ρ(s)
)∣∣ ds

+ M
–αKa–α�(α – )ε. ()

We can see e–at →  as t → ∞. By (), there exists t ≥ t such that for any t ≥ t we obtain

M
–αKa–α�(α – )

∫ t


e–a(t–s)E

∣∣x(s – ρ(s)
)∣∣ ds

≤ ε – M
–αKa–α�(α – )ε. ()

This, together with (), yields for any t ≥ t, G(t)≤ ε. That is,

G(t) →  as t → ∞. ()

By (H), (H), the Hölder inequality, Lemma  and the properties of the martingales [, ],
we easily obtain

G(t) ≤ MKa–
∫ t


e–a(t–s)E

∣∣x(s – τ (s)
)∣∣ ds, ()

G(t) ≤ MK
∫ t


e–a(t–s)E

∣∣x(s – δ(s)
)∣∣ ds. ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/561
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G(t)≤ 
∫ t



∫
Z
E
∣∣S(t – s)h

(
s,x

(
s – κ(s), v

))∣∣λ(dv)ds
≤ MK

∫ t


e–a(t–s)E

∣∣x(s – κ(s)
)∣∣ ds. ()

Further, similar to the proof of (), from (), () and (), we then have G(t),G(t),
G(t) →  as t → ∞. Therefore, we have E|(πx)(t)| →  as t → ∞. That is, π (H) ⊂H .
Step . We claim that π is a contraction mapping. Let x, y ∈H , we have

sup
t∈[,T]

E
∣∣(πx)(t) – (πy)(t)

∣∣
≤ 

[
sup

t∈[,T]
E
∣∣u(

t,x
(
t – ρ(t)

))
– u

(
t, y

(
t – ρ(t)

))∣∣

+ sup
t∈[,T]

E
∣∣∣∣
∫ t


AS(t – s)

[
u
(
s,x

(
s – ρ(s)

))
– u

(
s, y

(
s – ρ(s)

))]
ds

∣∣∣∣

+ sup
t∈[,T]

E
∣∣∣∣
∫ t


S(t – s)

[
f
(
s,x

(
s – τ (s)

))
– f

(
s, y

(
s – τ (s)

))]
ds

∣∣∣∣

+ sup
t∈[,T]

E
∣∣∣∣
∫ t


S(t – s)

[
g
(
s,x

(
s – δ(s)

))
– g

(
s, y

(
s – δ(t)

))]
dw(s)

∣∣∣∣

+ sup
t∈[,T]

E
∣∣∣∣
∫ t



∫
Z
S(t – s)

[
h
(
s,x

(
s – κ(s), v

))
– h

(
s, y

(
s – κ(s), v

))]
Ñ(ds,dv)

∣∣∣∣

+ sup
t∈[,T]

E
∣∣∣∣ ∑
<tk<t

S(t – tk)
[
Ik

(
x
(
t–k

))
– Ik

(
y
(
t–k

))]∣∣∣∣
]

≤ 
[
K

∣∣(–A)–α
∣∣ +KM

–αa
–α�(α – ) +MKa– +KMa–

+ML
]
sup

t∈[,T]
E
∣∣x(t) – y(t)

∣∣, ()

where L = e–aTE(
∑m

k= |qk|). Thus π is a contractionmapping. Hence there exists a unique
fixed point x(t) inH which is the solution of Eq. () and E|x(t)| →  as t → ∞. The proof
is complete. �

Similarly, we can easily generalize the above result to global asymptotic stability in the
pth moment.

Theorem  If (H)-(H) hold for some α ∈ (/p, ], p ≥ , and the inequality

p–
[
Kp/∣∣(–A)–α

∣∣p +Kp/Mp
–αa

–pα(
�

(
 + p(α – )/(p – )

))p– +MpKp/a–p

+ cpMpKp/(a(p – )/(p – )
)–p//a +MpL

]
< 

also holds, then Eq. () is globally asymptotically stable in the pth moment, where L =
e–apTE(

∑m
k= |qk|p) and cp = (p(p – )/)p/.

Remark Without the impulsive and Poisson jumps, Eq. () reduces to a stochastic partial
differential equation, which is investigated in []. If without Poisson jumps, then Eq. ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/561
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reduces to impulsive stochastic neutral partial differential equations, which is studied in
[]. If without the neutral term and Poisson jumps, then Eq. () reduces to an impulsive
stochastic partial differential equation, which is studied in []. In the sense, the results of
this paper are generalized.

Conclusion
This paper discusses the globally asymptotic stability of the mild solutions to jump-
diffusions of neutral type with impulses by the fixed point theory. Globally asymptotic
stability of themild solutions to jump-diffusions of neutral type with impulses are derived.
Some earlier results are generalized and improved.
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