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Abstract
We first investigate whether for given convex domains K0, K1 in the Euclidean plane,
for any rotation α, there is a translation x so that x + αK1 ⊂ K0 or x + αK1 ⊃ K0. Then,
we estimate the mixed isoperimetric deficit �2(K0,K1) of domains K0 and K1 via the
known kinematic formulas of Poincaré and Blaschke in integral geometry. We obtain
the sufficient condition for domain K0 to contain, or to be contained in, convex
domain x + αK1. Finally, we obtain the mixed isoperimetric inequality and some
Bonnesen-style mixed inequalities. Those Bonnesen-style mixed inequalities obtained
are the known Bonnesen-style inequalities if one of the domains is a disc. As a direct
consequence, we obtain the strengthened Bonnesen isoperimetric inequality.
MSC: Primary 52A10; secondary 52A22
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1 Introductions and preliminaries
A set of points K in the Euclidean space Rn is convex if for all x, y ∈ K and ≤ λ ≤ , λx +
( – λ)y ∈ K . The convex hull K∗ of K is the intersection of all convex sets that contain K .
The Minkowski sum of convex sets K and L is defined by

K + L = {x + y : x ∈ K , y ∈ L},

and the scalar product of convex set K for λ ≥  is defined by

λK = {λx : x ∈ K}.

A homothety of a convex set K is of the form x + λK for x ∈ Rn, λ > . A convex body is a
compact convex set with nonempty interior. A domain is a set with nonempty interior.
Onemay be interested in the following strong containment problem:Whether for given

convex domainsK andK, there exists a translation x so that x+αK ⊂ K or x+αK ⊂ K

for any rotation α. It should be noted that this containment problem is much stronger
than Hadwiger’s one. Therefore, the strong containment problem could lead to general
and fundamental geometric inequalities (cf. [–]).
The well-known classical isoperimetric problem says that the disc encloses the maxi-

mum area among all domains of fixed perimeters in the Euclidean plane R.
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Proposition  Let � be a simple closed curve of length P in the Euclidean plane R, then
the area A of the domain K enclosed by � satisfies

P – πA ≥ . ()

The equality sign holds if and only if � is a circle.

Its analytic proofs root back to centuries ago. One can find some simplified and beautiful
proofs that lead to generalizations of the discrete case, higher dimensions, the surface of
constant curvature and applications to other branches ofmathematics (cf. [, –, –]).
The isoperimetric deficit

�(K ) = P – πA ()

measures the difference between domain K of area A and perimeter P, and a disc of radius
P/π .
During the s, Bonnesen proved a series of inequalities of the form

�(K ) = P – πA ≥ BK , ()

where the quantity BK is an invariant of geometric significance having the following basic
properties:
. BK is nonnegative;
. BK is vanish only when K is a disc.
Many BK s are found during the past. The main interest is still focusing on those un-

known invariants of geometric significance. See references [–, , , , , , ] for
more details. The following Bonnesen’s isoperimetric inequality is well known.

Proposition  Let K be a domain of area A, bounded by a simple closed curve of perimeter
P in the Euclidean plane R. Let r and R be, respectively, themaximum inscribed radius and
minimum circumscribed radius of K . Then we have the following Bonnesen’s isoperimetric
inequality:

P – πA ≥ π(R – r), ()

where the equality holds if and only if K is a disc.

Since for any domain K in R, its convex hull K∗ increases the area A∗ and decreases the
perimeter P∗, that is, A∗ ≥ A and P∗ ≤ P, then we have P – πA ≥ P∗ – πA∗, that is,
�(K ) ≥ �(K∗). Therefore, the isoperimetric inequality and the Bonnesen-style inequal-
ity are valid for all domains in R if these inequalities are valid for convex domains.
In this paper, we first investigate the stronger containment problem: Whether for given

convex bodiesK,K in the Euclidean plane R, there is a translation x so that x+αK ⊂ K

or x + αK ⊂ K for any rotation α. Then we investigate the mixed isoperimetric deficit
�(K,K) of domains K and K.
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Definition  Let K and K be two domains of areas A and A, and of perimeters P

and P, respectively. Then the mixed isoperimetric deficit of K and K is defined as

�(K,K) = P
P


 – πAA. ()

Since the convex hull K∗ of a set K in the Euclidean plane R decreases the circum
perimeter and increases the area, we have

�(K,K) = P
P


 – πAA ≥ P∗


P∗


 – πA∗

A
∗
 =�

(
K∗
 ,K

∗

)
.

