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Abstract
It is well known that the regularization method plays an important role in solving a
constrained convex minimization problem. In this article, we introduce implicit and
explicit iterative schemes based on the regularization for solving a constrained
convex minimization problem. We establish results on the strong convergence of the
sequences generated by the proposed schemes to a solution of the minimization
problem. Such a point is also a solution of a variational inequality. We also apply the
algorithm to solve a split feasibility problem.
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1 Introduction
The gradient-projection algorithm is a classical power method for solving constrained
convex optimization problems and has been studied by many authors (see [–] and the
references therein). The method has recently been applied to solve split feasibility prob-
lems which find applications in image reconstruction and the intensity modulated radia-
tion therapy (see [–]).
Consider the problem of minimizing f over the constraint set C (assuming that C is

a nonempty closed and convex subset of a real Hilbert space H). If f : H → R is a con-
vex and continuously Fréchet differentiable functional, the gradient-projection algorithm
generates a sequence {xn}∞n= determined by the gradient of f and the metric projection
onto C. Under the condition that f has a Lipschitz continuous and strongly monotone
gradient, the sequence {xn}∞n= can be strongly convergent to a minimizer of f in C. If the
gradient of f is only assumed to be inverse strongly monotone, then {xn}∞n= can only be
weakly convergent if H is infinite-dimensional.
Recently, Xu [] gave an operator-oriented approach as an alternative to the gradient-

projection method and to the relaxed gradient-projection algorithm, namely, an aver-
aged mapping approach. He also presented two modifications of gradient-projection al-
gorithms which are shown to have strong convergence.
On the other hand, regularization, in particular the traditional Tikhonov regularization,

is usually used to solve ill-posed optimization problems [, ]. Under some conditions,
we know that the regularization method is weakly convergent.
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The purpose of this paper is to present the general iterative method combining the reg-
ularizationmethod and the averagedmapping approach.We first propose implicit and ex-
plicit iterative schemes for solving a constrained convex minimization problem and prove
that the methods converge strongly to a solution of the minimization problem, which is
also a solution of the variational inequality. Furthermore, we use the above method to
solve a split feasibility problem.

2 Preliminaries
Throughout the paper, we assume that H is a real Hilbert space whose inner product and
norm are denoted by 〈·, ·〉 and ‖ · ‖, respectively, and that C is a nonempty closed convex
subset of H . The set of fixed points of a mapping T is denoted by Fix(T), that is, Fix(T) =
{x ∈ H : Tx = x}. We write xn ⇀ x to indicate that the sequence {xn} converges weakly
to x. The fact that the sequence {xn} converges strongly to x is denoted by xn → x. The
following definition and results are needed in the subsequent sections.
Recall that a mapping T :H →H is said to be L-Lipschitzian if

‖Tx – Ty‖ ≤ L‖x – y‖, ∀x, y ∈ H , ()

where L >  is a constant. In particular, if L ∈ [, ), then T is called a contraction on H ;
if L = , then T is called a nonexpansive mapping on H . T is called firmly nonexpansive if
T – I is nonexpansive, or equivalently, 〈x – y,Tx – Ty〉 ≥ ‖Tx – Ty‖, ∀x, y ∈ H . Alterna-
tively, T is firmly nonexpansive if and only if T can be expressed as T = 

 (I +W ), where
W :H →H is nonexpansive.

Definition. AmappingT :H → H is said to be an averagedmapping if it can bewritten
as the average of the identity I and a nonexpansive mapping; that is,

T = ( – α)I + αW , ()

where α is a number in (, ) and W : H → H is nonexpansive. More precisely, when ()
holds, we say that T is α-averaged. Clearly, a firmly nonexpansive mapping (in particular,
projection) is a 

 -averaged map.

Proposition . [, ] For given operators W ,T ,V :H →H :
(i) If T = ( – α)W + αV for some α ∈ (, ) and ifW is averaged and V is

nonexpansive, then T is averaged.
(ii) T is firmly nonexpansive if and only if the complement I – T is firmly nonexpansive.
(iii) If T = ( – α)W + αV for some α ∈ (, ) and ifW is firmly nonexpansive and V is

nonexpansive, then T is averaged.
(iv) The composite of finitely many averaged mappings is averaged. That is, if each of the

mappings {Ti}Ni= is averaged, then so is the composite T · · ·TN . In particular, if T is
α-averaged and T is α-averaged, then the composite TT is α-averaged, where
α = α + α – αα.

