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Abstract

In this paper, we provide several generalizations of the Gronwall inequality and
present their applications to prove the uniqueness of solutions for fractional
differential equations with various derivatives.
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1 Introduction
The Gronwall inequality has an important role in numerous differential and integral equa-

tions. The classical form of this inequality is described as follows, cf. [1].

Theorem 1.1 Foranyt € [ty, T),

u(t) <alt) + /tb(s)u(s) ds,

to
where b > 0, then

t

u(t) <al(t) + f

to

a(s)b(s) exp[/tb(u) du:| ds, telt,T).

In particular, if a(t) is not decreasing, then

u(t) < a(t) exp[/tb(s) ds], t € lto, T).

0

In recent years, an increasing number of Gronwall inequality generalizations have been
discovered to address difficulties encountered in differential equations, ¢f. [2-7]. Among
these generalizations, we focus on the works of Ye, Gao and Qian, Gong, Li, the general-
ized Gronwall inequality with Riemann-Liouville fractional derivative and the Hadamard
derivative which are presented as follows.
©2013 Lin; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-

tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.
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Theorem 1.2 ([6]) Foranyte[0,T),

u(t) < alt) + b(t) /t(t — )P u(s) ds
0

where all the functions are not negative and continuous. The constant 8 > 0. b is a bounded
and monotonic increasing function on [0, T), then

u(t) <alt) + /

0

' |:Z %(t - s)”’“tz(s):| ds, tel0,T).
n=1

Theorem 1.3 ([5]) Foranyte[1,T),

t p-1
u(t) < alt) + b() / <1 -) ”(S)d
1

S

where all the functions are not negative and continuous. The constant p > 0. b is a bounded
and monotonic increasing function on [1,T), then

t| ©° n np-1
u(t) Sﬂ(t)+/l [Z%(lné) a(s)] ?, tell,T).
n=1

The aforementioned inequalities are obtained using the estimation method of the com-
position operators. This method is usually applied in studying qualitative theory of frac-
tional differential equations. However, this method is not suitable for more complex situ-
ations. Therefore, we shall use a simpler technique to prove the main results obtained in
this work.

Theorem 1.4 Foranyte[0,T),
n t
u(t) <a(t)+ Y _bi(t) / (t - )P u(s) ds,
i=1 0

where all the functions are not negative and continuous. The constants B; > 0. b; (i =
1,2,...,n) are the bounded and monotonic increasing functions on [0, T), then

u(t)ga(mZ( Z [T b OT (6] /(t )X la(s) d )

k=1 \1',2/,...,k'=1 Zz 1131

Theorem 1.5 Foranyte [1,T),

n t ¢ Bi-1 u(s)
b; In- ——ds,
u(t)fa(t)+§ (t)f1 (ns>

where all the functions are not negative and continuous. The constants B; > 0. b; (i =

1,2,...,n) are the bounded and monotonic increasing functions on [1,T), then

Y Byl
(D sa(t>+2< 3 TT5. (B (T (B0 /1[(1“§> ”(S)KS)'

k=1 \1',2/,...,k'=1 Zl 1/31
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2 The proof of the main results
In this section, we use the following critical lemmas to prove our main results.

Lemma 2.1 Foranyte[0,T),
n t
HO = Y bio) [ (-5 HE s
i=1 0

where all the functions are continuous. The constants f; > 0. b; (i =1,2,...,n) are the
bounded, not negative, and monotonic increasing functions on [0, T), then H(t) > 0, t €
[0,T).

Proof Obviously, H(0) > 0. If the proposition is false, that is,
{tlte[0,T),H(t) <0} #®,

where @ is an empty set, then a number £, exists on [0, T) which satisfies Hjoz) > 0,
H(ty) = 0. H is a strictly monotonic decreasing function on (¢, % + &) C [0, T). Here,
&y > 0. Therefore, for any t € (¢, %y + &), H(t) < 0 and

H(@) = ) bi®) /t(t — )% H(s) ds
i=1 0
= Y00 [ -
i=1 to
> > " bi(t)H(t) /[(t - )Pt ds
i=1 b
" _ )i
HE- Y b,
i=1 Pi
which implies that
" —t,)Bi
Yoo,
Py Bi

Let ¢t — £y, then we have a contradiction, that is, 0 > 1. This process completes the proof
of Lemma 2.1. O

The next lemma is given following the same method as for the previous lemma. The

proving process is relatively similar, thus we do not include it in this paper.