Therefore, we can only consider the convex domains when we estimate the mixed isoperi-
metric deficit low bound.
Via the kinematic formulas of Poincaré and Blaschke in integral geometry, we obtain suf-

ficient conditions for convex domain K to contain, or to be contained in, another convex
domain K for a translation x and any rotation α (Theorem  and Theorem ). We obtain
the mixed isoperimetric inequality and some Bonnesen-style mixed inequalities (Theo-
rem , Theorem , Corollary , Corollary , Corollary , Theorem  and Theorem ).
One immediate consequence of our results is the strengthening Bonnesen isoperimetric
inequality (Corollary ). These new Bonnesen-style mixed inequalities obtained are fun-
damental and generalize some known Bonnesen-style inequalities (Corollary ).

2 The containment measure
Let Kk (k = , ) be two domains of areas Ak with simple boundaries of perimeters Pk in
the Euclidean plane R. Let dg denote the kinematic density of the group G of rigid mo-
tions, that is, translations and rotations, in R. Let K be convex, and let tK (t ∈ (, +∞))
be a homothetic copy of K, then we have the known kinematic formula of Poincaré (cf.
[, ])

∫
{g∈G:∂K∩t∂(gK) 
=∅}

n
{
∂K ∩ t∂(gK)

}
dg = tPP, ()

where n{∂K ∩ t∂(gK)} denotes the number of points of intersection ∂K ∩ t∂(gK).
Letmn be the kinematic measure of the set of positions g , for which t∂(gK) has exactly

n intersection points with ∂K, i.e., mn =m{g ∈ G : n{∂(K) ∩ t∂(gK)} = n}. Notice that
the measuremn =  for the odd n, then the formula of Poincaré can be rewritten as

∞∑
n=

(n)mn = tPP,

that is,

∞∑
n=

nmn = tPP. ()

We consider the homothetic copy tK (t ∈ (, +∞)) of K.
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Let χ (K ∩ t(gK)) be the Euler-Poincaré characteristics of the intersection K ∩ t(gK).
From the Blaschke’s kinematic formula (cf. [, ]):

∫
{g∈G:K∩t(gK) 
=∅}

χ
(
K ∩ t(gK)

)
dg = π

(
tA +A

)
+ tPP, ()

we have

∞∑
n=

mn = π
(
tA +A

)
+ tPP. ()

The formula of Poincaré () and the formula of Blaschke () give

∞∑
n=

mn(n – ) = tPP – π
(
tA +A

)
.

Since allmk are non-negative, we have

tPP – π
(
tA +A

) ≥ ; t ∈ (, +∞). ()

On the other hand, since domains Kk (k = , ) are assumed to be simply connected and
bounded by simple curves, we have χ (K ∩ t(gK)) = n(g) = the number of connected com-
ponents of the intersection K ∩ g(tK). The fundamental kinematic formula of Blaschke
() can be rewritten as

∫
{g∈G:K∩t(gK) 
=∅}

n(g)dg = π
(
tA +A

)
+ tPP. ()

If μ denotes set of all positions of K, in which either t(gK) ⊂ K or t(gK) ⊃ K, then the
above formula of Blaschke can be rewritten as

∫
μ

dg +
∫

{g∈G:∂K∩t∂(gK) 
=∅}
n(g)dg = π

(
tA +A

)
+ tPP. ()

When ∂K ∩ t∂(gK) 
= ∅, each component of K ∩ t(gK) is bounded by at least an arc
of ∂K and an arc of t∂(gK). Therefore, n(g) ≤ n{∂K ∩ t∂(gK)}/. Then by formulas of
Poincaré and Blaschke, we obtain

∫
μ

dg ≥ π
(
tA +A

)
– tPP. ()

Therefore, this inequality immediately gives the following answer for the strong contain-
ment problem (cf. [–, , , , –]).