Recall that the metric (or nearest point) projection from H onto C is the mapping PC :
H → C which assigns to each point x ∈H the unique point PCx ∈ C satisfying the property

‖x – PCx‖ = inf
y∈C ‖x – y‖ =: d(x,C). ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/550
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Lemma . For given x ∈H :
(i) z = PCx if and only if

〈x – z, y – z〉 ≤ , ∀y ∈ C;

(ii) z = PCx if and only if

‖x – z‖ ≤ ‖x – y‖ – ‖y – z‖, ∀y ∈ C;

(iii)

〈PCx – PCy,x – y〉 ≥ ‖PCx – PCy‖, ∀x, y ∈H .

Consequently, PC is nonexpansive.

Lemma . The following inequality holds in a Hilbert space X :

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉, ∀x, y ∈ X.

Lemma . [] In a Hilbert space H , we have

∥∥λx + ( – λ)y
∥∥ = λ‖x‖ + ( – λ)‖y‖ – λ( – λ)‖x – y‖, ∀x, y ∈H and λ ∈ [, ].

Lemma . (Demiclosedness principle []) Let C be a closed and convex subset of a
Hilbert space H , and let T : C → C be a nonexpansive mapping with Fix(T) �= ∅. If {xn}∞n=
is a sequence in C weakly converging to x and if {(I –T)xn}∞n= converges strongly to y, then
(I – T)x = y. In particular, if y = , then x ∈ Fix(T).

Definition . A nonlinear operator G with domain D(G) ⊆ H and range R(G) ⊆ H is
said to be:

(i) monotone if

〈x – y,Gx –Gy〉 ≥ , ∀x, y ∈ D(G),

(ii) β-strongly monotone if there exists β >  such that

〈x – y,Gx –Gy〉 ≥ β‖x – y‖, ∀x, y ∈D(G),

(iii) ν-inverse strongly monotone (for short, ν-ism) if there exists ν >  such that

〈x – y,Gx –Gy〉 ≥ ν‖Gx –Gy‖, ∀x, y ∈ D(G).

Proposition . [] Let T :H →H be an operator from H to itself.
(i) T is nonexpansive if and only if the complement I – T is 

 -ism.
(ii) If T is ν-ism, then for γ > , γT is ν

γ
-ism.

(iii) T is averaged if and only if the complement I – T is ν-ism for some ν > /. Indeed,
for α ∈ (, ), T is α-averaged if and only if I – T is 

α -ism.

http://www.journalofinequalitiesandapplications.com/content/2013/1/550
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Lemma . [] Assume that {an} is a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + γnδn, n≥ ,

where {γn} is a sequence in (, ) and {δn} is a sequence in R such that
(i)

∑∞
n= γn =∞;

(ii) lim supn→∞ δn ≤  or
∑∞

n= γn|δn| <∞.
Then limn→∞ an = .

3 Main results
We now look at the constrained convex minimization problem:

min
x∈C f (x), ()

where C is a closed and convex subset of a Hilbert space H and f : C →R is a real-valued
convex function. Assume that problem () is consistent, let S denote the solution set. If f is
Fréchet differentiable, then the gradient-projection algorithm (GPA) generates a sequence
{xn}∞n= according to the recursive formula

xn+ = ProjC(I – γ∇f )(xn), n≥ , ()

or more generally,

xn+ = ProjC(I – γn∇f )(xn), n≥ , ()

where, in both () and (), the initial guess x is taken from C arbitrarily, the parameters
γ or γn are positive real numbers.
As amatter of fact, it is known that if∇f fails to be stronglymonotone, and is only 

L -ism,
namely, there is a constant L >  such that

〈
x – y,∇f (x) –∇f (y)

〉 ≥ 
L

∥∥∇f (x) –∇f (y)
∥∥, x, y ∈ C,

under some assumption for γ or γn, then algorithms () and () can still converge in the
weak topology.
Now consider the regularized minimization problem

min
x∈C fα(x) :=min

x∈C

{
f (x) +

α


‖x‖

}
,

where α >  is the regularization parameter, and again f is convex with a 
L -ism gradi-

ent ∇f .
It is known that the regularization method is defined as follows:

xn+ = ProjC(I – γ∇fαn )(xn).

