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Abstract
In this paper, we consider a nonsmooth multiobjective programming problems
including support functions with inequality and equality constraints. Necessary and
sufficient optimality conditions are obtained by using higher-order strong convexity
for Lipschitz functions. Mond-Weir type dual problem and duality theorems for a strict
minimizer of orderm are given.
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1 Introduction
Nonlinear analysis problems are a new and vital area of optimization theory,mathematical
physics, economics, engineering and functional analysis. Moreover, nonsmooth problems
occur naturally and frequently in optimization.
In , Rockafellar wrote in his book that practical applications are not necessarily

differentiable in applied mathematics (see []). So, dealing with nondifferentiable mathe-
matical programming problems was very important. Vial [] studied strongly and weakly
convex sets and ρ-convex functions.
Auslender [] introduced the notion of lower second-order directional derivative and

obtained necessary and sufficient conditions for a strict local minimizer. Based onAuslen-
der’s results, Studniarski [] proved necessary and sufficient conditions for the problem
of the feasible set defined by an arbitrary set. Moreover, Ward [] derived necessary and
sufficient conditions for strict minimizer of orderm in nondifferentiable scalar programs.
Jimenez [] introduced the notion of super-strict efficiency for vector problems and gave
necessary conditions for strict minimality. Jimenez and Novo [, ] obtained first- and
second-order optimality conditions for vector optimization problems. Bhatia [] gave the
higher-order strong convexity for Lipschitz functions and established optimality condi-
tions for the new concept of strict minimizer of higher order for a multiobjective opti-
mization problem.
Kim and Bae [] formulated nondifferentiable multiobjective programs with the sup-

port functions. Also, Bae et al. [] established duality theorems for nondifferentiablemul-
tiobjective programming problems under generalized convexity assumptions. Also, Kim
and Lee [] introduced the nonsmooth multiobjective programming problems involving
locally Lipschitz functions and support functions. They introduced Karush-Kuhn-Tucker
type optimality conditions and established duality theorems for (weak) Pareto-optimal so-
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lutions. Recently, Bae andKim [] established optimality conditions and duality theorems
for a nondifferentiable multiobjective programming problem with support functions.
In this paper, we consider nonsmooth multiobjective programming with inequality and

equality constraints. In Section , we introduce the concept of a strict minimizer of order
m and higher-order strong convexity for this problem. In Section , necessary and suffi-
cient optimality theorems are established for a strict minimizer of order m under gener-
alized strong convexity assumptions. In Section , we formulate a Mond-Weir type dual
problem and obtain weak and strong duality theorems.

2 Preliminaries
Let x, y ∈Rn. The following notation will be used for vectors in Rn:

x < y ⇐⇒ xi < yi, i = , , . . . ,n;

x� y ⇐⇒ xi � yi, i = , , . . . ,n;

x ≤ y ⇐⇒ xi � yi, i = , , . . . ,n but x �= y;

x≮ y is the negation of x < y;

x� y is the negation of x≤ y.

For x,u ∈ R, x � u and x < u have the usual meaning. Let Rn be the n-dimensional Eu-
clidean space, and let Rn

+ be its nonnegative orthant.

Definition . [] Let D be a compact convex set in Rn. The support function s(·|D) is
defined by

s(x|D) :=max
{
xTy : y ∈D

}
.

The support function s(·|D) has a subdifferential. The subdifferential of s(·|D) at x is
given by

∂s(x|D) := {
z ∈D : zTx = s(x|D)}.

The support function s(·|D) is convex and everywhere finite, that is, there exists z ∈ D such
that

s(y|D)≥ s(x|D) + zT (y – x) for all y ∈D.

Equivalently,

zTx = s(x|D).

We consider the following multiobjective programming problem.

(MOP) Minimize f (x) + s(x|D) = (
f(x) + s(x|D), . . . , fp(x) + s(x|Dp)

)
subject to g(x)� , h(x) = , x ∈ X,
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where f : X →Rp, g : X →Rq and h : X →Rr are locally Lipschitz functions, respectively,
and X is the convex set of Rn. For each i ∈ P = {, , . . . ,p}, Di is a compact convex subset
of Rn.
Further, let S := {x ∈ X | gj(x) � , j = , . . . ,q,hl(x) = , l = , . . . , r} be the feasible set of

(MOP), B(x, ε) = {x ∈ Rn | ‖x – x‖ < ε} be an open ball with center x and radius ε and
I(x) := {j ∈ {, . . . ,q} | gj(x) = } be the index set of active constraints at x.
We introduce the following definitions due to Jimenez [].

