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Abstract
In this paper, we approximate a fixed point of the semigroup ϕ = {Ts : s ∈ S} of
Lipschitzian mappings from a nonempty compact convex subset C of a smooth
Banach space E into C with a uniform Lipschitzian condition and with respect to a
finite family of sequences {μi,n}m, ∞

i=1,n=1 of left strong regular invariant means defined
on an appropriate invariant subspace of l∞(S). Our result extends the main results
announced by several others.
MSC: 47H09; 47H10; 47J25

Keywords: smooth Banach space; asymptotically nonexpansive semigroup;
reversible semigroup; invariant mean

1 Introduction
Let E be a real Banach space with the topological dual E∗, and let C be a nonempty closed
and convex subset of E. Recall that a mapping T of C into itself is said to be
() Lipschitzian with Lipschitz constant l >  if

‖Tx – Ty‖ ≤ l‖x – y‖, ∀x, y ∈ C.

() nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

() asymptotically nonexpansive if there exists a sequence {ln} of positive numbers such
that limn→∞ ln =  and

∥∥Tnx – Tny
∥∥ ≤ ln‖x – y‖, ∀x, y ∈ C.

A semigroup S is called left reversible if any two closed right ideals of S have non-void
intersection, i.e., aS ∩ bS 
= ∅ for a,b ∈ S. In this case, (S,�) is a directed set when the
binary relation � on S is defined by a � b if and only if aS ⊃ bS for a,b ∈ S.

Notation Throughout the rest of this paper, S will always denote a left reversible semi-
group with an identity e.
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In [], Lau et al. studied iterative schemes for approximating a fixed point of the semi-
group ϕ = {T(s) : s ∈ S} of nonexpansive mappings on a nonempty compact convex sub-
set C of a smooth (and strictly convex) Banach space and introduced the following itera-
tion process. Let x = x ∈ C and

xn+ = αnxn + ( – αn)Tμnxn, n≥ , ()

where {μn}∞n= is a sequence of left strong regular invariant means defined on an appropri-
ate invariant subspace of l∞(S).

ϕ = {T(s) : s ∈ S} is called a representation of S as a Lipschitzian mapping on C with
Lipschitz constant {l(s) : s ∈ S} if T(s) is a Lipschitzian with Lipschitz constant l(s) for
each s ∈ S, T(st) = T(s)T(t) for each t, s ∈ S and T(e) = I . ϕ is called an asymptotically
nonexpansive semigroup on C if ϕ is a representation of S as a Lipschitzian mapping on C
with Lipschitz constant {l(s); s ∈ s} and lims l(s)≤ .
In , Saeidi proved the following theorem.

Theorem. [] Let S be a left reversible semigroup and ϕ = {Ts : s ∈ S} be a representation
of S as a Lipschitzian mapping from a nonempty compact convex subset C of a smooth
Banach space E into C, with uniform Lipschitzian constant lims K (s) ≤ , and let f be an
α-contraction on C for some  < α < . Let X be a left invariant ϕ-stable subspace of L∞(ϕ)
containing , let {μn}∞n= be a sequence of left strong regular invariant means defined on X
such that limn→∞ ‖μn+ –μn‖ = , and let {cn}∞n= be a sequence defined by

cn = sup
x,y∈C

(‖Tμnx – Tμny‖ – ‖x – y‖), n≥ .

Let {αn}∞n=, {βn}∞n= and {γn}∞n= be sequences in (, ) such that

(C) αn + βn + γn = , n≥ ,
(C) limn→∞ αn = ,
(C)

∑∞
n= αn =∞,

(C)  < lim infn→∞ βn ≤ lim supn→∞ βn < ,
(C) lim supn→∞

cn
αn

≤ .

If {xn}∞n= is a sequence generated by x ∈ C and

xn+ = αnf (xn) + βnxn + γnTμnxn, n ≥ ,

then the sequence {xn}∞n= converges strongly to some z ∈ Fix(ϕ), the set of common fixed
points of ϕ, which is the unique solution of the variational inequality

〈
(f – I)z, J(y – z)

〉 ≤ , ∀y ∈ Fix(ϕ).

Equivalently, one has z = Pfz, where P is the unique sunny nonexpansive retraction of C
onto F(ϕ).

In , Zhang et al. [] introduced the following composite iteration scheme:
⎧⎨
⎩yn = βnxn + ( – βn)Ttnxn,

xn+ = αnu + ( – αn)yn,
()
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where {T(t) : t ≥ } is a nonexpansive semigroup from C to C, u is an arbitrary (but fixed)
element in C, {αn} ⊂ (, ) and {βn} ⊂ [, ], {tn} ⊂ R

+, and proved some strong conver-
gence theorems of an explicit composite iteration scheme for nonexpansive mappings in
the framework of a reflexive Banach space with a uniformly Gâteaux differentiable norm,
uniformly smooth Banach space and uniformly convex Banach space with a weakly con-
tinuous normalized duality mapping.
Motivated and inspired by Zhang et al. [] and Saeidi [], Katchang and Kumam proved

the following theorem.