We also know that {xn} ⇀ x̃, where x̃ is a solution of constrained convex minimization
problem ().

http://www.journalofinequalitiesandapplications.com/content/2013/1/550


Tian Journal of Inequalities and Applications 2013, 2013:550 Page 5 of 15
http://www.journalofinequalitiesandapplications.com/content/2013/1/550

Let h : C → H be a contraction with a constant ρ > . In this section, we introduce the
following implicit scheme generating a net {xs,ts} in an implicit way:

xs,ts = PC
[
sh(xs,ts ) + ( – s)Ttsxs,ts

]
, ()

where  < γ < 
L , ts ∈ (, 

γ
– L). Let Tts and s satisfy the following conditions:

(i) λ := λ(ts) = –γ (L+ts)
 ;

(ii) PC(I – γ∇fts ) = λI + ( – λ)Tts .
Consider a mapping

Qsx = PC
[
sh(x) + ( – s)Ttsx

]
, ∀x ∈ C. ()

It is easy to see that Qs is a contraction. Indeed, we have

‖Qsx –Qsy‖ ≤ ∥∥sh(x) + ( – s)Ttsx –
[
sh(y) + ( – s)Ttsy

]∥∥
≤ ρs‖x – y‖ + ( – s)‖x – y‖ = [

 – ( – ρ)s
]‖x – y‖.

Hence,Qs has a unique fixed point in C, denoted by xs,ts , which uniquely solves fixed point
equation ().
We proved the strong convergence of {xs,ts}ts∈(, γ –L) to a solution x∗ of the minimization

problem

〈
(I – h)x∗,x∗ – z

〉 ≤ , ∀z ∈ S. ()

For a given arbitrary guess x ∈ C and a sequence {αn} ∈ (, 
γ
– L), we also propose the

following explicit scheme that generates a sequence {xn} in an explicit way:

xn+ = PC
[
θnh(xn) + ( – θn)Tnxn

]
, n ≥ , ()

where  < γ < 
L , λn = –γ (L+αn)

 and PC(I – γ∇fαn ) = λnI + ( – λn)Tn for each n ≥ . It is
proven that this sequence {xn} converges strongly to a minimizer x∗ ∈ S of ().

3.1 Convergence of the implicit scheme
Proposition . If  < γ < 

L , α ∈ (, 
γ
– L), ∇f is 

L -ism, then

ProjC(I – γ∇fα) = ( –μα)I +μαTα ,

ProjC(I – γ∇f ) = ( –μ)I +μT ,

where μα = +γ (L+α)
 , μ = +γL

 .
In addition, for ∀x ∈ C,

‖Tαx – Tx‖ ≤ αM(x),

where

M(x) = γ
(
‖x‖ + ‖Tx‖).

http://www.journalofinequalitiesandapplications.com/content/2013/1/550


Tian Journal of Inequalities and Applications 2013, 2013:550 Page 6 of 15
http://www.journalofinequalitiesandapplications.com/content/2013/1/550

Proof Since ∇f is 
L -ism, so γ∇fα is 

γ (L+α) -ism, by Proposition ., I – γ∇fα is γ (L+α)
 -

averaged, because ProjC is 
 -averaged, by Proposition ., ProjC(I – γ∇fα) is μα-averaged,

i.e.,

ProjC(I – γ∇fα) = ( –μα)I +μαTα ,

where μα = +γ (L+α)
 . The same case holds for ProjC(I – γ∇f ).

Hence,

∥∥ProjC(I – γ∇fα)x – ProjC(I – γ∇fα)x
∥∥

=
∥∥(μ –μα)x +μαTαx –μTx

∥∥
≤ ∥∥(I – γ∇fα)x – (I – γ∇f )x

∥∥
= γ

∥∥∇fα(x) –∇f (x)
∥∥ = αγ ‖x‖,

then

∥∥μα(Tαx) –μTx
∥∥ ≤ |μ –μα|‖x‖ + αγ ‖x‖,

‖Tαx – Tx‖ ≤ αγ (‖x‖ + ‖Tx‖)
 + γ (L + α)

≤ αM(x),

whereM(x) = γ (‖x‖ + ‖Tx‖). �

Proposition . Let h : C → H be a contraction with  < ρ <  and  < γ < 
L , let ts be

continuous with respect to s, ts = o(s). Suppose that problem () is consistent, let S denote the
solution set for each s ∈ (, ), and let xs,ts denote a unique solution of fixed point equation
(). Then the following properties hold for the net {xs,ts}:

(i) {xs,ts}ts∈(, γ –L) is bounded;
(ii) lims→ ‖xs,ts – Ttsxs,ts‖ = ;
(iii) xs,ts defines a continuous curve from (, ) into C.

Proof (i) Take any p ∈ S, then

xs,ts – p = PC
[
sh(xs,ts ) + ( – s)Ttsxs,ts

]
– PCp.