Definition . A point x ∈ X is called a strict local minimizer for (MOP) if there exists
ε >  such that

f (x) + s(x|D)≮ f
(
x

)
+ s

(
x|D)

, ∀x ∈ B
(
x, ε

) ∩X.

Definition . Let m�  be an integer. A point x ∈ X is called a strict local minimizer
of orderm for (MOP) if there exist ε >  and c ∈ intRp

+ such that

f (x) + s(x|D)≮ f
(
x

)
+ s

(
x|D)

+
∥∥x – x

∥∥mc, ∀x ∈ B
(
x, ε

) ∩X.

Definition . Letm�  be an integer. A point x ∈ X is called a strict minimizer of order
m for (MOP) if there exists c ∈ intRp

+ such that

f (x) + s(x|D)≮ f
(
x

)
+ s

(
x|D)

+
∥∥x – x

∥∥mc, ∀x ∈ X.

Definition . [] Suppose that f : X → R is Lipschitz on X. Clarke’s generalized di-
rectional derivative of f at x ∈ X in the direction d ∈ Rn, denoted by f (x,d), is defined
as

f (x,d) = lim sup
y→x t↓

f (y + td) – f (y)
t

.

Definition. [] Clarke’s generalized gradient of f at x ∈ X, denoted by ∂f (x), is defined
as

∂f (x) =
{
ξ ∈Rn : f (x,d) ≥ 〈ξ ,d〉 ∀d ∈ Rn}.

Definition . For a nonempty subset X ofRn, we denote X∗, the dual cone of X, defined
by

X∗ =
{
u ∈Rn | uTx� ,∀x ∈ X

}
.

Further, for x ∈ X, NX(x) denotes the normal cone to X at x defined by

NX
(
x

)
=

{
d ∈Rn | 〈d,x – x

〉
� ,∀x ∈ X

}
.

It is clear that (X – x)∗ = –NX(x).

We recall the notion of strong convexity of order m introduced by Lin and Fukushima
in [].
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Definition . A function f : X →R is said to be strongly convex of orderm on a convex
set X if there exists c >  such that for x,x ∈ X and t ∈ [, ],

f
(
tx + ( – t)x

)
� tf (x) + ( – t)f (x) – ct( – t)‖x – x‖m.

Proposition . [] If fi, i = , . . . ,p, are strongly convex of order m on a convex set X, then∑p
i= tifi and max≤i≤p fi are also strongly convex of order m on X, where ti ≥ , i = , . . . ,p.

Definition . A locally Lipschitz function f is said to be strongly quasiconvex of order
m on X if there exists a constant c >  such that for x,x ∈ X,

f (x)� f (x) �⇒ 〈ξ ,x – x〉 + ‖x – x‖mc� , ∀ξ ∈ ∂f (x).

For each k ∈ {, . . . ,p} and x ∈ X, we consider the following scalarizing problem of
(MOP) due to the one in [].

(Pk(x)) Minimize fk(x) + s(x|Dk)

subject to fi(x) + s(x|Di)� fi
(
x

)
+ s

(
x|Di

)
, k ∈ P, i �= k,

gj(x)� , j = , . . . ,q, hl(x) = , l = , . . . , r.

The following definition is due to the one in [].

Definition . Let x be a feasible solution for (MOP). We say that the basic regularity
condition (BRC) is satisfied at x if there exist no non-zero scalars λ

i � , wi ∈ Di, i =
, . . . ,p, i �= k, k ∈ P, μ

j � , j ∈ I(x), μ
j = , j /∈ I(x), and ν

l , l = , . . . , r, such that

 ∈
p∑

i=,i�=k
λ
i
(
∂fi

(
x

)
+wi

)
+

q∑
j=

μ
j ∂gj(x) +

r∑
l=

ν
l ∂hl

(
x

)
+NX

(
x

)
.

3 Optimality conditions
In this section, we establish Fritz John necessary optimality conditions, Karush-Kuhn-
Tucker necessary optimality conditions and Karush-Kuhn-Tucker sufficient optimality
condition for a strict minimizer of (MOP).