Theorem . [] Let S be a left reversible semigroup, and let ϕ = {Ts : s ∈ S} be a repre-
sentation of S as a Lipschitzian mapping from a nonempty compact convex subset C of a
smooth Banach space E into C, with uniform Lipschitzian constant lims K (s) ≤ , and let f
be an α-contraction on C for some  < α < . Let X be a left invariant ϕ-stable subspace of
L∞(ϕ) containing , let {μn}∞n= be a sequence of left strong regular invariant means defined
on X such that limn→∞ ‖μn+ –μn‖ = , and let {cn}∞n= be a sequence defined by

cn = sup
x,y∈C

(‖Tμnx – Tμny‖ – ‖x – y‖), n≥ .

Let {αn}∞n=, {βn}∞n=, {γn}∞n= and {δn}∞n= be sequences in (, ) such that

(C) αn + βn + γn = , n≥ ,
(C) limn→∞ αn = ,
(C)

∑∞
n= αn =∞,

(C)  < lim infn→∞ βn ≤ lim supn→∞ βn < ,
(C) lim supn→∞

cn
αn

≤ ,
(C) limn→∞ δn = .

If {xn}∞n= is a sequence generated by x ∈ C and

⎧⎨
⎩yn = δnxn + ( – δn)Tμnxn,

xn+ = αnf (xn) + βnxn + γnyn, n≥ ,
()

then the sequence {xn}∞n= converges strongly to some z ∈ Fix(ϕ),which is the unique solution
of the variational inequality

〈
(f – I)z, J(y – z)

〉 ≤ , ∀y ∈ F(ϕ).

Equivalently, one has z = Pfz, where P is the unique sunny nonexpansive retraction of C
onto F(ϕ).

Recently, many authors studied fixed point results for a nonlinear semigroup mapping,
for example, [–].
In this paper, motivated and inspired by Qianglian et al. [], Lau et al. [], Zhang et al.

[], Saeidi [], Katchang and Kumam [], Sunthrayuth and Kumam [, ] andWattanaw-
itoon and Kumam [], we introduce the composite explicit viscosity iterative schemes as
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follows:

xn+ = αnf (y,n) + βnxn + γnTμ,ny,n,

yi,n = δi,nyi+,n + (I – δi,n)Tμi,nyi+,n, i = , , . . . ,m,

ym+,n = xn

()

for an asymptotically nonexpansive semigroup ϕ = {Ts : s ∈ S} on a compact convex sub-
set C of a smooth Banach space E with respect to a finite family of left regular sequences
{μi,n}m, ∞

i=,n= of invariant means defined on an appropriate invariant subspace of l∞(S). We
prove, under certain appropriate assumptions on the sequences {αn}∞n=, {βn}∞n=, {γn}∞n=
and {δn}m, ∞

i=,n=, that {xn}∞n= and {yn}m, ∞
i=,n= defined by () converge strongly to z ∈ Fix(ϕ),

which is the unique solution of the variational inequality

〈
(f – I)z, J(y – z)

〉 ≤ , ∀y ∈ Fix(ϕ).

Our result improves and extends many previous results (e.g., [, , , –] and many
others).

2 Preliminaries
Let E∗ be the topological dual of a real Banach space E. The value of j ∈ E∗ at x ∈ E will be
denoted by 〈x, j〉 or j(x). With each x ∈ E, we associate the set

J(x) =
{
j ∈ E∗ : 〈x, j〉 = ‖x‖ = ‖j‖}.

Using the Hahn-Banach theorem, it is immediately clear that J(x) 
= φ for each x ∈ E. The
multi-valued mapping J from E into E∗ is said to be the (normalized) duality mapping.
A Banach space E is said to be smooth if the duality mapping J is single-valued. As is well
known, the duality mapping is norm to weak-star continuous when E is smooth, see [].
Let B(S) be the Banach space of all bounded real-valued functions defined on S with

supremum norm. For each s ∈ S, we define the left and right translation operators l(s)f
and r(s)f on B(S) by

(
l(s)f

)
(t) = f (st), and

(
r(s)f

)
(t) = f (ts),

for each s ∈ S and f ∈ B(S), respectively. Let X be a subspace of B(S) containing  and let
X∗ be its topological dual. An element μ of X∗ is said to be a mean on X if ‖μ‖ = μ() = .
Let μ ∈ X∗. Then we define r(s)∗μ, l(s)∗μ ∈ X∗ by (r(s)∗μ)f = μ(r(s)f ), (l(s)∗μ)f = μ(l(s)f )
for each f ∈ X and s ∈ S. It is easy to see that if μ is a mean on X, then r(s)∗μ and l(s)∗μ are
also. We often write μt(f (t)) instead of μ(f ) for μ ∈ X∗ and f ∈ X. Let X be left invariant
(resp. right invariant), i.e., l(s)(X)⊂ X (resp. r(s)(X)⊂ X) for each s ∈ S. A mean μ on X is
said to be left invariant (resp. right invariant) if l(s)∗μ = μ (resp. r(s)∗μ = μ) for each s ∈ S
and f ∈ X. X is said to be left (resp. right) amenable if X has a left (resp. right) invariant
mean. The semigroup S is amenable (i.e., S is both left and right amenable) when S is
a commutative semigroup or a solvable group. However, the free group (or semigroup)
on two generators is not left amenable. If a semigroup S is left amenable, then S is left
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reversible, but the converse is not true see [], [, p.]. A net {μα} of means on X is
said to be strongly left regular if

lim
α

∥∥l(s)∗μα –μα

∥∥ = ,

for each s ∈ S, where l(s)∗ is the adjoint operator of ls.
Let ϕ = {T(s) : s ∈ S} be a representation of S as a Lipschitzian mapping on C with Lip-

schitz constant {l(s) : s ∈ S}. By Fix(ϕ) we denote the set of common fixed points of ϕ,
i.e.,

Fix(ϕ) =
⋂
s∈S

{
x ∈ C : T(s)x = x

}
.