Therefore,

‖xs,ts – p‖ ≤ sρ‖xs,ts – p‖ + s
∥∥h(p) – p

∥∥ + ( – s)
∥∥Ttsxs,ts – Tp

∥∥
≤ sρ‖xs,ts – p‖ + s

∥∥h(p) – p
∥∥ + ( – s)

[‖Ttsxs,ts – Ttsp‖ + ‖Ttsp – Tp‖]
≤ [

 – ( – ρ)s
]‖xs,ts – p‖ + s

∥∥h(p) – p
∥∥ + ( – s)ts

∥∥M(p)
∥∥,

hence,

‖xs,ts – p‖ ≤ ‖h(p) – p‖
 – ρ

+ ( – s)
ts

s( – ρ)
∥∥M(p)

∥∥. ()

So, {xs,ts} is bounded.

http://www.journalofinequalitiesandapplications.com/content/2013/1/550
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(ii)

‖xs,ts – Ttsxs,ts‖ ≤ ∥∥sh(xs,ts ) – sTtsxs,ts
∥∥ → .

(iii) Take s, s ∈ (, ), and calculate

‖xs,ts – xs,ts ‖ ≤ ∥∥sh(xs,ts ) + ( – s)Ttsxs,ts –
[
sh(xs,ts ) + ( – s)Tts xs,ts

]∥∥
=

∥∥s(h(xs,ts) – h(xs,ts )
)
+ (s – s)

[
h(xs,ts ) – Tts xs,ts

]
+ ( – s)[Ttsxs,ts – Ttsxs,ts ] + ( – s)[Ttsxs,ts – Tts xs,ts ]

∥∥
≤ sρ‖xs,ts – xs,ts ‖ + ( – s)‖xs,ts – xs,ts ‖
+ ( – s)‖Ttsxs,ts – Tts xs,ts ‖ + |s – s|

∥∥h(xs,ts ) – Tts xs,ts
∥∥, ()

‖Ttsxs,ts – Tts xs,ts ‖

=
∥∥∥∥PC(I – γ∇fts ) – [ – γ (L + ts)]I

 + γ (L + ts)
xs,ts

–
PC(I – γ∇fts ) – [ – γ (L + ts )]I

 + γ (L + ts )
xs,ts

∥∥∥∥
≤

∥∥∥∥PC(I – γ∇fts )
 + γ (L + ts)

xs,ts –
PC(I – γ∇fts )
 + γ (L + ts )

xs,ts

∥∥∥∥
+

∥∥∥∥–[ – γ (L + ts)]
 + γ (L + ts)

xs,ts +
[ – γ (L + ts )]
 + γ (L + ts )

xs,ts

∥∥∥∥
=

∥∥∥∥[ + γ (L + ts )]PC(I – γ∇fts )xs,ts – [ + γ (L + ts)]PC(I – γ∇fts )xs,ts
[ + γ (L + ts)][ + γ (L + ts )]

∥∥∥∥
+

γ |ts – ts |‖xs,ts ‖
[ + γ (L + ts)][ + γ (L + ts )]

=
∥∥∥∥γ (ts – ts)PC(I – γ∇fts )xs,ts
[ + γ (L + ts)][ + γ (L + ts )]

+
( + γ (L + ts))[PC(I – γ∇fts )xs,ts – PC(I – γ∇fts )xs,ts ]

[ + γ (L + ts)][ + γ (L + ts )]

∥∥∥∥
+

γ |ts – ts |‖xs,ts ‖
[ + γ (L + ts)][ + γ (L + ts )]

≤M|ts – ts |. ()

So, by () and (),

‖xs,ts – xs,ts ‖ →  (s→ s). �

Theorem . Assume that minimization problem () is consistent, and let S denote the
solution set. Assume that the gradient ∇f is 

L -ism. Let h : C → H be a ρ-contraction with
ρ ∈ [, ),

xs,ts = PC
[
sh(xs,ts ) + ( – s)Ttsxs,ts

]
,

http://www.journalofinequalitiesandapplications.com/content/2013/1/550
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where  < γ < 
L , ts ∈ (, 

γ
– L), ts = o(s). Let Tts satisfy the following conditions:

(i) λ := λ(ts) = –γ (L+ts)
 ;

(ii) PC(I – γ∇fts ) = λI + ( – λ)Tts .
Then the net {xs,ts} converges strongly as s →  to a minimizer of problem (), which is also
the unique solution of the variational inequality

x∗ ∈ S,
〈
(I – h)x∗,x – x∗〉 ≥ , ∀x ∈ S.

Proof Set ProjC(I – γ∇f ) = ( – τ )I + τT , τ = –γL
 . Let ys,ts = sh(xs,ts ) + ( – s)Ttsxs,ts , ts ∈

(, 
γ
– L).

