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Abstract
This paper deals with the Cauchy problem for a generalized Novikov equation
ut – uxxt + (b + 1)u2ux = buuxuxx + u2uxxx , where b is a constant. The local
well-posedness in the critical Besov space B3/22,1 is established. Moreover, a lower
bound for the maximal existence time and lower semicontinuity of the existence are
derived, the multi-peakon solutions are also obtained. Finally, the persistence
properties in weighted spaces for the solution of this equation are considered.
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1 Introduction
The present paper focuses on the Cauchy problem for the following modified Novikov
equation:

{
ut – uxxt + (b + )uux = buuxuxx + uuxxx, t > ,x ∈ R,
u(x, ) = u(x), x ∈R,

(.)

where b, k and k are arbitrary constants. Our main purpose of this paper is to establish
the well-posedness in the critical Besov space B/

, and persistence in a weighted Sobolev
space.
Note that when we take b = , Eq. (.) is the Novikov equation:

ut – uxxt + uux = uuxuxx + uuxxx, t > ,x ∈ R, (.)

which was recently discovered by Novikov in a symmetry classification of nonlocal PDEs
with quadratic or cubic nonlinearity []. The perturbative symmetry approach [] yields
necessary conditions for a PDE to admit infinitely many symmetries. Using this approach,
Novikov was able to isolate Eq. (.) and find its first few symmetries, and he subsequently
found a scalar Lax pair for it, proving that the equation is integrable. By using the prolon-
gation algebra method, Hone and Wang [] gave a matrix Lax pair and many conserved
densities and a bi-Hamiltonian structure of the Novikov equation, and they showed how
it was related by a reciprocal transformation to a negative flow in the Sawada-Kotera hier-
archy. Then in [], the authors calculated the explicit formulas for multi-peakon solutions
of the Novikov equation.
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Recently, by the transport equations theory and the classical Friedrichs regularization
method, the authors proved that the Cauchy problem for the Novikov equation is locally
well posed in the Besov spaces Bs

p,r (with  ≤ p, r ≤ +∞ and s >max{ + /p, /} in [, ],
and with the critical index s = /, p =  in []). It was also shown in [] that the Novikov
equation associated with the initial value is locally well posed in the Sobolev spaceHs with
s > / by using the abstract Kato theorem. Two results about the persistence properties
of the strong solution for Eq. (.) were established in []. A Galerkin-type approximation
method was used in Himonas and Holliman’s paper [] to establish the well-posedness
of Novikov equation (.) in the Sobolev space Hs with s > / on both the line and the
circle, and in [, ] the authors proved that the data-to-solution map is not globally uni-
formly continuous on Hs for s < /, this result supplements Himonas and Holliman’s
works. Tiglay [] showed the local well-posedness of the problem in Sobolev spaces and
the existence and uniqueness of solutions for all time using orbit invariants. For analytic
initial data, the existence and uniqueness of analytic solutions for Eq. (.) were also ob-
tained in []. Analogous to the Camassa-Holm equation, the Novikov equation possesses
a blow-up phenomenon [, ] and global weak solutions [, ].
On the other hand, it is well known that the nonlinearity of the following b-equation is

quadratic:

ut – uxxt + (b + )uux = buxuxx + uuxxx, t > ,x ∈R, (.)

which can be derived as the family of asymptotically equivalent shallow water wave equa-
tions that emerges at quadratic order accuracy for any b �= – by an appropriate Kodama
transformation. For the case b = –, the corresponding Kodama transformation is singu-
lar and the asymptotic ordering is violated (see [–]). Equation (.) belongs to the
following family of nonlinear dispersive partial differential equations:

ut – γuxxx – αuxxt =
(
cu + cux + cuuxx

)
x,

where γ , α, c, c and c are real constants. By using Painlevé analysis in [–], there are
only three asymptotically integrable within this family: the KdV equation, the Camassa-
Holm (Eq. (.) with b = ) equation and the Degasperis-Procesi equation (Eq. (.) with
b = ). The solutions of the b-equation were studied numerically for various values of b
in [, ], where b was taken as a bifurcation parameter. The necessary conditions for
integrability of the b-equationwere investigated in []. The b-equation also admits peakon
solutions for any b ∈ R (see [, , ]). The well-posedness, blow-up phenomena and
global solutions for the b-equation were shown in [–].
Recently, Mi and Mu [] studied the local well-posedness in the Besov space Bs

p,r with
 ≤ p, r ≤ +∞ and s > max{ + /p, /}. It is well known that Bs

,(R) = Hs and for any

s′ < / < s: Hs ↪→ B


, ↪→ H 

 ↪→ B


,∞ ↪→ Hs′ , which shows that Hs and Bs

, are quite
close, so here we first establish the local well-posedness in the critical Besov space B/

, .

Theorem . Assume that the initial data u(x) ∈ B


,. Then there exist a unique solution

u(x, t) and a maximal time T = T(u) >  to the Cauchy problem (.) such that

u = u(·,u) ∈ C
(
[,T];B



,

) ∩C([,T];B 

,

)
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/560


Zhou and Chen Journal of Inequalities and Applications 2013, 2013:560 Page 3 of 19
http://www.journalofinequalitiesandapplications.com/content/2013/1/560

Moreover, the solution depends continuously on the initial data, i.e., the mapping

u 	→ u(·,u) : B


, 	→ C

(
[,T];B



,

) ∩C([,T];B 

,

)
is continuous.

Remark . Following the proof of Theorem . in [] and Theorem . in [], one can
easily get that Eq. (.) is not locally well posed in B



,∞ in the following sense: There exists

a global solution u(t,x) ∈ L∞(R+;B


,∞) to Eq. (.) such that for any T >  and ε > , there

exists a solution v(t,x) ∈ L∞(R+;B


,∞) to Eq. (.) with

∥∥u() – v()
∥∥
B


,∞

≤ ε but
∥∥u(t) – v(t)

∥∥
L∞(R+;B



,∞)

≤ .