Theorem . (Fritz John necessary optimality conditions) Suppose that x is a strict min-
imizer of order m for (MOP) and fi, i = , . . . ,p, gj, j = , . . . ,q, and hl , l = , . . . , r, are locally
Lipschitz functions at x. Then there exist λ

i � , w
i ∈ Di, i = , . . . ,p, μ

j � , j = , . . . ,q,
and ν

l , l = , . . . , r, not all zero such that

 ∈
p∑
i=

λ
i
(
∂fi

(
x

)
+w

i
)
+

q∑
j=

μ
j ∂gj

(
x

)
+

r∑
l=

ν
l ∂hl

(
x

)
+NX

(
x

)
,

〈
w
i ,x

〉 = s
(
x|Di

)
, i = , . . . ,p,

μ
j gj

(
x

)
= , j = , . . . ,q.
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Proof Since x is a strict minimizer of order m for (MOP), it is a strict minimizer for
(MOP). It can be shown that x solves the following problem:

minimize F(x)
subject to g(x)� , h(x) = ,

where

F(x) = max
{(
f(x) + s(x|D)

)
–

(
f
(
x

)
+ s

(
x|D

))
, . . . ,(

fp(x) + s(x|Dp)
)
–

(
fp

(
x

)
+ s

(
x|Dp

))}
.

If it is not so, then there exits x ∈ Rn such that F(x) < F(x), g(x) � , h(x) = . Since
F(x) = , we have F(x) < . This contradicts the fact that x is a strict minimizer for
(MOP). Since x minimizes F(x), fromTheorem .. in Clarke [], there exists (λ,μ,ν) ∈
(Rp,Rq,Rr) not all zero such that

 ∈
p∑
i=

λi∂F
(
x

)
+

∑
j∈I(x)

μj∂gj
(
x

)
+

r∑
l=

νl∂hl
(
x

)
+NX

(
x

)
.

Letting μj = , for j /∈ I(x), we have

 ∈
p∑
i=

λi∂F
(
x

)
+

q∑
j=

μj∂gj
(
x

)
+

r∑
l=

νl∂hl
(
x

)
+NX

(
x

)
.

Since F(x) = max{(f (x) + s(x|D)) – (f (x) + s(x|D))} for any x ∈ X and s(x|Di) = (x)Twi,
i = , . . . ,p, we have

∂F(x) ⊂ co
{
∂
(
fi
(
x

)
+ s

(
x|Di

))}
= co

{(
∂fi

(
x

)
+wi

)}
,

where co{∂(fi(x) + s(x|Di))} denotes the convex hull of {∂(fi(x) + s(x|Di))}. Hence, there
exist λ

i � , w
i ∈ Di, i = , . . . ,p, μ

j � , j = , . . . ,q, and νl , l = , . . . , r, not all zero such
that

 ∈
p∑
i=

λi
(
∂fi

(
x

)
+w

i
)
+

q∑
j=

μj∂gj
(
x

)
+

r∑
l=

νl∂hl
(
x

)
+NX

(
x

)
,

〈
w
i ,x

〉 = s
(
x|Di

)
, i = , . . . ,p,

μ
j gj

(
x

)
= , j = , . . . ,q. �

Theorem . (Karush-Kuhn-Tucker necessary optimality conditions) Suppose that x is
a strict minimizer of order m for (MOP) and fi, i = , . . . ,p, gj, j = , . . . ,q, and hl , l = , . . . , r,
are locally Lipschitz functions at x. If the basic regularity condition (BRC) holds at x, then
there exist λ

i � , w
i ∈Di, i = , . . . ,p, μ

j � , j = , . . . ,q, and ν
l , l = , . . . , r, such that
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 ∈
p∑
i=

λ
i
(
∂fi

(
x

)
+w

i
)
+

q∑
j=

μ
j ∂gj

(
x

)
+

r∑
l=

ν
l ∂hl

(
x

)
+NX

(
x

)
,

〈
w
i ,x

〉 = s
(
x|Di

)
, i = , . . . ,p,

μ
j gj

(
x

)
= , j = , . . . ,q,(

λ
 , . . . ,λ


p
) �= (, . . . , ).