We then have xs,ts = PCys,ts . For any given z ∈ S, z = PC(I – γ∇f )z, we obtain

xs,ts – z = PCys,ts – ys,ts + ys,ts – z

= PCys,ts – ys,ts + sh(xs,ts ) + ( – s)Ttsxs,ts – Tz

= PCys,ts – ys,ts + s
[
h(xs,ts ) – h(z)

]
+ s

[
h(z) – Tz

]
+ ( – s)[Ttsxs,ts – Tz].

Next we prove that {xs,ts} → x∗ ∈ S, which is also the unique solution of the variational
inequality. We have

‖xs,ts – z‖ = 〈PCys,ts – ys,ts ,PCys,ts – z〉 + s
〈
h(xs,ts ) – h(z),xs,ts – z

〉
+ s

〈
h(z) – Tz,xs,ts – z

〉
+ ( – s)〈Ttsxs,ts – Tz,xs,ts – z〉

≤ sρ‖xs,ts – z‖ + s
〈
h(z) – Tz,xs,ts – z

〉
+ ( – s)〈Ttsxs,ts – Tz,xs,ts – z〉

≤ [
 – ( – ρ)s

]‖xs,ts – z‖ + s
〈
h(z) – Tz,xs,ts – z

〉
+ ( – s)ts

∥∥M(z)
∥∥‖xs,ts – z‖.

So,

‖xs,ts – z‖ ≤ 〈h(z) – Tz,xs,ts – z〉
 – ρ

+
( – s)ts‖M(z)‖‖xs,ts – z‖

s( – ρ)
. ()

Then if xsn ,tsn ⇀ p, then xsn ,tsn → p. Next, we prove that

∥∥xs,ts – ProjC(I – γ∇f )xs,ts
∥∥ → .

Since
∥∥ProjC(I – γ∇fts )xs,ts – xs,ts

∥∥ =
∥∥λxs,ts + ( – λ)Tts (xs,ts ) – xs,ts

∥∥
≤ ∥∥Tts (xs,ts ) – xs,ts

∥∥.
So,

∥∥xs,ts – ProjC(I – γ∇f )xs,ts
∥∥ ≤ γ ts‖xs,ts‖ +

∥∥Tts (xs,ts ) – xs,ts
∥∥ → .

Finally, we prove that {xs,ts} → x∗ ∈ S, which is also the unique solution of the variational
inequality. We only need to prove that if xsn ,tsn ⇀ x̃, then

〈
(I – h)x̃,x – x̃

〉 ≥ , ∀x ∈ S.

http://www.journalofinequalitiesandapplications.com/content/2013/1/550
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Suppose that xsn ,tsn ⇀ x̃, by Lemma . and ‖xs,ts – ProjC(I – γ∇f )xs,ts‖ → , x̃ = ProjC(I –
γ∇f )x̃, it follows that x̃ ∈ S. Note that xsn ,tsn → x̃ by (). From the definition

xs,ts = PC
[
sh(xs,ts ) + ( – s)Ttsxs,ts

]
,

we have

(I – h)(xsn ,tsn ) =

sn
(PCysn ,tsn – ysn ,tsn ) –


sn

[
(I – Ttsn )xsn ,tsn

]
+ [xsn ,tsn – Ttsn xsn ,tsn ].

So

〈
(I – h)(xsn ,tsn ),xsn ,tsn – z

〉

=

sn

〈PCysn ,tsn – ysn ,tsn ,xsn ,tsn – z〉

–

sn

〈xsn ,tsn – Ttsn xsn ,tsn ,xsn ,tsn – z〉 + 〈xsn ,tsn – Ttsn xsn ,tsn ,xsn ,tsn – z〉

≤ –

sn

〈
(I – Ttsn )xsn ,tsn ,xsn ,tsn – z

〉
+

〈
(I – Ttsn )xsn ,tsn ,xsn ,tsn – z

〉

≤ –

sn

[〈
(I – T)xsn ,tsn ,xsn ,tsn – z

〉
–


sn

〈
(T – Ttsn )xsn ,tsn ,xsn ,tsn – z

〉]

+ 〈xsn ,tsn – Ttsn xsn ,tsn ,xsn ,tsn – z〉,

then

〈
(I – h)x̃, x̃ – z

〉
= lim

n→∞
〈
(I – h)(xsn ,tsn ),xsn ,tsn – z

〉 ≤ . ()

So, {xs,ts} → x∗ ∈ S, which is also the unique solution of the variational inequality. �

3.2 Convergence of the explicit scheme
Theorem . Assume that minimization problem () is consistent, and let S denote the
solution set. Assume that the gradient ∇f is 

L -ism. Let h : C → H be a ρ-contraction with
ρ ∈ [, ). Let a sequence {xn}∞n= be generated by the following hybrid gradient projection
algorithm:

xn+ = Pc
[
θnh(xn) + ( – θn)Tn(xn)

]
, n = , , , . . . , ()

where  < γ < 
L , Pc[I – γ∇fαn ] = λnI + ( – λn)Tn and λn = –γ (L+αn)

 , and, in addition,
assume that the following conditions are satisfied for {θn}∞n= and {αn}∞n=:

(i) θn → ; αn = o(θn);
(ii)

∑∞
n= θn =∞;

(iii)
∑∞

n= |θn+ – θn| <∞;
(iv)

∑∞
n= |αn+ – αn| <∞.