Remark . Theorem . improves the corresponding result in []. On the other hand,
noting that the counterexample given in [] cannot be applied to the case in B/

,r with
 < r <∞, the question of local well-posedness of Eq. (.) in H/ remains open. Actually,
this is still an open problem for the Camassa-Holm and Novikov equations.

Remark . Since

‖fg‖
B
– 
p

p,∞
≤ C‖f ‖

B
– 
p

p,∞
‖g‖

B

p
p,∞∩L∞

and ‖f ‖
B

p
p,

≤ C‖f ‖
B

p
p,∞

log

(
e +

‖f ‖
B
+ 

p
p,∞

‖f ‖
B

p
p,∞

)

holds for  ≤ p≤ ∞ (see []), Theorem . holds true in the case of B+/p
p, with  ≤ p < ∞.

Besides, using similar arguments in [], Theorem . can also hold true in the case of Bs
p,r

with s >max( + /p, /). Furthermore, the existence of solutions to Eq. (.) holds as the
initial data belong to Bs

p,r ∩ Lip with s > , which covers the corresponding result in [].

Theorem . Let u ∈ Bs
p,r with  ≤ p, r ≤ ∞ and s >max(/,  + /p), then there exists a

lifespan T∗
u >  such that

T∗
u < ∞ �⇒

∫ T∗
u



∥∥u∂xu(τ )
∥∥
L∞ dτ =∞.

We now get a lower bound depending only on ‖u‖Lip for the maximal existence time.

Theorem . Assume that u ∈ Lip ∩ Bs
p,r , s > max{/,  + /p}. Let T∗ be the maximal

existence time of the solution u to Eq. (.) with the initial data u. Then T∗ satisfies

T∗ ≥ 
a(‖u‖L∞ + ‖u,x‖L∞ )

with a = max{/, |b – |, |b|/, | – b|/}.

Next, we shall derive lower semicontinuity of the existence time, provided the initial
data is smooth enough.
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Theorem . Let v ∈ Bs
p,r , s > max{/,  + /p} and u ∈ Bs+

p,r . Assume that u, v are two
solutions to Eq. (.)with the initial data u, v. Let Tu , Tv be the maximal existence time
of the solution u, v. If there exist T < Tu and a constant C such that

‖u – v‖Bsp,r <


C
∫ T
 (‖u(τ )‖Bs+p,r

+ ‖u – v‖Bsp,r ) exp{C
∫ τ

 ‖u(τ ′)‖
Bs+p,r

dτ ′}dτ
,

then Eq. (.) has a unique solution v ∈ Es
p,r(T).

In [], the authors consider the single peakon taking the form u(t,x) =
√
ce–|x–ct–x|,

c > .Moreover, this peakon solitary is a global weak solution to Eq. (.). Next, we discuss
the existence of multi-peakon solutions to Eq. (.).

Theorem . Equation (.) has peakon solutions of the form:

u(t,x) =
N∑
i=

pi(t)e–|x–qi(t)|, (.)

whose positions qt(t) and amplitudes pj(t) are according to the dynamical system

p′
j =

( N∑
i=

pie–|qj–qi(t)|
)

,

q′
j = (b – )qj

( N∑
i=

pie–|qj–qi|
)( N∑

i=

pi sgn(qj – qi)e–|qj–qi|
)
.

(.)

In [, –], the spacial decay rates for the strong solutions to the Camassa-Holm
equation, the b-equation, and the Novikov equation were established provided that the
corresponding initial data decay at infinity. This kind of property is the so-called persis-
tence property. Following the main idea of [], we also prove the persistence properties
in weighted spaces for the solution of Eq. (.). However, the hard question is that there are
cubic nonlinearities in (.) whichmake the proof very difficult. First, we give the following
definition of an admissible weight function.

Definition . An admissible weight function for Eq. (.) is a locally absolutely contin-
uous function φ : R → R such that, for some A >  and a.e. x ∈ R, |φ′(x)| ≤ A|φ(x)|, and
that is v-moderate for some sub-multiplicative weight function v satisfying infR v >  and

∫
R

v(x)
e|x| dx < ∞. (.)

We recall that a locally absolutely continuous function is a.e. differentiable in R. More-
over, its a.e. derivative belongs to Lloc and agrees with its distributional derivative. We can
now state our main result on admissible weights.

Theorem . Let T > , s > /, and  ≤ p < ∞. Let also u ∈ C([,T],Hs(R)) be a strong
solution of the Cauchy problem for Eq. (.) such that u|t= = u satisfies

uφ ∈ Lp(R) and (∂xu)φ ∈ Lp(R),

http://www.journalofinequalitiesandapplications.com/content/2013/1/560
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where φ is an admissible weight function for Eq. (.). Then, for all t ∈ [,T], we have the
estimate

∥∥u(t)φ∥∥
p +

∥∥∂xu(t)φ
∥∥
p ≥ (‖uφ‖p + ‖∂xuφ‖p

)
eCMt

for some constant C >  depending only on v, φ (through the constants A, C, infR v, and∫
R

v(x)
e|x| dx < ∞), and

M ≡ sup
t∈[,T]

(∥∥u(t)∥∥∞ +
∥∥∂xu(t)

∥∥∞
)
<∞.

Remark . The basic example of the application of Theorem . is obtained by taking the
standard weights φ = φa,b,c,d(x) = ea|x|b ( + |x|)c log(e + |x|)d with the following conditions:

a ≥ , c,d ∈R,  ≤ b ≤ , ab < .

(For a < , one has φ(x) →  as |x| → ∞: the conclusion of the theorem remains true but
it is not interesting in this case.) The restriction ab <  guarantees the validity of condition
(.) for a multiplicative function v(x)≥ .
The limit case a = b =  is not covered by Theorem .. The result holds true, however,

for the weight φ = φ,,c,d with c < , d ∈ R, and 
|c| < p ≤ ∞, or, more generally, when

( + | · |)c log(e + | · |)d ∈ Lp(R). See Theorem . below, which covers the case of such fast
growing weights.