Proof Since x is a strict minimizer of order m for (MOP), by Theorem ., there exist
w
i ∈Di, λ

i � , i = , . . . ,p, μ
j � , j = , . . . ,q, and νl , l = , . . . , r, not all zero such that

 ∈
p∑
i=

λ
i
(
∂fi

(
x

)
+w

i
)
+

q∑
j=

μ
j ∂gj

(
x

)
+

r∑
l=

ν
l ∂hl

(
x

)
+NX

(
x

)
,

〈
w
i ,x

〉 = s
(
x|Di

)
, i = , . . . ,p,

μ
j gj

(
x

)
= , j = , . . . ,q.

It can be shown that (λ
 , . . . ,λ

p) �= (, . . . , ). If λ
i = , i = , . . . ,p, then we have

 ∈
p∑

i=,i�=k
λ
i
(
∂fi

(
x

)
+wi

)
+

q∑
j=

μ
j ∂gj(x) +

r∑
l=

ν
l ∂hl

(
x

)
+NX

(
x

)

for each k ∈ P = {, . . . ,p}. Since the basic regularity condition (BRC) holds at x, we have
λk = , k ∈ P, k �= i = {, . . . ,p}, μj = , j ∈ I(x), and νl = , l = , . . . , r. This contradicts the
fact that λi, λk , k ∈ P, k �= i, μj, j ∈ I(x) and νl , l = , . . . , r, are not all simultaneously zero.
Hence, (λ, . . . ,λp) �= (, . . . , ). �

Theorem . (Karush-Kuhn-Tucker sufficient optimality conditions) Assume that there
exist λ

i � ,w
i ∈Di, i = , . . . ,p,μ

j � , j = , . . . ,q, and ν
l , l = , . . . , r, such that for x ∈ X,

 ∈
p∑
i=

λ
i
(
∂fi

(
x

)
+w

i
)
+

q∑
j=

μ
j ∂gj

(
x

)
+

r∑
l=

ν
l ∂hl

(
x

)
+NX

(
x

)
,

〈
w
i ,x

〉 = s
(
x|Di

)
, i = , . . . ,p,

μ
j gj

(
x

)
= , j = , . . . ,q,(

λ
 , . . . ,λ


p
) �= (, . . . , ).

Assume further that fi, i = , . . . ,p, are strongly convex of order m on X, gj, j ∈ I(x) are
strongly quasiconvex of order m on X and νTh is strongly quasiconvex of order m on X.
Then x is a strict minimizer of order m for (MOP).

Proof Since fi, i = , . . . ,p, are strongly convex of order m on X and (·)Twi, i = , . . . ,p, are
convex, there exists ci > , i = , . . . ,p, such that for all x ∈ X, ξi ∈ ∂fi(x) and wi ∈ Di,
i = , . . . ,p,

fi(x) – fi
(
x

)
�

〈
ξi,x – x

〉
+

∥∥x – x
∥∥mci, xTwi –

(
x

)Twi �
〈
xi,x – x

〉
.
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So, we obtain

(
fi(x) + xTwi

)
–

(
fi
(
x

)
+

(
x

)Txi) � 〈
ξi +wi,x – x

〉
+

∥∥x – x
∥∥mci. (.)

For λ
i � , i = , . . . ,p, (.) implies

p∑
i=

λ
i
(
fi(x) + xTwi

)
–

p∑
i=

λ
i
(
fi
(
x

)
+

(
x

)Twi
)

�
p∑
i=

λ
i
〈
ξi +wi,x – x

〉
+

p∑
i=

λ
i
∥∥x – x

∥∥mci. (.)

For x ∈ X, we have

gj(x)� gj
(
x

)
, j ∈ I

(
x

)
,

νTh(x) = νTh
(
x

)
.

Since gj, j ∈ I(x) are strongly quasiconvex of orderm onX and νTh is strongly quasiconvex
of order m on X, it follows that there exist cj > , ηj ∈ ∂gj(x), j ∈ I(x), c > , and ζ ∈
∂νTh(x) such that

〈
ηj,x – x

〉
+

∥∥x – x
∥∥mcj � ,〈

ζ ,x – x
〉
+

∥∥x – x
∥∥mc� .

(.)

For μ
j � , j ∈ I(x), we obtain

〈 ∑
j∈I(x)

μ
j ηj,x – x

〉
+

∑
j∈I(x)

μ
j
∥∥x – x

∥∥mcj � . (.)