Then the sequence {xn}∞n= converges in norm to a minimizer of () which is also the unique
solution of the variational inequality (VI)

x∗ ∈ S,
〈
(I – h)x∗,x – x∗〉 ≥ , ∀x ∈ S.

http://www.journalofinequalitiesandapplications.com/content/2013/1/550
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In other words, x∗ is the unique fixed point of the contraction ProjS h,

x∗ = ProjS h
(
x∗).

Proof (◦) We first prove that {xn}∞n= is bounded. Set ProjC(I – γ∇f ) = ( – τ )I + τT , τ =
–γL
 . Indeed, we have, for x̃ ∈ S,

‖xn+ – x̃‖
=

∥∥PC
[
θnh(xn) + ( – θn)Tn(xn)

]
– PCx̃

∥∥
≤ ∥∥θnh(xn) + ( – θn)Tn(xn) – x̃

∥∥
=

∥∥θn
(
h(xn) – h(x̃)

)
+ θn

(
h(x̃) – x̃

)
+ ( – θn)

(
Tn(xn) – x̃

)∥∥
≤ θnρ‖xn – x̃‖ + θn

∥∥h(x̃) – x̃
∥∥ + ( – θn)

[‖xn – x̃‖ + ∥∥Tn(x̃) – T(x̃)
∥∥]

≤ (
 – ( – ρ)θn

)‖xn – x̃‖ + θn
∥∥h(x̃) – x̃

∥∥ + αn
∥∥M(x̃)

∥∥
≤max

{
‖xn – x̃‖, 

 – ρ

[∥∥h(x̃) – x̃
∥∥ +

∥∥M(x̃)
∥∥]}

.

So, {xn} is bounded.
(◦) Next we prove that ‖xn+ – xn‖ →  as n→ ∞.

‖xn+ – xn‖
=

∥∥PC
[
θnh(xn) + ( – θn)Tnxn

]
– PC

[
θn–h(xn–) + ( – θn–)Tn–xn–

]∥∥
≤ ∥∥[

θnh(xn) + ( – θn)Tnxn
]
–

[
θn–h(xn–) + ( – θn–)Tn–xn–

]∥∥
=

∥∥θn
(
h(xn) – h(xn–)

)
+ ( – θn)(Tnxn – Tnxn–)

+ (θn – θn–)
(
h(xn–) – Tnxn–

)
+ ( – θn–)(Tnxn– – Tn–xn–)

∥∥
≤ [

 – ( – ρ)θn
]‖xn – xn–‖ +M|θn – θn–| + ( – θn–)‖Tnxn– – Tn–xn–‖,

but

‖Tnxn– – Tn–xn–‖

=
∥∥∥∥PC(I – γ∇fαn ) – [ – γ (L + αn)]I

 + γ (L + αn)
xn–

–
PC(I – γ∇fαn– ) – [ – γ (L + αn–)]I

 + γ (L + αn–)
xn–

∥∥∥∥
≤

∥∥∥∥PC(I – γ∇fαn )
 + γ (L + αn)

xn– –
PC(I – γ∇fαn– )
 + γ (L + αn–)

xn–
∥∥∥∥

+
∥∥∥∥–[ – γ (L + αn)]

 + γ (L + αn)
xn– +

[ – γ (L + αn–)]
 + γ (L + αn–)

xn–
∥∥∥∥

=
∥∥∥∥[ + γ (L + αn–)]PC(I – γ∇fαn )xn– – [ + γ (L + αn)]PC(I – γ∇fαn– )xn–

[ + γ (L + αn)][ + γ (L + αn–)]

∥∥∥∥
+

γ |αn – αn–|‖xn–‖
[ + γ (L + αn)][ + γ (L + αn–)]

=
∥∥∥∥γ (αn– – αn)PC(I – γ∇fαn )xn–
[ + γ (L + αn)][ + γ (L + αn–)]
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+
( + γ (L + αn))[PC(I – γ∇fαn )xn– – PC(I – γ∇fαn– )xn–]

[ + γ (L + αn)][ + γ (L + αn–)]

∥∥∥∥
+

γ |αn – αn–|‖xn–‖
[ + γ (L + αn)][ + γ (L + αn–)]

≤ γ |αn– – αn|‖PC(I – γ∇fαn )xn–‖
[ + γ (L + αn)][ + γ (L + αn–)]

+
γ |αn– – αn|[ + γ (L + αn)]‖xn–‖
[ + γ (L + αn)][ + γ (L + αn–)]

+
γ |αn – αn–|‖xn–‖

[ + γ (L + αn)][ + γ (L + αn–)]

≤ |αn– – αn|
[
γ
∥∥PC(I – γ∇fαn )xn–

∥∥ + γ ‖xn–‖
]

≤M|αn– – αn|.