We denote by Ca the set of almost periodic elements in C, i.e., all x ∈ C such that {T(s)x :
s ∈ S} is relatively compact in the norm topology of E. Let X be a subspace of B(S) such
that the functions (i) s → 〈T(s)x,x∗〉 and (ii) s → ‖T(s)x – y‖ on S are in X for all x, y ∈ C
and x∗ ∈ E∗. We will call a subspace X of B(S) satisfying (i) and (ii) ϕ-stable. We know that
if X is a subspace of B(S) containing  and the function s → 〈T(s)x,x∗〉 on S is in X for all
x ∈ C and x∗ ∈ E∗, then there exists a unique point x ∈ E such that μ〈T(·)x,x∗〉 = 〈x,x∗〉
for a mean μ on X, x ∈ C and x∗ ∈ E. We denote such a point x ∈ E by Tμx. See [] for
more details.

Lemma . [] Let S be a semigroup and C be a nonempty closed convex subset of a
reflexive Banach space E. Let ϕ = {Tt : t ∈ S} be a nonexpansive semigroup on H such that
{Ttx : t ∈ S} is bounded for some x ∈ C, let X be a subspace of B(S) such that  ∈ X and the
mapping t → 〈Ttx, y∗〉 is an element of X for each x ∈ C and y∗ ∈ E∗, and μ is a mean on X.
If we write Tμx instead of

∫
Ttxdμ(t), then the following hold:

(i) Tμ is a nonexpansive mapping from C into C.
(ii) Tμx = x for each x ∈ Fix(ϕ).
(iii) Tμx ∈ co{Ttx : t ∈ S} for each x ∈ C.

Lemma . [] Let ϕ = {T(s) : s ∈ S} be a representation of S as a Lipschitzian mapping
from a nonempty weakly compact convex subset C of a Banach space E into C,with uniform
Lipschitzian constant lims l(s) ≤  on the Lipschitz constant of mappings. Let X be a left
invariant and ϕ-stable subspace of B(S), and let {μn}∞n= be an asymptotically left invariant
sequence of means on X. If z ∈ Ca and lim infn→∞ ‖Tμnz – z‖ = , then z is a common fixed
point of ϕ.

Lemma . [] Let ϕ = {T(s) : s ∈ S} be a representation of S as a Lipschitzian mapping
from a nonempty weakly compact convex subset C of a Banach space E into C,with uniform
Lipschitzian constant lims l(s) ≤  on the Lipschitz constant of mappings. Let X be a left
invariant subspace of B(S) containing  such that the mapping s → 〈T(s)x,x∗〉 on S is in X
for all x ∈ C and x∗ ∈ E∗, and {μn}∞n= is an asymptotically left invariant sequence of means
on X. Then

lim sup
n→∞

(
sup
x,y∈C

(‖Tμnx – Tμny‖ – ‖x – y‖)) ≤ .

http://www.journalofinequalitiesandapplications.com/content/2013/1/555
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Let D be a subset of B, where B is a subset of a Banach space E, and let P be a retraction
of B onto D, that is, Px = x for each x ∈D. Then P is said to be sunny [] if for each x ∈ B
and t ≥  with Px + t(x – Px) ∈ B, P(Px + t(x – Px)) = Px. A subset D of B is said to be
a sunny nonexpansive retract of B if there exists a sunny nonexpansive retraction P of B
into D.

Lemma . [] Let ϕ = {T(s) : s ∈ S} be a representation of S as a Lipschitzian mapping
fromanonempty compact convex subset C of a smoothBanach space E into C,with uniform
Lipschitzian constant lims l(s) ≤  on the Lipschitz constant of mappings. Let X be a left
invariant and ϕ-stable subspace of B(S) containing  and μ be a left invariant mean on X.
Then Fix(ϕ) is a sunny nonexpansive retract of C, and the sunny nonexpansive retraction
of C onto Fix(ϕ) is unique.

Lemma . [] Let C be a nonempty convex subset of a smooth Banach space E, let D be a
nonempty subset of C, and let P : C →Dbe a retraction.Then the following are equivalent:
(a) P is sunny nonexpansive.
(b) 〈x – Px, J(y – Px)〉 ≤  for all x ∈ C and y ∈D.
(c) 〈x – y, J(Px – Py)〉 ≥ ‖Px – Py‖ for all x, y ∈ C.

Lemma . [] Let {xn}∞n= and {yn}∞n= be bounded sequences in a Banach space X, and
let {αn}∞n= be a sequence in [, ] such that  < lim infn→∞ αn ≤ lim supn→∞ αn < . Suppose
xn+ = αnxn + ( – αn)yn for all integers n ≥  and

lim sup
n→∞

(‖yn+ – yn‖ – ‖xn+ – xn‖
) ≤ .

Then limn→∞ ‖yn – xn‖ = .