Remark . Let us consider a few particular cases:
() Take φ = φ,,c, with c > , and choose p =∞. In this case, Theorem . states that

the condition

∣∣u(x)∣∣ + ∣∣∂xu(x)∣∣ ≤ C
(
 + |x|)–c

implies the uniform algebraic decay in [,T]:

∣∣u(x, t)∣∣ + ∣∣∂xu(x, t)∣∣ ≤ C
(
 + |x|)–c.

It is worth pointing out that this is a new result for the Novikov equation.
() Choose φ = φa,,, if x ≥  and φ(x) =  if x ≤  with  ≤ a ≤ . Such weight clearly

satisfies the admissibility conditions of Definition .. Applying Theorem . with
p =∞, we conclude that the pointwise decay O(e–ax) as x→ +∞ is conserved
during the evolution. Similarly, we have persistence of the decay O(e–ax) as
x → –∞. Hence, our Theorem . encompasses also Theorem . of [].

Since ‘peakon’ solution u(t,x) =
√
ce–|x–ct|, c >  does not satisfy the asymptotic behavior

in Theorem . (see Remark .), the purpose of the next theorem is to establish a variant
of this theorem that can be applied to some v-moderate weights φ for which condition
(.) does not hold. Instead of assuming (.), we now put the weaker condition

ve–|·| ∈ Lp(R). (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/560


Zhou and Chen Journal of Inequalities and Applications 2013, 2013:560 Page 6 of 19
http://www.journalofinequalitiesandapplications.com/content/2013/1/560

It is easily checked that, for any continuous sub-multiplicative weight function v, we have

ve–|·| ∈ L(R) �⇒ ve–|·| ∈ Lp(R), ∀≤ p ≤ ∞,

so that condition (.) is indeed weaker than condition (.) (see [] for the details).

Theorem . Let  ≤ p ≤ ∞ and φ be a v-moderate weight function as in Definition .
satisfying condition (.) instead of (.). Let also u|t= = u satisfy

uφ ∈ Lp(R), uφ

 ∈ L(R)

and

(∂xu)φ ∈ Lp(R), (∂xu)φ

 ∈ L(R).

Let also u ∈ C([,T],Hs(R)), s > / be the strong solution of the Cauchy problem for Eq.
(.), emanating from u. Then

sup
t∈[,T]

(∥∥u(t)φ∥∥
Lp +

∥∥∂xu(t)φ
∥∥
Lp

)
< ∞

and

sup
t∈[,T]

(∥∥u(t)φ 

∥∥
L +

∥∥∂xu(t)φ


∥∥
L

)
<∞.

Remark . Like Remark ., Theorem . not only recovers Theorem . in [], but also
gives a new asymptotic behavior of solutions to Eq. (.).

The plan of this paper is organized as follows. In the next section, the local well-
posedness in the critical Besov space B/

, is considered and Theorem . is proved. The
blow-up criteria and multi-peakon solutions are obtained in Section  and Theorems .-
. are proved. In the last section, the persistence properties in weighted spaces for the
solution of Eq. (.) are considered, and Theorems .-. are proved.

2 Local well-posedness in critical Besov spaces
In this section, we shall establish the local well-posedness of Eq. (.) in critical Besov
spaces. More precisely, we give the proof of Theorem .. First, we rewrite model (.) in
the following transports equation form:

{
ut + uux + b–

 ( – ∂
x )–(∂xu) + ( – ∂

x )–∂x(
b
u

 + –b
 u(∂xu)) = ,

u(x, ) = u(x).
(.)

We can easily get the following two lemmas.

Lemma . Let u(x) ∈ B


,. Then there exists a time T >  such that the Cauchy problem

(.) has a solution u ∈ C([,T];B


,)∩C([,T];B



,).
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Lemma. Assume that u (respectively v) ∈ B


, such that u (respectively v) ∈ L∞([,T];

B


,) ∩ C([,T];B



,) is a solution to the Cauchy problem (.) with the initial data u (re-

spectively v). Let w = u – v and w = u – v. Then, for every t ∈ [,T],

∥∥u(t) – v(t)
∥∥
Bs–p,r

≤ ‖u – v‖Bs–p,r
× exp

{
C

∫ T



(∥∥u(τ )∥∥
Bsp,r

+
∥∥v(τ )∥∥

Bsp,r

)
dτ

}
. (.)

Proof of Lemmas .-. The proof is much similar to the case u ∈ Bs
p,r , s >max{ + 

p ,

 }

(see [, ]), thus we omit it here. �

Lemma . For any u ∈ B


,, there exist a neighborhood V of u in B



, and a time T > 

such that for any solution of the Cauchy problem (.) v ∈ V , the map

	 : v 	→ v(·, v) : V ⊂ B


, 	→ C

(
[,T];B



,

) ∩C([,T];B 

,

)
is continuous.

Proof Firstly, we prove the continuity of the map 	 in C([,T];B


,). Fix u ∈ B



, and

δ > . Now we claim that there exist T >  andM >  such that for any v ∈ B


, with ‖v –

u‖
B


,

≤ δ, the solution v =	(v) of the Cauchy problem (.) belongs to C([,T];B


,) and

satisfies ‖v‖
L∞([,T];B



,)

≤ M. In fact, according to the proof of the local well-posedness,

we have that if we fix T >  such that

 < T <min

{


C‖v‖
B


,

,

C

}
,

then

∥∥v(t)∥∥
B


,

≤
‖v‖

B


,

( – C‖v‖
B


,

t) 
for all t ∈ [,T]. (.)

As ‖v – u‖
B


,

≤ δ, then ‖v‖
B


,

≤ ‖u‖
B


,

+ δ. Here, one can choose some suitable

constant C such that

T =


C(‖u‖
B


,

+ δ + )
<min

{


C‖v‖
B


,

,

C

}

and

M = 
(‖u‖

B


,

+ δ
)
.

Now, combining the above uniform bounds with Lemma ., we get that
∥∥	(v) –	(u)

∥∥
L∞(,T ;B



,)

≤ δeC(M
+)T .