So,

‖xn+ – xn‖ ≤ [
 – ( – ρ)θn

]‖xn – xn–‖ +M|θn – θn–| +M|αn– – αn|,

by Lemma .,

‖xn+ – xn‖ → .

(◦) Next we show that ‖xn – Tnxn‖ → .
Indeed, it follows that

‖xn – Tnxn‖ ≤ ‖xn – xn+‖ + ‖xn+ – Tnxn‖
= ‖xn – xn+‖ +

∥∥Pc
[
θnh(xn) + ( – θn)Tn(xn)

]
– PCTn(xn)

∥∥
≤ ‖xn – xn+‖ + θn

∥∥h(xn) – Tnxn
∥∥ → .

Now we show that

lim sup
n→∞

〈
h
(
x∗) – x∗,xn – x∗〉 ≤ .

Let xnk ⇀ x̃, observe that

∥∥PC(I – γ∇fαn )xn – xn
∥∥ =

∥∥λnI + ( – λn)Tnxn – xn
∥∥

= ( – λn)‖Tnxn – xn‖
≤ ‖Tnxn – xn‖,

hence we have

∥∥PC(I – γ∇f )xn – xn
∥∥

≤ ∥∥PC(I – γ∇f )xn – PC(I – γ∇fαn )xn
∥∥ +

∥∥PC(I – γ∇fαn )xn – xn
∥∥

≤ γαn‖xn‖ + ‖Tnxn – xn‖ → .
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So

lim
n→∞

∥∥PC(I – γ∇f )xn – xn
∥∥ = ,

by Lemma . and limn→∞ ‖PC(I – γ∇f )xn – xn‖ = , then

x̃ = PC(I – γ∇f )(x̃).

This shows that

lim sup
n→∞

〈
h
(
x∗) – x∗,xn – x∗〉 ≤ .

It follows that

∥∥xn+ – x∗∥∥

=
∥∥Pc

[
θnh(xn) + ( – θn)Tn(xn)

]
– Pcx∗∥∥

≤ ∥∥θn
(
h(xn) – x∗) + ( – θn)

(
Tnxn – Tx∗)∥∥

=
∥∥θn

(
h(xn) – h

(
x∗)) + ( – θn)

(
Tnxn – Tx∗) + θn

(
h
(
x∗) – x∗)∥∥

≤ ∥∥θn
(
h(xn) – h

(
x∗)) + ( – θn)

(
Tnxn – Tx∗)∥∥ + θn

〈
h
(
x∗) – x∗,xn+ – x∗〉

≤ θn
∥∥h(xn) – h

(
x∗)∥∥ + ( – θn)

∥∥(
Tnxn – x∗)∥∥ + θn

〈
h
(
x∗) – x∗,xn+ – x∗〉

≤ θnρ
∥∥xn – x∗∥∥ + ( – θn)

∥∥(
Tnxn – Tnx∗ + Tnx∗ – Tx∗)∥∥

+ θn
〈
h
(
x∗) – x∗,xn+ – x∗〉

≤ θnρ
∥∥xn – x∗∥∥ + ( – θn)

[∥∥xn – x∗∥∥ + αnM
(
x∗)] + θn

〈
h
(
x∗) – x∗,xn+ – x∗〉

≤ [
 – ( – ρ)θn

]∥∥xn – x∗∥∥ + ( – θn)
[
αnM

(
x∗)∥∥xn – x∗∥∥ + α

n
(
M

(
x∗))]

+ θn
〈
h
(
x∗) – x∗,xn+ – x∗〉.

Hence,

∥∥xn+ – x∗∥∥ = ( – βn)
∥∥xn – x∗∥∥ + βnδn, ()

βn = ( – ρ)θn,

δn =


 – ρ

[
αn

θn
( – θn)M

(
x∗)∥∥xn – x∗∥∥ + ( – θn)

(
M

(
x∗)) α

n
θn

+ 
〈
h
(
x∗) – x∗,xn+ – x∗〉],

by Lemma . and limn→∞ βn = ,
∑∞

n= βn =∞, lim supn→∞ δn ≤ , we have xn → x∗. �

4 Application of the iterative method
Next, we give an application of Theorem . to the split feasibility problem (say SFP, for
short) which was introduced by Censor and Elfving [].