Lemma . [] Let E be a real smooth Banach space and J be the duality mapping. Then

‖x + y‖ ≤ ‖x‖ + 
〈
y, J(x + y)

〉
, ∀x, y ∈ E.

Lemma . [] Let {an}∞n= be a sequence of nonnegative real numbers such that

an+ ≤ ( – bn)an + bncn, n≥ ,

where {bn}∞n= and {cn}∞n= are sequences of real numbers satisfying the following conditions:
(i) {bn}∞n= ⊂ (, ),

∑∞
n= bn =∞,

(ii) either lim supn→∞ cn ≤  or
∑∞

n= |bncn| < ∞.
Then limn→∞ an = .

Lemma . [] Let (X,d) be ametric space.A subset C of X is compact if and only if every
sequence in C contains a convergent subsequence with limit in C.

3 Themain result
In this section, we establish a strong convergence theorem for finding a common fixed
point of an asymptotically nonexpansive semigroup in a smooth Banach space.

http://www.journalofinequalitiesandapplications.com/content/2013/1/555
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Theorem. Let ϕ = {T(s) : s ∈ S} be a representation of S as a Lipschitzianmapping from
a nonempty compact convex subset C of a smooth Banach space E into C,with uniform Lip-
schitzian constant lims l(s)≤  on the Lipschitz constant of mappings, such that Fix(ϕ) 
= ∅,
and let f be a contraction of C into itself with constant α ∈ (, ). Let X be a left invariant
and ϕ-stable subspace of B(S) containing  and the function t → 〈Ttx, y〉 is an element of
X for each x ∈ C and y ∈ H , and let {μi,n}m, ∞

i=,n= be a finite family of left regular sequences
of invariant means on X such that for i = , , . . . ,m, limn→∞ ‖μi,n+ –μi,n‖ = . Let {αn}∞n=,
{βn}∞n= and {γn}∞n= be sequences in (, ) satisfying conditions (C)-(C), and let {δn}m, ∞

i=,n=

be a sequence in (, ) satisfying the condition

(C′
) limn→∞ δi,n = , i = , , . . . ,m.

If {xn}∞n= and {yi,n}m, ∞
i=,n= are sequences generated by x ∈ C and

xn+ = αnf (y,n) + βnxn + γnTμ,ny,n,

yi,n = δi,nyi+,n + (I – δi,n)Tμi,nyi+,n, i = , , . . . ,m, ()

ym+,n = xn,

then {xn}∞n= and {yi,n}m, ∞
i=,n= converge strongly to z ∈ Fix(ϕ), which is the unique solution of

the variational inequality

〈
(f – I)z, J(y – z)

〉 ≤ , ∀y ∈ Fix(ϕ). ()

Equivalently, z = Pf (z), where P denotes the unique sunny nonexpansive retraction of C
onto Fix(ϕ).

Proof From Lemma . and the definition of {yi,n}m, ∞
i=,n=, for every z ∈ Fix(ϕ), we have

‖yi,n – z‖ = ∥∥δi,nyi+,n + ( – δi,n)Tμi,nyi+,n – z
∥∥

≤ δi,n‖yi+,n – z‖ + ( – δi,n)‖Tμi,nyi+,n – Tμi,nz‖
= δi,n‖yi+,n – z‖ + ( – δi,n)‖yi+,n – z‖
= ‖yi+,n – z‖.

Therefore, we have

‖y,n – z‖ ≤ ‖y,n – z‖ ≤ · · · ≤ ‖ym,n – z‖ ≤ ‖xn – z‖. ()

We shall divide the proof into several steps.
Step . Let {tn}∞n= be a sequence in C. Then

lim
n→∞‖Tμi,n+ tn – Tμi,n tn‖ = , i = , , . . . ,m.

Proof of Step . This assertion is proved in [, ].
Step . limn→∞ ‖xn+ – xn‖ = .

http://www.journalofinequalitiesandapplications.com/content/2013/1/555
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Proof of Step . From the definition of {yi,n}m, ∞
i=,n=, we have

‖yi,n+ – yi,n‖
=

∥∥δi,n+yi+,n+ + ( – δi,n+)Tμi,n+yi+,n+

– δi,nyi+,n – ( – δi,n)Tμi,nyi+,n
∥∥

=
∥∥δi,n+yi+,n+ – δi,n+yi+,n + δi,n+yi+,n

+ ( – δi,n+)Tμi,n+yi+,n+ – δi,nyi+,n – ( – δi,n)Tμi,nyi+,n
∥∥

≤ δi,n+‖yi+,n+ – yi+,n‖ + |δi,n+ – δi,n|‖yi+,n‖
+ ( – δi,n+)‖Tμi,n+yi+,n+‖ + ( – δi,n)‖Tμi,nyi+,n‖

≤ ‖yi+,n+ – yi+,n‖ + |δi,n+ – δi+,n|‖yi+,n‖
+ ( – δi,n+)‖Tμi,n+yi+,n+‖ + ( – δi,n)‖Tμi,nyi+,n‖,

which implies that

‖yi,n+ – yi,n‖

≤ ‖xn+ – xn‖ +
m∑
j=i

(|δj,n+ – δj,n|‖yj+,n‖

+ ( – δi,n+)‖Tμi,n+yi+,n+‖ + ( – δi,n)‖Tμi,nyi+,n‖
)
. ()

Define

xn+ = ( – βn)zn + βnxn, n≥ . ()

Observe that from the definition of zn, we obtain

zn+ – zn =
xn+ – βn+xn+

 – βn+
–
xn+ – βnxn

 – βn

=
αn+f (y,n+) + γn+Tμ,n+y,n+

 – βn+
–

αnf (y,n) + γnTμ,ny,n
 – βn

=
αn+

 – βn+

(
f (y,n+) – Tμ,n+y,n+

)
–

αn

 – βn

(
f (y,n) – Tμ,ny,n

)
+ Tμ,n+y,n+ – Tμ,ny,n.