Hence 	 is Holder continuous from B


, into C([,T];B



,).
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Next we prove the continuity of the map 	 in C([,T];B


,). Let u∞

 ∈ B


, and

(u(n) )n∈N → u∞
 in B



,. Let u(n) be the solution of the Cauchy problem (.) with the initial

data u(n) . From the above argument, we deduce that for any n ∈N, t ∈ T ,

sup
n∈N

∥∥u(n)∥∥
L∞
T (B



,)

≤M. (.)

Note that to prove u(n) → u∞ in C([,T];B


,) means to prove u(n)x → u∞

x in C([,T];B


,).

Recall that (v(n)) .= ∂xu(n) solves the linear transport equation:{
∂t(v(n)) + (u(n))∂x(v(n)) = f (n),
v(n)|t= = ∂x(u(n) ),

where

f (n) = 
(
u(n)

)(
∂xu(n)

) – (b – )


∂x
(
 – ∂

x
)–(

∂xu(n)
)

–
(
 – ∂

x
)–

∂
x

(
b

(
u(n)

) +  – b


(
u(n)

)(
∂xu(n)

)).
Thanks to the Kato theory [], we decompose v(n) into v(n) = z(n) +w(n) with

{
∂t(z(n)) + (u(n))∂x(z(n)) = f (n) – f ∞,
v(n)|t= = ∂x(u(n) ) – ∂x(u∞

 )
(.)

and {
∂t(w(n)) + (w(n))∂x(w(n)) = f ∞,
w(n)|t= = ∂x(u∞

 ).

According to the first step, we have that the sequence (u(n))n∈N (N =N∪{∞}) is uniformly

bounded inC([,T];B


,) and tends to (u∞) inC([,T];B



,), thuswe can use Proposition 

in [], which implies that w(n) tends to w∞ in C([,T];B


,), i.e., for any ε > , ‖w(n) –

w∞‖
B


,

≤ ε.

On the other hand, applying Lemma . in [] and the product law in the Besov spaces
to Eq. (.), one may get that

∥∥z(n)∥∥
B


,

≤ exp

{
C

∫ t



∥∥(
u(n)

)(τ )∥∥
B


,

dτ

}

·
(∥∥∂x

(
u(n)

)
– ∂x

(
u∞


)∥∥
B


,

+
∫ t



∥∥f (n) – f ∞∥∥
B


,

dτ

)
. (.)

Using the properties of Besov spaces exhibited in [], one easily checks that (f (n))n∈N is

uniformly bounded in C([,T];B


,). Moreover,

∥∥f (n) – f ∞∥∥
B


,

≤ C
(∥∥u(n)∥∥

B


,

+
∥∥u(n)∥∥

B


,

∥∥u∞∥∥
B


,

)∥∥∂x
(
u(n)

)
– ∂x

(
u∞)∥∥

B


,

+C
∥∥u(n) – u∞∥∥

B


,

∥∥u∞∥∥

B


,

. (.)
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Hence, combining the convergence of z(n) in C([,T];B


,) with estimates (.)-(.), we

deduce that for large enough n ∈N,

∥∥∂x
(
u(n)

)
– ∂x

(
u∞)∥∥

B


,

≤ ε +C
(
M + 

)
eC(M

+)
[∥∥∂x

(
u(n)

)
– ∂x

(
u∞


)∥∥
B


,

+
∫ t



∥∥u(n) – u∞∥∥
B


,

dτ +
∫ t



∥∥∂x
(
u(n)

)
– ∂x

(
u∞)∥∥

B


,

dτ

]
.

Thanks to Gronwall’s inequality, we have

∥∥∂x
(
u(n)

)
– ∂x

(
u∞)∥∥

L∞(,T ;B


,)

≤ C(M,m,T)
(∥∥∂x

(
u(n)

)
– ∂x

(
u∞


)∥∥
B


,

+ ε
)

for some constant C depending only on M and b. We have completed the continuity of
the map 	 in C([,T];B



,).

Now, applying ∂t to Eq. (.) and by the same argument to the resulting equation in terms
of ∂tu, we may check the continuity of the map 	 in C([,T];B



,). �

Proof of Theorem . Combining the result in Lemma . with that in Lemma ., one gets
the existence and uniqueness of the solution of the Cauchy problem (.). And Lemma .
shows that the solution of the Cauchy problem (.) depends continuously on the initial
data. This completes the proof of Theorem .. �

3 Blow-up criterion andmulti-peakon solutions
This section is devoted to the proof of Theorems .-.. Theorems .-. are based on
the following lemma.

Lemma . Let u ∈ Bs
p,r with ≤ p, r ≤ ∞ and s > . Let u ∈ L∞([,T];Bs

p,r) solve Eq. (.)
on [,T)×R with the initial data u. There exist a constant C depending only on s and p
and a universal constant C such that for all t ∈ [,T), we have

∥∥u(t)∥∥Bsp,r
≤ ‖u‖Bsp,r exp

(
C

∫ t



∥∥u(τ )∥∥
Lip dτ

)
, (.)

∥∥u(t)∥∥Lip ≤ ‖u‖Lip exp
(
C

∫ t



∥∥u∂xu(τ )
∥∥
L∞ dτ

)
. (.)

Proof Applying the last of Lemma . in [] to the Novikov equation and using the fact
that ( – ∂

x )– is a multiplier of order – yields

exp

(
–C

∫ t



∥∥u∂xu(τ )
∥∥
L∞ dτ

)∥∥u(t)∥∥Bsp,r

≤ ‖u‖Bsp,r +C
∫ t


exp

(
–C

∫ τ



∥∥u∂xu(τ )
∥∥
L∞ dτ ′

)

· (∥∥u∥∥Bs–p,r
+

∥∥uux∥∥Bs–p,r
+

∥∥ux∥∥Bs–p,r

)
dτ .