Since μ
j =  for j /∈ I(x), (.) implies

〈 q∑
j=

μ
j ηj,x – x

〉
+

q∑
j=

μ
j
∥∥x – x

∥∥mcj � . (.)

By (.), (.) and (.), we get

p∑
i=

λ
i
(
fi(x) + xTwi

)
–

p∑
i=

λ
i
(
fi
(
x

)
+

(
x

)Twi
)
�

∥∥x – x
∥∥ma,

where a =
∑p

i= λ

i ci +

∑q
j= μ


j cj +

∑m
l= ν


l cl . This implies that

p∑
i=

λ
i
[(
fi(x) + xTwi

)
–

(
fi
(
x

)
+

(
x

)Twi
)
–

∥∥x – x
∥∥mdi

]
� , (.)

where d = ae.
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Suppose that x is not a strictminimizer of orderm for (MOP). Then there exist x,x ∈ X
and c ∈Rp

+ such that

f (x) + s(x|D) < f
(
x

)
+ s

(
x|D)

+
∥∥x – x

∥∥mc, ∀x ∈ X.

Since xTw� s(x|D) and (x)Tw = s(x|D), we have

f (x) + xTw� f (x) + s(x|D)
< f

(
x

)
+ s

(
x|D)

+
∥∥x – x

∥∥mc

= f
(
x

)
+

(
x

)Tw +
∥∥x – x

∥∥mc.

For λ
i � , we obtain

p∑
i=

λ
i
(
fi(x) + xTwi

)
<

p∑
i=

λ
i
(
fi
(
x

)
+

(
x

)Twi
)
+

p∑
i=

λ
i
∥∥x – x

∥∥mci.

This is a contradiction to (.). �

Remark . Suppose that gj, j ∈ I(x) are strongly convex of order m on X and that νTh
is strongly convex of orderm on X. Then the conclusion of Theorem . also holds.

Proof It follows on the lines of Theorem .. �

4 Duality theorems
Now we propose the following Mond-Weir type dual (MOD) to (MOP):

(MOD) Maximize f (u) + uTw

subject to  ∈
p∑
i=

λi
(
∂fi(u) +wi

)
+

q∑
j=

μj∂gj(u)

+
r∑
l=

νl∂hl(u) +NX(u), (.)

q∑
j=

μjgj(u) +
r∑
l=

νlhl(u)� , (.)

λi � , wi ∈ Di, i = , . . . ,p,λTe = , (.)

μj � , j = , . . . ,q, νl, l = , . . . , r,u ∈ X. (.)

Theorem . (Weak duality) Let x and (u,w,λ,μ,ν) be feasible solutions of (MOP) and
(MOD), respectively. If fi, i = , . . . ,p, are strongly convex of order m at u and

∑q
j= μjgj(·) +∑r

l= νlhl(·) is strongly quasiconvex of order m at u, then the following cannot hold:

fi(x) + s(x|Di) < fi(u) + uTwi, i = , . . . ,p. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/554
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Proof Since x is a feasible solution of (MOP) and (u,w,λ,μ,ν) is a feasible solution of
(MOD), we have

q∑
j=

μjgj(x) +
r∑
l=

μlhl(x)�
q∑
j=

μjgj(u) +
r∑
l=

μlhl(u).

Since
∑q

j= μjgj(·)+∑r
l= νlhl(·) is strongly quasiconvex of orderm at u, it follows that there

exist cj > , ηj ∈ ∂gj(u), j = , . . . ,q, cl > , and ζl ∈ ∂hl(u) such that

〈 q∑
j=

μjηj +
r∑
l=

νlζl,x – u

〉
+

q∑
j=

‖x – u‖mcj +
r∑
l=

‖x – u‖mcl � . (.)

Now, suppose contrary to the result that (.) holds. Since xTwi � s(x|Di), i = , . . . ,p, we
obtain

fi(x) + xTwi < fi(u) + uTwi, i = , . . . ,p.

For c ∈ intRp
+, we obtain

fi(x) + xTwi < fi(u) + uTwi + ‖x – u‖mci, i = , . . . ,p. (.)

For λi � , we obtain

p∑
i=

λi
(
fi(x) + xTwi

)
<

p∑
i=

λi
(
fi(u) + uTwi

)
+

p∑
i=

λi‖x – u‖mci. (.)