It follows that

‖zn+ – zn‖
≤ αn+

 – βn+

∥∥f (y,n+) – Tμ,n+y,n+)
∥∥

+
αn

 – βn

∥∥f (y,n) – Tμ,ny,n
∥∥

+ ‖y,n+ – y,n‖ + ‖Tμ,n+y,n – Tμ,ny,n‖. ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/555
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Substituting () into (), we obtain

‖zn+ – zn‖ – ‖xn+ – xn‖
≤ αn+

 – βn+

∥∥f (y,n+) – Tμ,n+y,n+
∥∥

+
αn

 – βn

∥∥f (y,n) – Tμ,ny,n
∥∥

+ ‖Tμ,n+y,n – Tμ,ny,n‖ +
m∑
j=

(|δj,n+ – δj,n|‖yj+,n‖

+ ( – δi,n+)‖Tμi,n+yi+,n+‖ + ( – δi,n)‖Tμi,nyi+,n‖
)
. ()

It follows from Step , conditions (C) and (C′
) that

lim sup
n→∞

(‖zn+ – zn‖ – ‖xn+ – xn‖
) ≤ .

Applying Lemma . to (), we get

lim
n→∞‖xn – zn‖ = .

Consequently,

lim
n→∞‖xn+ – xn‖ = lim

n→∞( – βn)‖xn – zn‖ = .

Step . We claim that ω({xn}∞n=) ⊂ Fix(ϕ), where

ω
({xn}∞n=) := {

x ∈ C : {xnj}∞j= ⊂ {xn}∞n=, limj→∞‖xnj – x‖ = 
}
.

Proof of Step . From Lemma ., we get ω({xn}∞n=) 
= ∅.
Let x ∈ ω({xn}∞n=). Then there exists a subsequence {xnj}∞j= of {xn}∞n= such that

lim
j→∞‖xnj – x‖ = . ()

Observe that

‖xn – Tμ,nxn‖
≤ ‖xn – xn+‖ + ‖xn+ – Tμ,nxn‖
= ‖xn – xn+‖ +

∥∥αn
(
f (y,n) – Tμ,nxn

)
+ βn(xn – Tμ,nxn)

+ γn(Tμ,ny,n – Tμ,nxn)
∥∥

≤ ‖xn – xn+‖ + αn
∥∥f (y,n) – Tμ,nxn

∥∥ + βn‖xn – Tμ,nxn‖
+ γn‖Tμ,ny,n – Tμ,nxn‖

≤ ‖xn – xn+‖ + αn
∥∥f (y,n) – Tμ,nxn

∥∥ + βn‖xn – Tμ,nxn‖
+ γn‖y,n – xn‖
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≤ ‖xn – xn+‖ + αn
∥∥f (y,n) – Tμ,nxn

∥∥ + βn‖xn – Tμ,nxn‖

+ γn

m∑
i=

‖yi,n – yi+,n‖

= ‖xn – xn+‖ + αn
∥∥f (y,n) – Tμ,nxn

∥∥ + βn‖xn – Tμ,nxn‖

+ γn

m∑
i=

( – δi,n)‖yi+,n – Tμi,nyi+,n‖.

Therefore, we have

( – βn)‖xn – Tμ,nxn‖
≤ ‖xn – xn+‖ + αn

∥∥f (y,n) – Tμ,nxn
∥∥

+ γn

m∑
i=

( – δi,n)‖yi+,n – Tμi,nyi+,n‖. ()

From condition (C), it follows that

lim inf
n→∞ ( – βn) > . ()

By conditions (C) and (C′
), Step , () and (), we have

lim
n→∞‖xn – Tμ,nxn‖ = . ()

Indeed, observe that

lim sup
j→∞

‖x – Tμ,nj
x‖ ≤ lim sup

j→∞

(‖x – xnj‖ + ‖xnj – Tμ,nj
xnj‖

+ ‖Tμ,nj
xnj – Tμ,nj

x‖).
Thus, due to (), Lemma . and Lemma ., we get x ∈ Fix(ϕ).
Step . {xn}∞n= converges strongly to z = Pf (z).
Proof of Step . From Lemma . there exists a unique sunny nonexpansive retraction

P of C onto Fix(ϕ). Since f is a contraction of C into itself, therefore Pf is a contraction.
Then the Banach contraction guarantees that Pf has a unique fixed point z. By Lemma .,
z is the unique solution of the variational inequality

〈
(f – I)z, J(y – z)

〉 ≤ , ∀y ∈ Fix(ϕ). ()

Let us show that

lim sup
n→∞

〈
(f – I)z, J(xn – z)

〉 ≤ .