As s –  > , according to Lemma .() in [], one gets

∥∥u∥∥Bs–p,r
+

∥∥uux∥∥Bs–p,r
+

∥∥ux∥∥Bs–p,r
≤ C‖u‖Lip‖u‖Bsp,r .
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Therefore

exp

(
–C

∫ t



∥∥u∂xu(τ )
∥∥
L∞ dτ

)∥∥u(t)∥∥Bsp,r

≤ ‖u‖Bsp,r +C
∫ t


exp

(
–C

∫ τ



∥∥u∂xu(τ )
∥∥
L∞ dτ ′

)
‖u‖Lip‖u‖Bsp,r dτ .

Applying Gronwall’s lemma completes the proof of (.).
By differentiating once Eq. (.) with respect to x, and applying the L∞ estimate for trans-

port equations, we easily prove that

exp

(
–C

∫ t



∥∥u∂xu(τ )
∥∥
L∞ dτ

)∥∥u(t)∥∥Lip

≤ ‖u‖Lip +C
∫ t


exp

(
–C

∫ τ



∥∥u∂xu(τ )
∥∥
L∞ dτ ′

)

·
∥∥∥∥b – 


(
 – ∂

x
)–(∂xu) + (

 – ∂
x
)–

∂x

(
b

u +

 – b


u(∂xu)
)∥∥∥∥

Lip
dτ .

Since ( – ∂
x )–f =


e

–|x| ∗ f and the Young inequality, we get

∥∥∥∥b – 


(
 – ∂

x
)–(∂xu) + (

 – ∂
x
)–

∂x

(
b

u +

 – b


u(∂xu)
)∥∥∥∥

Lip
≤ C′‖u‖Lip‖∂xu‖L∞

for some universal constant C′. Hence Gronwall’s lemma gives inequality (.). �

Proof of Theorem . Let u ∈ ⋂
T<T∗ Es

p,r(T) be such that
∫ T∗
 ‖u∂xu(τ )‖L∞ dτ is finite. Ac-

cording to inequality (.),
∫ T∗
 ‖u(τ )‖L∞ dτ is also finite. Hence, (.) insures that

∥∥u(t)∥∥Bsp,r
≤MT∗ := ‖u‖Bsp,r exp

(
C

∫ t



∥∥u(τ )∥∥
Lip dτ

)
< ∞, ∀t ∈ [

,T∗). (.)

Let ε >  be such that CεMT∗ < , where C stands for the constants used in the proof of
Lemma . in []. We then have a solution ũ(t) ∈ Es

p,r(ε) to Eq. (.) with the initial data
u(T∗ – ε/). For the sake of uniqueness, ũ(t) = u(t +T∗ – ε/) on [, ε/) so that ũ extends
the solution u beyond T∗. We conclude that T∗ < T∗

u and Theorem . is proved. �

Proof of Theorem . Multiplying Eq. (.) by un– with n ∈ Z
+ and integrating by parts,

we obtain∫
R

un–
(
ut + uux + F

)
dx = 

with F = b–
 ( – ∂

x )–(∂xu) + ( – ∂
x )–∂x(

b
u

 + –b
 u(∂xu)). Note that the estimates

∫
R

un–ut dx =

n

d
dt

∥∥u(x, t)∥∥n
Ln =

∥∥u(x, t)∥∥n–
Ln

d
dt

∥∥u(x, t)∥∥Ln

and ∣∣∣∣
∫
R

un–
(
uux

)
dx

∣∣∣∣ ≤ ∥∥uux(x, t)∥∥L∞
∥∥u(x, t)∥∥n

Ln
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are true. Moreover, using Hölder’s inequality

∣∣∣∣
∫
R

un–F dx
∣∣∣∣ ≤ ∥∥u(x, t)∥∥n–

Ln ‖F‖Ln ,

from (.) we can obtain

d
dt

∥∥u(x, t)∥∥Lp ≤ ∥∥uux(x, t)∥∥L∞
∥∥u(x, t)∥∥Lp + ‖F‖Lp .

Since ‖f ‖Lp → ‖f ‖L∞ as p → ∞ for any f ∈ L∞ ∩ L and the operator ( – ∂
x )– =


e

–|x|,
from the above inequality we deduce that

d
dt

∥∥u(x, t)∥∥L∞ ≤ ‖ux‖L∞‖u‖L∞ +
|b – |


∥∥ux(τ )∥∥

L∞

+
|b|


∥∥u(τ )∥∥
L∞ +

| – b|


∥∥u(τ )∥∥L∞
∥∥ux(τ )∥∥

L∞ . (.)

Next, we give estimates on ‖ux(x, t)‖L∞ . Differentiating (.) with respect to x-variable
produces the equation

uxt + uuxx + uux + ∂xF = .

Similar to the estimate of (.), we deduce that

d
dt

∥∥ux(t)∥∥L∞ ≤ ‖ux‖L∞‖u‖L∞ +
|b – |


∥∥ux(τ )∥∥

L∞

+
|b|


∥∥u(τ )∥∥
L∞ + | – b|∥∥u(τ )∥∥L∞

∥∥ux(τ )∥∥
L∞ . (.)

Choose

H(t) := 
∥∥u(t)∥∥L∞ +

∥∥ux(t)∥∥L∞ .

Combining (.) with (.), we get

d
dt

H(t)≤ a

H(t), (.)

with a = max{/, |b– |, |b|/, |– b|/}. Define T := 
a(‖u‖L∞+‖u,x‖L∞ ) . By (.), then

for all t <min{T ,T∗}, one can easily get

H(t) ≤ H()√
 – aH()t

. (.)

Theorem . yields that T∗ ≥ T . This completes the proof of Theorem .. �

Proof of Theorem . Let w = u – v. In view of Eq. (.), one can get

wt + (u +w)wx = –(u –w)wux + f + g, (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/560
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with

f =
(
 – ∂

x
)–

∂x

[
b

(
u – v

)
+
 – b


(
u(∂xu) – v(∂xv)

)]
,

g =
b – 


(
 – ∂

x
)–[(∂xu) – (∂xv)

]
.

Using standard energy arguments and integration by parts, we end up with

∥∥w(t)∥∥Bsp,r
≤ ‖w‖Bsp,r + c

∫ t



∥∥(u +w)(τ )
∥∥
Bsp,r

∥∥w(τ )∥∥Bsp,r
dτ

+
∫ t



(∥∥(u –w)wux(τ )
∥∥
Bsp,r

+
∥∥(f + g)(τ )

∥∥
Bsp,r

)
dτ . (.)