Lemma 2.2 Foranyte[1,T),

n t Bi-1
HO = b [ (m2) s
i=1
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where all the functions are continuous. The constants f; > 0. b; (i = 1,2,...,n) are the
bounded, not negative, and monotonic increasing functions on [1,T), then H(t) > 0, t €
[1, 7).

Our next task is proving our main results. To prove Theorem 1.4, we initially suppose
that

g(t)=a(t)+z< Z [l br OF ) / (¢ = 5) Xt - ]a(s)ds>

k=1 \1',2/,..,k'=1 F(Zz 1:31/

Then, the following equality is given:
/ / (¢ = )9 (s — )= B a(u) duds

/ / — )7 (s — )= P () ds du

F(,B/)F Zz lﬁl / S)ﬁj’fo'(d By~
F(ﬂ] + Zf 1 '31

La(s) ds

This equality, combined with the fact that b; (i = 1,2,...,n) are the monotonic increasing
functions on [0, T'), yields

ébm /0 (b 9P-1g(s)ds
fiz Z f / [Tt ore ﬂ/)]( ~ )P s ~ )T L - a(u) duds

k=1 =1 12,k -1 F(Ci By

+Zb / (¢ —s)Pta(s)ds

l_L 1 h (t)r(/gl Bi-1 Zk Br—1
by(t) (t =) (s —u)=i=1Pr L. g(u) duds
k2=1: j=1 1’2’2;(’ / / F(Zl 1IBl

+ Z bi(t) /0 t(t —s)fila(s)ds
< Z Hz by (t ]/(t S)leﬁ/ la(s)ds)

k=1 \1/,2/,..k'=1 Zt lﬁl/
:g(t)—ﬂ(t),

which indicates that

u(®) - Y _ bi(t) / t(t -5/ u(s)ds < a(t) <g(t) - Y bi(t) / t(t —s)li7lg(s)ds.
i=1 0 i=1 0

Let H(¢) = g(t) — u(t), then we obtain

H(t)> Zb / s)" H(s) ds.

Page 4 of 9
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According to Lemma 2.1, H(£) > 0. That is, u(¢) < g(¢) and t € [0, T). This process com-
pletes the proof of Theorem 1.4.

We can prove Theorem 1.5 by applying Lemma 2.2 in the same manner as in the previous
theorem. We conclude the main results of this work.

3 Applications

In this section, we apply the main results of this work to demonstrate the uniqueness of
the solution for fractional differential equations. First, the following initial value problems
with the Riemann-Liouville fractional derivative are considered:

S DPu(e) = (5, u(t)),

5 (3.1)
Zl 11 lu t)|t()—8

where 0< B < By <---<B,<1,t€[0,T), Dg and Ig denote the Riemann-Liouville frac-
tional derivative and fractional integral operators, respectively.

Definition 3.1 ([8-13]) The Ath Riemann-Liouville-type fractional order integral of a
function u : [0, +00) > R is defined by

10 u( f (t - 5)Pu(s) ds,
where 8 >0 and I is the gamma function.

Definition 3.2 ([9, 10, 12-14]) For any 0 < 8 < 1, the Sth Riemann-Liouville-type frac-
tional order derivative of a function u : [0, +00) — R is defined by

B B
Dpu(t) = F(l 5 dt/(t s)Pu(s)ds.

Lemma 3.1 ([8, 10, 14]) Forany 0< B <1,
15 Dbu(t) = ult) +c- P,
where c is a constant in R.
Lemma 3.2 ([15]) Forany a,f >0,
Llhu(t) = I u().
We can then state the next theorem.

Theorem 3.1 Foranyt € [0,T), suppose that |f(t,y) —f(t,2)| < y (t)|y —z|, and y (t) > 0 is
a bounded and monotonic increasing function. If initial value problem (3.1) has a solution,
then the solution is unique.