Indeed, we can choose a subsequence {xnk } of {xn} such that

lim sup
n→∞

〈
(f – I)z, J(xn – z)

〉
= lim

k→∞
〈
(f – I)z, J(xnk – z)

〉
. ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/555
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Since C is compact, we may assume, with no loss of generality, that {xnk } converges
strongly to some y ∈ C. By Step , y ∈ Fix(ϕ). Because the duality mapping J is norm to
weak-star continuous from () and (), we have

lim sup
n→∞

〈
(f – I)z, J(xn – z)

〉 ≤ . ()

Using Lemma ., Lemma . and relation (), we have

‖xn+ – z‖

=
∥∥αn

(
f (y,n) – z

)
+ βn(xn – z) + γn(Tμ,ny,n – z)

∥∥

≤ ∥∥βn(xn – z) + γn(Tμ,ny,n – z)
∥∥ + αn

〈
f (y,n) – z, J(xn+ – z)

〉
≤ [

βn‖xn – z‖ + γn‖Tμ,ny,n – z‖] + αn
〈
f (y,n) – f (z), J(xn+ – z)

〉
+ αn

〈
f (z) – z, J(xn+ – z)

〉
≤ [

βn‖xn – z‖ + γn‖y,n – z‖] + αnα‖y,n – z‖∥∥J(xn+ – z)
∥∥

+ αn
〈
f (z) – z, J(xn+ – z)

〉
≤ [

βn‖xn – z‖ + γn‖xn – z‖] + αnα‖xn – z‖‖xn+ – z‖
+ αn

〈
f (z) – z, J(xn+ – z)

〉
≤ ( – αn)‖xn – z‖ + αnα

(‖xn – z‖ + ‖xn+ – z‖)
+ αn

〈
f (z) – z, J(xn+ – z)

〉
,

and consequently,

‖xn+ – z‖

≤ ( – αn) + αnα

 – αnα
‖xn – z‖ + αn

 – αnα

〈
f (z) – z, J(xn+ – z)

〉

≤
(
 –

αn( – αn)
 – αnα

)
‖xn – z‖

+
αn( – αn)
 – αnα

(


 – α

〈
f (z) – z, J(xn+ – z)

〉
+

αn

( – α)
‖xn – z‖

)
.

Then we have

‖xn+ – z‖ ≤ ( – bn)‖xn – z‖ + bncn, ()

where bn = αn(–αn)
–αnα

and

cn =


 – α

〈
f (z) – z, J(xn+ – z)

〉
+

αn

( – α)
‖xn – z‖.

It follows from conditions (C), (C) and () that

∞∑
n=

bn =∞, lim sup
n→∞

cn ≤ .
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Therefore, applying Lemma . to (), we have that {xn}∞n= converges strongly to z = Pf (z)
and since for i = , , . . . ,m, ‖yi,n – z‖ ≤ ‖xn – z‖, therefore {yn}m, ∞

i=,n= converges strongly to
z = Pf (z). This completes the proof. �

4 Applications
Let {gn,j}∞n,j= be a family of real numbers. Then {gn,j} is said to be the strongly regular
summation method [, ] if {gn,j} satisfies the following conditions:
(S) gn,j ≥ ,
(S)

∑∞
j= gn,j =  for every n,

(S) limn→∞ gn,j =  for every j,
(S) limn→∞

∑∞
j= |gn,j+ – gn,j| = .

Corollary . Let C be a compact convex subset of a smooth Banach space E, and let f be a
contraction of C into itself with constantα ∈ (, ).Let T be anasymptotically nonexpansive
mapping of C into itself with Lipschitz constants {k(j)}, and for i = , , . . . ,m, let {g(i,n),j}∞n,j=
be a finite family of strongly regular summation methods such that

lim
n→∞

∞∑
j=

|g(i,n),j+ – g(i,n),j| =  and
∞∑
n=

∞∑
j=

g(i,n),j
(
k(j) – 

)
< ∞.

Let {αn}∞n=, {βn}∞n= and {γn}∞n= be sequences in (, ) satisfying conditions (C)-(C), and
let {δi,n}m, ∞

i=,n= be a sequence in (, ) satisfying condition (C′
). If {xn}∞n= and {yi,n}m, ∞

i=,n= are
sequences generated by x ∈ C and

xn+ = αnf (y,n) + βnxn + γn

∞∑
j=

g(,n),jT(j)y,n,

yi,n = δi,nyi+,n + (I – δi,n)
∞∑
j=

g(i,n),jT(j)yi+,n, i = , , . . . ,m,

ym+,n = xn,

then {xn}∞n= and {yi,n}m, ∞
i=,n= converge strongly to z ∈ Fix(T), which is the unique solution of

the variational inequality

〈
(f – I)z, J(y – z)

〉 ≤ , ∀y ∈ Fix(T).

Equivalently, z = Pf (z), where P denotes the unique sunny nonexpansive retraction of C
onto Fix(T).