Note that

∥∥(u +w)
∥∥
Bsp,r

≤ c
(‖u‖Bs+p,r

+ ‖u‖Bs+p,r
‖w‖Bsp,r + ‖w‖Bsp,r

)
,

∥∥(u –w)wux
∥∥
Bsp,r

≤ c
(‖u‖Bs+p,r

+ ‖u‖Bs+p,r
‖w‖Bsp,r

)‖w‖Bsp,r

and

‖f + g‖Bsp,r ≤ ‖f ‖Bsp,r + ‖g‖Bsp,r
≤ c

(‖u‖Bs+p,r
+ ‖u‖Bs+p,r

‖w‖Bsp,r + ‖w‖Bsp,r
)‖w‖Bsp,r .

Using the above inequalities, and applying Gronwall’s inequality to (.), one can easily
get that

∥∥w(t)∥∥Bsp,r

≤ ‖w‖Bsp,r exp
{
c
∫ t



(∥∥u(τ )∥∥
Bs+p,r

+
∥∥u(τ )∥∥Bs+p,r

∥∥w(τ )∥∥Bsp,r
+

∥∥w(τ )∥∥
Bsp,r

)
dτ

}
. (.)

Let

P(t) = exp

{
–c

∫ t



(∥∥u(τ )∥∥Bs+p,r

∥∥w(τ )∥∥Bsp,r
+

∥∥w(τ )∥∥
Bsp,r

)
dτ

}
,

Q(t) = c
(∥∥u(τ )∥∥Bs+p,r

‖w‖Bsp,r + ‖w‖Bsp,r
)
exp

{
c

∫ t



∥∥u(τ )∥∥
Bs+p,r

dτ

}
.

According to (.), we obtain

dP(t)
dt

≥ Q(t). (.)

Integrating (.) on [, t] with t < T , by virtue of (.), we get

∥∥w(t)∥∥
Bsp,r

≤
‖w‖Bsp,r exp{c

∫ t
 ‖u(τ )‖

Bs+p,r
dτ }

 – c
∫ t
 (‖u(τ )‖Bs+p,r

‖w‖Bsp,r + ‖w‖Bsp,r ) exp{c
∫ τ

 ‖u(τ ′)‖
Bs+p,r

dτ ′}dτ
.
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If Tv ≥ T , for all t ≤ Tv , the above inequality implies that

∥∥w(t)∥∥
Bsp,r

≤
‖w‖Bsp,r exp{c

∫ Tv
 ‖u(τ )‖

Bs+p,r
dτ }

 – c
∫ Tv
 (‖u(τ )‖Bs+p,r

‖w‖Bsp,r + ‖w‖Bsp,r ) exp{c
∫ τ

 ‖u(τ ′)‖
Bs+p,r

dτ ′}dτ

≤ ∞.

Therefore, ‖w(t)‖Bsp,r is uniformly bounded in [,Tv ]. In view of Theorem ., the solution
can be extended beyond Tv . This is in conflict with the definition of Tv . �

Remark . If r = , s =  + /p, in view of B/p
p, being an algebra, we have (.). Thus we

also deduce the result of Theorem ..

Proof of Theorem . We now derive the multi-peakon solutions of Eq. (.). Assume that
Eq. (.) has an N-peakon solution of the form (.). It follows from the definition of a
weak solution that for any ψ(t,x) ∈ C∞

c ([,∞)×R), the solution (.) satisfies

∫ ∞



∫
R

[
ut + uux +

(b – )


(
 – ∂

x
)–(∂xu)

+
(
 – ∂

x
)–

∂x

(
b

u +

 – b


u(∂xu)
)]

ϕ(x)dxdt = , (.)

which is equivalent to the following equation:

∫ ∞



∫
R

[
ut(φ – φxx) +



uφxxx +

(b – )


(∂xu)φ

– φx

(
b + 


u +
 – b


u(∂xu)
)]

dxdt = , (.)

where ϕ = φ – φxx, φ(t,x) ∈ C∞
c ([,∞)×R).

A straightforward computation gives

∫ ∞



∫
R

ut(φ – φxx)dxdt =
N∑
i=

∫ ∞



∫ qj(t)

–∞

(
p′
j – pjq′

j
)
ex–qj (φ – φxx)dxdt

+
N∑
i=

∫ ∞



∫ ∞

qj(t)

(
p′
j + pjq′

j
)
e–(x–qj)(φ – φxx)dxdt

= 
∫ ∞



N∑
i=

(
p′
jφ(qj) + pjq′

jφx(qj)
)
dt (.)

and




∫
R

uφxxx dx = –

(∫ q

–∞
+

N–∑
j=

∫ qj+

qj
+

∫ ∞

qN

)
uuxφxx dx

= –uuxφx

(
|q–∞ +

N–∑
j=

|qj+qj + |∞qN
)
+

∫
R

(
uux + uuxx

)
φx dx
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=
[
–uuxφx +

(
uux + u

)
φ
](|q–∞ +

N–∑
j=

|qj+qj + |∞qN
)

–
∫
R

(
ux + uux + uux

)
φ dx (.)

and

–
∫
R

(
b + 


u +
 – b


u(∂xu)
)

φx dx

= –
[(

b + 


u +
 – b


uux

)
φ

](
|q–∞ +

N–∑
j=

|qj+qj + |∞qN
)

+
∫
R

(
(b + )uux + ( – b)uux +

 – b


ux

)
dx. (.)

Thus, combining (.) with (.), we get

∫
R

[


uφxxx +

b – 


(∂xu)φ – φx

(
b + 


u +
 – b


u(∂xu)
)]

dx

=
(
–uuxφx +

b – 


uuxφ
)(

|q–∞ +
N–∑
j=

|qj+qj + |∞qN
)

= –
N∑
j=

[
pj

( N∑
i=

pie–|qj–qi|
)

φx(qj)

]

– (b – )
N∑
j=

[
pj

( N∑
i=

pie–|qj–qi|
)( N∑

i=

pi sgn(qj – qi)e–|qj–qi|
)

φ(qj)

]
. (.)