Since fi, i = , . . . ,p, are strongly convex of orderm at u and (·)Twi, i = , . . . ,p, are convex at
u, there exists ci > , i = , . . . ,p, such that for all x ∈ X, ξi ∈ ∂fi(x) and wi ∈Di, i = , . . . ,p,

fi(x) – fi(u)� 〈ξi,x – u〉 + ‖x – u‖mci,
xTwi – uTwi � 〈wi,x – u〉.

So, we obtain

(
fi(x) + xTwi

)
–

(
fi(u) + uTwi

)
� 〈ξi +wi,x – u〉 + ‖x – u‖mci. (.)

For λi � , i = , . . . ,p, we obtain

p∑
i=

λi
(
fi(x) + xTwi

)
–

p∑
i=

λi
(
fi(u) + uTwi

)

�
〈 p∑

i=

λi(ξi +wi),x – u

〉
+

p∑
i=

λi‖x – u‖mci. (.)

By (.) and (.), we get

p∑
i=

λi
(
fi(x) + xTwi

)
–

p∑
i=

λi
(
fi(u) + uTwi

)
� ‖x – u‖ma, (.)
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where a =
∑p

i= λici +
∑q

j= μjcj +
∑r

l= νlcl . This implies that

p∑
i=

λi
[(
fi(x) + xTwi

)
–

(
fi(u) + uTwi

)
– ‖x – u‖mdi

]
� , (.)

where d = ae, since λTe = . This is a contradiction to (.). �

Lemma . If gj(·), j = , . . . ,m, are strongly convex of order m on X and νTh is strongly
convex of order m on X, then the same conclusion of Theorem . also holds.

Proof It follows on the lines of Theorem .. �

Definition . Letm�  be an integer. A point x ∈ X is called a strictmaximizer of order
m for (MOD) if there exists c ∈ intRp

+ such that

f
(
x

)
+

(
x

)Tw +
∥∥x – x

∥∥mc≮ f (x) + xTw, ∀x ∈ X.

Theorem . (Strong duality) If x is a strict minimizer of order m for (MOP) and the
basic regularity condition (BRC) holds at x, then there exist λ

i � , w
i ∈ Di, i = , . . . ,p,

μ
j � , j = , . . . ,q, and ν

l , l = , . . . , r, such that (x,w,λ,μ,ν) is a feasible solution of
(MOD) and (x)Tw

i = s(x|Di), i = , . . . ,p.Moreover, if the assumptions of Theorem . are
satisfied, then (x,w,λ,μ,ν) is a strict maximizer of order m for (MOD).

Proof By Theorem ., there exists λ
i � , w

i ∈Di, i = , . . . ,p, μ
j � , j = , . . . ,q, and ν

l ,
l = , . . . , r, such that

 ∈
p∑
i=

λ
i
(
∂fi

(
x

)
+w

i
)
+

q∑
j=

μ
j ∂gj

(
x

)
+

r∑
l=

ν
l ∂hl

(
x

)
+NX

(
x

)
,

〈
w
i ,x

〉 = s
(
x|Di

)
, i = , . . . ,p,

μ
j gj

(
x

)
= , j = , . . . ,q,(

λ
 , . . . ,λ


p
) �= (, . . . , ).

Thus (x,w,λ,μ,ν) is a feasible solution of (MOD) and (x)Tw
i = s(x|Di), i = , . . . ,p.

By Theorem ., we obtain that the following holds:

fi
(
x

)
+

(
x

)Tw
i = fi

(
x

)
+ s

(
x|Di

)
≮ fi(u) + uTwi, i = , . . . ,p,

for a given feasible solution (u,w,λ,μ,ν) of (MOD). For x,u ∈ X and c ∈ intRp, we have

f
(
x

)
+

(
x

)Tw +
∥∥u – x

∥∥mc

�< f (u) + uTw.

Thus, (x,w,λ,μ,ν) is a strict maximizer of order m for (MOD). �
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Remark . Theorem . and Theorem . reduce to [, Theorem . and Theorem .]
in an inequality constraint case. More exactly, fi(·) + (·)Twi, i = , . . . ,p, and gj(·), j ∈ I(u) at
the considered point in the framework of [, Theorem . and Theorem .] are strongly
convex of order m and strongly quasiconvex of orderm, respectively.
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