Proof Denote by Z+ = (Z, +) the semigroup of nonnegative integers. It is obvious that ϕ =
{Tj : j ∈ Z} is an asymptotically nonexpansive semigroup on C. For every n ∈ Z+ and f ∈
l∞(Z+), define

μi,nf =
∞∑
j=

g(i,n),jf (j).

http://www.journalofinequalitiesandapplications.com/content/2013/1/555
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Hence {μi,n}m, ∞
i=,n= is a strongly regular sequence of means on l∞(Z+) and limn→∞ ‖μi,n+ –

μi,n‖ =  []. Further, for each y ∈ C, we have

Tμi,n =
∞∑
j=

g(i,n),jT(j)y.

By Theorem ., {xn}∞n= and {yi,n}m, ∞
i=,n= converge strongly to z ∈ Fix(T). This completes

the proof. �

Example . Let C be a compact convex subset of a smooth Banach space E such that
 ∈ C, and let f be a contraction ofC into itself with constant α ∈ (, ). Let {αn}∞n=, {βn}∞n=
and {γn}∞n= be sequences in (, ) satisfying conditions (C)-(C), and let {δn}∞n= be a se-
quence in (, ) satisfying condition (C′

). Let {tn}∞n= be sequences in (, ) with t > t > · · · ,
limn→∞ tn = , limn→∞ tn+

tn =  and
∑∞

n= tn < ∞. Let {xn}∞n= and {yn}∞n= be sequences gen-
erated by x ∈ C and

xn+ = αnf (yn) + βnxn + γntn
∞∑
j=

( – tn)j
n

√(
 +


n

)j

yn,

yn = δnxn + (I – δn)tn
∞∑
j=

( – tn)j
n

√(
 +


n

)j

xn.

Then {xn}∞n= and {yn}∞n= converge strongly to z ∈ C.

Proof We define

T : C → C,

Tx = n

√(
 +


n

)
x.

Obviously, T is an asymptotically nonexpansive mapping with Lipschitz constants ln =
( + 

n ). Define gn,j = tn( – tn)j. Then it follows that {qn,j} is a strongly regular summation
method []. We also have

∞∑
n=

∞∑
j=

gn,j(ln – ) =
∞∑
n=

∞∑
j=

tn( – tn)j
(
 +


n

– 
)

=
∞∑
n=

∞∑
j=

tn( – tn)j

n

≤
∞∑
n=

∞∑
j=

tn

n

=
∞∑
n=

tn
∞∑
j=


n

< ∞.

Therefore, by taking y,n = yn and δ,n = δn in Corollary ., we complete the proof. �
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Let Q = {qn,m}∞n,m= be a matrix satisfying the following conditions:
(a) supn≥

∑∞
m= |qn,m| <∞,

(b)
∑∞

m= qn,m =  for every n ∈ N,
(c) limn→∞

∑∞
m= |qn,m+ – qn,m| = .

Such a matrix Q is called strongly regular in the sense of Lorentz []. If Q is a strongly
regular matrix, then for each m ∈ N, we have limn→∞ qn,m = , see []. Strongly regular
matrices were used in the context of nonlinear ergodic theory in [] and [].

Corollary . Let C be a compact convex subset of a smooth Banach space E. Let T be an
asymptotically nonexpansive mapping of C into itself, and let Q = {qn,m}∞n,m= be a strongly
regular matrix. Let {αn}∞n=, {βn}∞n= and {γn}∞n= be sequences in (, ) satisfying conditions
(C)-(C), and let {δn}m, ∞

i=,n= be a sequence in (, ) satisfying condition (C′
). If {xn}∞n= and

{yi,n}m, ∞
i=,n= are sequences generated by x ∈ C and

xn+ = αnf (y,n) + βnxn + γn

∞∑
m=

q(,n),mTmy,n,

yi,n = δi,nyi+,n + (I – δi,n)
∞∑
m=

q(i,n),mTmyi+,n, i = , , . . . ,m,

ym+,n = xn,

then {xn}∞n= and {yi,n}m, ∞
i=,n= converge strongly to z ∈ Fix(T), which is the unique solution of

the variational inequality

〈
(f – I)z, J(y – z)

〉 ≤ , ∀y ∈ Fix(T).

Equivalently, z = Pf (z), where P denotes the unique sunny nonexpansive retraction of C
onto Fix(T).

Proof Let x ∈ C. For each n ∈N, define

μi,nf =
∞∑
m=

q(i,n),mf (m)

for each f ∈ L∞(N). Hence {μi,n}m, ∞
i=,n= is a strongly regular sequence of means on l∞(Z+)

and limn→∞ ‖μi,n+ –μi,n‖ =  []. Further, for each y ∈ C, we have

Tμi,n =
∞∑
m=

q(i,n),mTmy.

By Theorem ., {xn}∞n= and {yi,n}m, ∞
i=,n= converge strongly to z ∈ Fix(T). This completes

the proof. �

Example . Let C be a compact convex subset of a smooth Banach space E such that
 ∈ C, and let f be a contraction ofC into itself with constant α ∈ (, ). Let {αn}∞n=, {βn}∞n=
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and {γn}∞n= be sequences in (, ) satisfying conditions (C)-(C), and let {δn}∞n= be a se-
quence in (, ) satisfying condition (C′

). Let {xn}∞n= and {yn}∞n= be sequences generated
by x ∈ C and

xn+ = αnf (yn) + βnxn + γn

n∑
m=

m
n(n – )

n

√(
 –


n

)m

yn,

yn = δnxn + (I – δn)
n∑

m=

m
n(n – )

n

√(
 –


n

)m

xn.