Substituting (.), (.) into (.), we obtain the following system:

p′
j =

( N∑
i=

pie–|qj–qi(t)|
)

,

q′
j = (b – )qj

( N∑
i=

pie–|qj–qi|
)( N∑

i=

pi sgn(qj – qi)e–|qj–qi|
)
,

(.)

which leads to the conclusion of Theorem .. �

4 Analysis of the Novikov equation in weighted spaces
In this section, for the convenience of the readers, we first present some standard defini-
tions. In general, a weight function is simply a non-negative function. A weight function
v :Rn → R is called sub-multiplicative if

v(x + y) ≤ v(x)v(y) for all x, y ∈ R
n.

Given a sub-multiplicative function v, a positive function φ is v-moderate if and only if

∃C >  : φ(x + y) ≤ Cv(x)φ(y) for all x, y ∈R
n.
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If φ is v-moderate for some sub-multiplicative function v, then we say that φ is moderate.
This is the usual terminology in time-frequency analysis papers []. Let us recall themost
standard examples of such weights. Let

φ(x) = φa,b,c,d(x) = ea|x|
b(
 + |x|)c log(e + |x|)d.

We have (see []) the following conditions:
(i) For a, c,d ≥  and  ≤ b≤ , such weight is sub-multiplicative.
(ii) If a, c,d ∈R and  ≤ b≤ , then φ is moderate. More precisely, φa,b,c,d is

φα,β ,γ ,δ-moderate for |a| ≤ α, |b| ≤ β , |c| ≤ γ and |d| ≤ δ.
The elementary properties of sub-multiplicative and moderate weights can be found in

[]. Next, we prove Theorem ..

Proof of Theorem . We define

F(u) =
b – 


(∂xu) + ∂x

(
b

u +

 – b


u(∂xu)
)
.

We also introduce the kernel G(x) = 
e

–|x|. Then Eq. (.) can be rewritten as

ut + u∂xu +G ∗ F(u) = . (.)

Note that from the assumption u ∈ C([,T],Hs), s > /, we get

M ≡ sup
t∈[,T]

(∥∥u(t)∥∥∞ +
∥∥∂xu(t)

∥∥∞
)
<∞.

For any N ∈ Z
+, let us consider the N-truncations

f (x) = fN (x) =

{
φ(x) if φ(x)≤N ,
N if φ(x) >N .

Observe that f :R →R is a locally absolutely continuous function such that

‖f ‖∞ ≤N ,
∣∣f ′(x)

∣∣ ≤ A
∣∣f (x)∣∣ a.e.

In addition, if C =max{C,α–}, where α = infx∈R v(x) > , then

f (x + y) ≤ Cv(x)f (y), ∀x, y ∈R.

Indeed, let us introduce the set UN = {x : φ(x) ≤ N}, if y ∈ UN , then f (x + y) ≤ φ(x + y) ≤
Cv(x)f (y); if y /∈UN , then f (x + y) ≤N = f (y) ≤ α–v(x)f (y).
The constant C being independent onN shows that theN-truncations of a v-moderate

weight are uniformly v-moderate with respect to N .
We start considering the case  ≤ p < ∞. Multiplying Eq. (.) by f and then by

|uf |p–(uf ), we get, after integration,
∫
R

|uf |p–(uf )(∂tuf )dx +
∫
R

|uf |p(u∂xu)dx +
∫
R

|uf |p–(uf )(f ·G ∗ F(u)
)
dx = . (.)
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Note that the estimates

∫
R

|uf |p–(uf )(∂tuf )dx = 
p
d
dt

‖uf ‖pLp = ‖uf ‖p–Lp
d
dt

‖uf ‖Lp

and

∣∣∣∣
∫
R

(uf )p(u∂xu)dx
∣∣∣∣ ≤ ‖u∂xu‖L∞‖uf ‖pLp ≤M‖uf ‖pLp

are true. Moreover, we get

∣∣∣∣
∫
R

|uf |p–(uf )[f · (G ∗ F(u)
)]
dx

∣∣∣∣
≤ ‖uf ‖p–Lp

∥∥∥∥f ·
{
G ∗

[
∂x

(
b

u +

 – b


u(∂xu)
)
+
b – 


(∂xu)
]}∥∥∥∥

Lp

≤ ‖uf ‖p–Lp

{∥∥(∂xG)v∥∥L

∥∥∥∥f
( |b|


u +

| – b|


u(∂xu)
)∥∥∥∥

Lp

+
|b – |


‖Gv‖L

∥∥f (∂xu)∥∥Lp

}

≤ CM‖uf ‖p–Lp
(‖uf ‖Lp + ∥∥(∂xu)f ∥∥Lp

)
.

In the first inequality we used Hölder’s inequality, and in the second inequality we applied
Proposition . in [], and in the last one we used condition (.). Here, C depends only
on v and φ. From (.) we can obtain

d
dt

‖uf ‖Lp ≤ CM‖uf ‖Lp +CM∥∥(∂xu)f ∥∥Lp . (.)

Next, we give estimates on uxf . Differentiating (.) with respect to x-variable, nextmul-
tiplying by f produces the equation

∂t
[
(∂xu)f

]
+ uf ∂

x u +
[
(∂xu)f

]
(u∂xu) + f

[
∂xG ∗ F(u)

]
= .