Find x ∈ C such that Ax ∈Q, ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/550
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where C and Q are nonempty closed convex subsets of Hilbert spaces H and H, respec-
tively. A :H →H is a bounded linear operator.
It is clear that x∗ is a solution of split feasibility problem () if and only if x∗ ∈ C and

Ax∗ – PQAx∗ = .
We define the proximity function f by

f (x) =


‖Ax – PQAx‖,

and consider the convex optimization problem

min
x∈C f (x) =min

x∈C


‖Ax – PQAx‖. ()

Then x∗ solves split feasibility problem () if and only if x∗ solves minimization () with
minimizer equal to . Byrne [] introduced the so-called CQ algorithm to solve the (SFP)

xn+ = PC
(
I –μA∗(I – PQ)A

)
xn, n≥ , ()

where  < μ < 
‖A∗A‖ =


‖A‖ .

He obtained that the sequence {xn} generated by () converges weakly to a solution of
the (SFP).
Now we consider the regularization technique. Let

fα(x) =


‖Ax – PQAx‖ + α


‖x‖,

then we establish the iterative scheme as follows:

xn+ = PC
[
θnh(xn) + ( – θn)Tnxn

]
, n ≥ ,

where h : C → H is a contraction with  < ρ < ,

PC
[
I –μ

(
A∗(I – PQ)A + αnI

)]
= λnI + ( – λn)Tn,

λn =
 –μ(‖A‖ + αn)


.

Applying Theorem ., we obtain the following result.

Theorem. Assume that the split problem is consistent, let the sequence {xn} be generated
by

xn+ = PC
[
θnh(xn) + ( – θn)Tnxn

]
, n ≥ ,

where

PC
[
I –μ

(
A∗(I – PQ)A + αnI

)]
= λnI + ( – λn)Tn,

λn =
 –μ(‖A‖ + αn)


,

and the sequence {θn} ⊂ (, ), {αn} and {θn} satisfy the following conditions:

http://www.journalofinequalitiesandapplications.com/content/2013/1/550
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(i) θn → ;  < μ < 
‖A∗A‖ =


‖A‖ ;

(ii)
∑∞

n= θn =∞;
(iii)

∑∞
n= |θn+ – θn| <∞;

(iv)
∑∞

n= |αn+ – αn| <∞;
(v) αn = o(θn).

Then the sequence {xn} converges strongly to the solution of split feasibility problem ().

Proof By the definition of the proximity function f , we have

∇f (x) = A∗(I – ProjQ)Ax,

and ∇f is /‖A‖-ism, i.e., since ProjQ is /-averaged mapping, then I – ProjQ is -ism,

〈∇f (x) –∇f (y),x – y
〉
– /‖A‖ · ∥∥∇f (x) –∇f (y)

∥∥

=
〈
A∗(I – ProjQ)Ax –A∗(I – ProjQ)Ay,x – y

〉
– /‖A‖ · ∥∥A∗(I – ProjQ)Ax –A∗(I – ProjQ)Ay

∥∥

=
〈
A∗[(I – ProjQ)Ax – (I – ProjQ)Ay

]
,x – y

〉
– /‖A‖ · ∥∥A∗[(I – ProjQ)Ax – (I – ProjQ)Ay

]∥∥

=
〈
(I – ProjQ)Ax – (I – ProjQ)Ay,Ax –Ay

〉
– /‖A‖ · ∥∥A∗[(I – ProjQ)Ax – (I – ProjQ)Ay

]∥∥

≥ ∥∥(I – ProjQ)Ax – (I – ProjQ)Ay
∥∥

–
∥∥(I – ProjQ)Ax – (I – ProjQ)Ay

∥∥

= .

Hence, 〈∇f (x) –∇f (y),x – y〉 ≥ /‖A‖ · ‖∇f (x) –∇f (y)‖.
Set fλn (x) = f (x) + α

 ‖x‖; consequently,

∇fα(x) = ∇f (x) + αI(x)

= A∗(I – ProjQ)Ax + αx.

Let γ = μ, L = ‖A‖, then the iterative scheme is equivalent to

xn+ = PC
[
θnh(xn) + ( – θn)Tnxn

]
, n ≥ ,

where  < γ < 
L , Pc[I – γ∇fαn ] = λnI + ( – λn)Tn and λn = –γ (L+αn)

 .
Due to Theorem ., we have the conclusion immediately. �
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