Then {xn}∞n= and {yn}∞n= converge strongly to z ∈ C.

Proof We define

T : C → C,

Tx = n

√(
 –


n

)
x.

Obviously, T is an asymptotically nonexpansive mapping with Lipschitz constants ln =
( – 

n ). Define

qn,m =

⎧⎨
⎩

m
n(n–) , ≤m ≤ n,

, m > n.

Then it follows that {qn,m} is a strongly regular matrix. Further, we have

∞∑
m=

qn,m =
n∑

m=

m
n(n – )

=


n(n – )
n(n – )


= .

Therefore

sup
n≥

∞∑
m=

qn,m <∞.

On the other hand,

∞∑
m=

|qn,m+ – qn,m| =
n∑

m=

|qn,m+ – qn,m|

=
n–∑
m=

|qn,m+ – qn,m| + |qn,n+ – qn,n|

=
n–∑
m=

∣∣∣∣(m + )
n(n – )

–
m

n(n – )

∣∣∣∣ +
∣∣∣∣ – n

n(n – )

∣∣∣∣
=

n–∑
m=

∣∣∣∣(m + )
n(n – )

–
m

n(n – )

∣∣∣∣ + n
n(n – )
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=
n–∑
m=


n(n – )

+
n

n(n – )

=
n

n(n – )
→ 

as n→ ∞. By taking y,n = yn and δ,n = δn in Corollary ., we complete the proof. �

Corollary . Let C be a compact convex subset of a smooth Banach space E such that
 ∈ C, and let T be an asymptotically nonexpansive mapping of C into itself with Lipschitz
constants {k(j)} satisfying ∑∞

j=(k(j) – ) < ∞. Let f be a contraction of C into itself with
constant α ∈ (, ), let {αn}∞n=, {βn}∞n= and {γn}∞n= be sequences in (, ) satisfying conditions
(C)-(C), and let {δn}∞n= be a sequence in (, ) satisfying condition (C′

). If {xn}∞n= and
{yn}∞n= are sequences generated by x ∈ C and

yn = δnxn +
( – δn)
(n + )

(n+)∑
j=

Tjxn,

xn+ = αnf (yn) + βnxn +
γn

(n + )

(n+)∑
j=

Tjyn,

then {xn}∞n= and {yn}∞n= converge strongly to z ∈ Fix(T), which is the unique solution of the
variational inequality

〈
(f – I)z, J(y – z)

〉 ≤ , ∀y ∈ Fix(T). ()

Equivalently, z = Pf (z), where P denotes the unique sunny nonexpansive retraction of C
onto Fix(T).

Proof Denote by Z+ = (Z, +) the semigroup of nonnegative integers. It is obvious that ϕ =
{Tj : j ∈ Z} is an asymptotically nonexpansive semigroup on C. For every n ∈ Z+ and f ∈
l∞(Z+), define

μnf =


(n + )

∞∑
j=

f (j).

Hence {μn}∞n= is a strongly regular sequence of means on l∞(Z+) and limn→∞ ‖μn+ –
μn‖ =  []. Further, for each y ∈ C, we have

Tμn =


(n + )

∞∑
j=

Tjy.

By Theorem ., {xn}∞n= and {yn}∞n= converge strongly to z ∈ Fix(T). This completes the
proof. �

Example . Let C be a compact convex subset of a smooth Banach space E such that
 ∈ C. Let f be a contraction ofC into itself with constant α ∈ (, ), let {αn}∞n=, {βn}∞n= and
{γn}∞n= be sequences in (, ) satisfying conditions (C)-(C), and let {δn}∞n= be a sequence
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in (, ) satisfying condition (C′
). If {xn}∞n= and {yn}∞n= are sequences generated by x ∈ C

and

yn = δnxn +
( – δn)
(n + )

(n+)∑
j=

n

√(
 +


n ln n

)j

xn,

xn+ = αnf (yn) + βnxn +
γn

(n + )

(n+)∑
j=

n

√(
 +


n ln n

)j

yn,

then {xn}∞n= and {yn}∞n= converge strongly to z ∈ C.

Proof We define

T : C → C,

T(x) = n

√(
 +


n ln n

)
x.

Obviously, T is an asymptotically nonexpansive mapping with Lipschitz constants ln(T) =
( + 

n ln n ). Moreover,

∞∑
n=

(ln – ) =
∞∑
n=

(
 +


n ln n

– 
)
=

∞∑
n=


n ln n

< ∞.

Therefore, applying Corollary ., the result follows. �

Remark . For deducing some more applications, we refer to [, , , , , ].

Remark . Theorem . improves and extends [, Theorem .] and [, Theorem .]
in the following aspects.
() Theorem . extends [, Theorem .] and [, Theorem .] from one sequence of

means to a finite family of sequences of means.
() In Theorem ., by taking Tμi,n = I for i = , , . . . ,m – , Tμm,n = Tμn and ym,n = yn,

one can see that [, Theorem .] is a special case of Theorem ..
() In Theorem ., by taking Tμi,n = I for i = , , . . . ,m, one can see that [,

Theorem .] is a special case of Theorem ..
() Theorem . gives all consequences of [, Theorem .] and [, Theorem .]

without assumption C used in [, Theorem .] and [, Theorem .].
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