Proof Since 0 < B; < 3 < -+ < B, <1, then according to Lemma 3.1, we can suppose that

IgiDziu(t) = u(t) + ¢t
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where ¢;, i =1,2,...,n, are some constants. This equality, combined with Lemma 3.2, en-
ables us to change problem (3.1) into the following:

1 (¢, u(t)) Z[ﬂ"Dﬂ’u(t) = Zlﬂ" P (15 Dy u(t))

i=1 i=1

n
- Zlg"_ﬁi (u(t) + cit" ™)
i1

= Z[ﬂn ﬁlu(t)"' r(ﬁn Z Ci (,31

=1

Therefore,

0=1Ig " If"flio0
L Do §

= Z[}e’ﬂ”lﬁ”"ﬁ"ult:o + RI‘(T : Z(Q’F(,Bi))

i=1 i=1

- Zl}{ﬂ"uh:o + Z(Cir(,gi))
i1 i=1
=8+ Z(Cir(ﬂi))'
1

That is,

n

> (al(B) = -3,

i=1
which implies that

n-1 _
u(t) = I'f (Lu(®) = Y I3 Pu(t) + 6 - lfiﬂ,,l)'

i=1

If u1 (t) and u,(2) are two solutions to problem (3.1), then they also satisfy the above equal-
ity. Thus we have

I [f (8, m(®) —f (8, us(t 21’3" Py (8) - y(0)]

|u1(t)—u2(t)| =

/ (=) f (s,u1(5)) —f (s, u2(s)) | s
0

<
— T'(Bw)
n-1
ZF(ﬂ / (t —s)PnPim 1|u1(s) Uy s)|ds

- y(t)
~T'(B)

/0 (& — )P ur () — uz(s)| ds

n-1

ZF(ﬁ /(t )PP l‘ul (8) — 1y s)’ds.
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According to Theorem 1.4, we can conclude that
|ur(£) — un(2)| < 0,
which indicates that
ur(t) = uy(t), tel0,T).
This process completes the proof of Theorem 3.1. ]

Next, we study the uniqueness of the solution for the following initial value problems
with the Hadamard-type fractional derivative:

S Dyv(e) = g(t,v(2),

1 —a; (32)
Zz 1 ! t)|t 1=1,

where 0 <oy < g <+ <y <1, £ €[LT). For any o € (0,1), D}, and If; are defined as
follows:

Dw(e) = —f (%) [ (nt)=S as,

(3.3)
() = f1 (In Lot 49 g,

From [16], we obtain

g(tv) = Zﬂ" Hv(t)

= Z[I‘fl”_“i (I Dyiv(t))
i-1

n

=Y L) + d; - (log )]
i=1

n

1 op—1
_ Zﬂ"‘“’ 0+ L2 S (@), (3.4)

T (et) 1

where d;, i =1,2,...,n, are some constants. Therefore,
1 t t 1-1 :
- L [/ 8,
ra J; s s
= I,ﬁa”lﬁ”glm

n 1 - — n
I " ((log )™ )| 1=
= E L7 Iy + E (dil (o))
P I'(ay) i1

t=1

= Zl};"”vhzo + Z(dir(ai))
i=1 i=1
=N+ Z(dir(ai)).
)
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When the aforementioned equality is plugged into problem (3.4), we obtain

v(t) = 17 g (£ v(D)) Zl“"_“’ ) + (log(t)a;_l . (3.5)

This equality, combined with Theorem 1.5, can derive the next theorem. The procedure

is relatively similar to the proof of Theorem 3.1, thus we do not include it in this paper.

Theorem 3.2 Foranyt € [0, T), suppose that |g(t,y) —g(t,2)| <¢(E)|y—z|, and ¢(t) > 0 is
a bounded and monotonic increasing function. If initial value problem (3.2) has a solution,

then the solution is unique.

4 Concluding remarks

In this work, we have obtained generalizations of the Gronwall inequality using several

mathematical techniques. In addition, we have listed the initial value problems, namely

(3.1) and (3.2), and proved the uniqueness of solutions to these problems by applying the

generalized Gronwall inequalities.
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