Multiplying this equation by |f ∂xu|p–(f ∂xu) with p ∈ Z
+, integrating the result in the

x-variable, we note that

∫
R

|f ∂xu|p–(f ∂xu)∂t
[
(∂xu)f

]
dx = ‖f ∂xu‖p–Lp

d
dt

‖f ∂xu‖Lp

and

∣∣∣∣
∫
R

|f ∂xu|p–(f ∂xu)
[
f ∂x

(
G ∗ F(u)

)]
dx

∣∣∣∣
≤ ‖f ∂xu‖p–Lp

∥∥f ∂x(G ∗ F(u)
)∥∥

Lp

≤ CM‖f ∂xu‖p–Lp
(‖uf ‖Lp + ∥∥(∂xu)f ∥∥Lp

)
.
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In the third inequality we applied the pointwise bound |∂xG(x)| ≤ 
e

–|x| and the condition

∣∣∣∣
∫
R

|f ∂xu|p–(f ∂xu)uf ∂
x udx

∣∣∣∣
=

∣∣∣∣
∫
R

|f ∂xu|p–(f ∂xu)u
[
∂x(f ∂xu) – (∂xu)(∂xf )

]
dx

∣∣∣∣
=

∣∣∣∣
∫
R

u∂x
( |f ∂xu|p

p

)
–

∫
R

|f ∂xu|p–(f ∂xu)u(∂xu)(∂xf )dx
∣∣∣∣

≤ /pM‖f ∂xu‖pLp +AM‖f ∂xu‖pLp .

In the last inequality we used |∂xf (x)| ≤ Af (x) for a.e. x. Thus, we get

d
dt

‖f ∂xu‖Lp ≤ CM‖uf ‖Lp +CM∥∥(∂xu)f ∥∥Lp . (.)

Now, combing inequalities (.) and (.) and then integrating yields

∥∥u(t)f ∥∥Lp +
∥∥(∂xu)(t)f ∥∥Lp ≤ (‖uf ‖Lp + ‖∂xuf ‖Lp exp

(
CMt

))
for all t ∈ [,T].

Since f (x) = fN (x) ↑ φ(x) as N → ∞ for a.e. x ∈R. Recalling that uφ ∈ Lp(R) and ∂xuφ ∈
Lp(R), we get

∥∥u(t)φ∥∥
Lp +

∥∥(∂xu)(t)φ∥∥
Lp ≤ (‖uφ‖Lp + ‖∂xuφ‖Lp exp

(
CMt

))
for all t ∈ [,T].

At last, we treat the case p =∞. We have u, ∂xu ∈ L ∩L∞ and f (x) = fN (x) ∈ L∞. Hence,
we have

∥∥u(t)f ∥∥Lq +
∥∥(∂xu)(t)f ∥∥Lq ≤ (‖uf ‖Lq + ‖∂xuf ‖Lq

)
exp

(
CMt

)
, q ∈ [,∞). (.)

The last factor on the right-hand side is independent of q. Since ‖f ‖Lp → ‖f ‖L∞ as p → ∞
for any f ∈ L∞ ∩ L implies that

∥∥u(t)f ∥∥L∞ +
∥∥(∂xu)(t)f ∥∥L∞ ≤ (‖uf ‖L∞ + ‖∂xuf ‖L∞

)
exp

(
CMt

)
.

The last factor on the right-hand side is independent of N . Now taking N → ∞ implies
that estimate (.) remains valid for p =∞. �

Proof of Theorem . We start observing that φ/ is a v/-moderate weight such that
(φ/)′(x) ≤ A

 φ/(x). Moreover, infR v/ > . By condition (.), v/e–|x|/ ∈ Lp(R), hence
Hölder’s inequality implies that v/e–|x| ∈ L(R). Then Theorem . applied with p =  to
the weight φ/ yields

∥∥u(t)φ/∥∥
L +

∥∥(∂xu)(t)φ/∥∥
L ≤ (∥∥uφ/∥∥

L +
∥∥∂xuφ/∥∥

L exp
(
CMt

))
.

Arguing as in the proof of Theorem ., we get

d
dt

‖uf ‖Lp ≤M‖uf ‖Lp +
∥∥f (G ∗ F(u)

)∥∥
Lp for p < ∞, (.)

where f (x) = fN (x) =min{φ(x),N}.
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On the other hand,

d
dt

‖f ∂xu‖Lp ≤ CM∥∥(∂xu)f ∥∥Lp +
∥∥f (∂xG ∗ F(u)

)∥∥
Lp for p < ∞. (.)

Note that F(u) = b–
 (∂xu) + ∂x( bu

 + –b
 u(∂xu)) and

∥∥f (G ∗ F(u)
)∥∥

Lp

≤ C
(∥∥(∂xG)v∥∥Lp

∥∥∥∥φ

(
b

u +

 – b


u(∂xu)
)∥∥∥∥

L
+

|b – |


‖Gv‖Lp
∥∥φ(∂xu)

∥∥
L

)

≤ C
(∥∥φ/u

∥∥
L +

∥∥φu(∂xu)
∥∥
L +

∥∥φ/(∂xu)
∥∥
L

)
≤ C

(∥∥φ/u
∥∥
L +

∥∥φ/u
∥∥
L

∥∥φ/(∂xu)
∥∥
L/ +

∥∥φ/(∂xu)
∥∥
L

)
≤ K exp

(
CMt

)
.

The constant on the right-hand side is dependent on N . Similarly, recalling that ∂
xG =

G – δ, we obtain

∥∥f (∂xG ∗ F(u)
)∥∥

Lp ≤
∥∥∥∥f

(
G ∗

(
u +



u(∂xu)

))∥∥∥∥
Lp
+

∥∥∥∥f
(
u +



u(∂xu)

)∥∥∥∥
Lp

+
∥∥f (∂xG ∗ (∂xu)

)∥∥
Lp

≤ K exp
(
CMt

)
+CM(‖uf ‖Lp + ∥∥(∂xu)f ∥∥Lp

)
.

Plugging the two last estimates in (.)-(.) and summing, we obtain

d
dt

(∥∥u(t)f ∥∥Lp +
∥∥(∂xu)(t)f ∥∥Lp

) ≤ KM(‖uf ‖Lp + ‖∂xuf ‖Lp
)
+ K exp

(
CMt

)
.

Integrating and finally letting N → ∞ yields the conclusion in the case  ≤ p < ∞. The
constants throughout the proof are independent on p. Therefore, for p = ∞, one can rely
on the result established for finite exponents q, and then let q → ∞. The rest argument is
fully similar to that of Theorem .. �
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