Theorem  Let Kk (k = , ) be two domains of areas Ak with simple boundaries of perime-
ters Pk in R. Let K be convex. A sufficient condition for tK to contain, or to be contained
in, another domain K for a translation and any rotation, is

πAt – PPt + πA > . ()

Moreover, if tA ≥ A, then tK contains K.
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As a direct consequence of Theorem , we have the following analog of Ren’s theorem
(cf. [, , –]).

Theorem  Let Kk (k = , ) be two convex domains with areas Ak and perimeters Pk .
Denote by �(Kk) = P

k – πAk the isoperimetric deficit of Kk . Then a sufficient condition
for tK, a homothetic copy of the convex domain K, to contain domain K for a translation
and any rotation, is

tP – P >
√
t�(K) +�(K). ()

Proof Condition () means that tP > P and

πAt – PPt + πA > . ()

By Theorem , we conclude that tK either contains K or is contained in K. This inequal-
ity also leads to

π
(
tA –A

)
> tPP – πA > P

 – πA =�(K).

The isoperimetric inequality guarantees that tA > A. We complete the proof of the the-
orem. �

3 Bonnesen-style mixed inequalities
Let r = max{t : t(gK) ⊆ K, g ∈ G}, the maximum inscribed radius of K with respect
to K, and R = min{t : t(gK) ⊇ K, g ∈ G}, the minimum circum scribed radius of K

with respect to K. Note that r, R are, respectively, the maximum inscribed radius, the
minimum circum radius of K when K is the unit disc. It is obvious that r ≤ R. There-
fore, for t ∈ [r,R] neither tK contains K nor it is contained in K. Then by Theorem ,
we have the following.

Theorem Let Kk (k = , ) be two convex domains with areas Ak and perimeters Pk .Then

πAt – PPt + πA ≤ ; r ≤ t ≤ R. ()

When K is the unit disc, this reduces to the following known Bonnesen inequality (cf.
[, , , , ]).

Corollary  Let K be a convex domain with a simple boundary ∂K of length P and area A.
Denote by R and r, respectively, the radius of the minimum circumscribed disc and radius
of the maximum inscribed disc of K . Then

π t – Pt +A ≤ ; r ≤ t ≤ R. ()

By the two special cases of inequality ():

πAr – PPr + πA ≤ ; πAR
 – PPR + πA ≤ ,

we obtain the following.

http://www.journalofinequalitiesandapplications.com/content/2013/1/540
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Theorem  Let Kk (k = , ) be two convex domains in the Euclidean plane R with areas
Ak and perimeters Pk . If K is convex, then

P
P


 – πAA ≥ πA

 (R – r) +
[
πA(R + r) – PP

],
where the equality holds if and only if r = R, that is, K and K are discs.

Proof By inequalities (), we have

–πAA ≥ πA
r


 – πArPP, –πAA ≥ πA

R

 – πARPP,

P
P


 – πAA ≥ P

P

 + πA

r

 + πA

R

 – πArPP – πARPP.

Since

P
P


 + πA

r

 + πA

R

 – πArPP – πARPP

= πA
r


 + πA

R

 – πA

rR

+ P
P


 + πA

r

 + πA

R

 + πA

rR – πArPP – πARPiPj

= πA
 (R – r) + (πAr + πAR – PP),

therefore,

P
P


 – πAA ≥ πA

 (R – r) +
[
πA(r + R) – PP

].
We complete the proof of Theorem . �

The following Kotlyar’s inequality (cf. [, ]) is an immediate consequence of Theo-
rem .

Corollary  (Kotlyar) Let Kk (k = , ) be two domains in R with areas Ak and perime-
ters Pk . If K is convex, then

P
P


 – πAA ≥ πA

 (R – r), ()

where the equality holds if and only if both K and K are discs.

Let K be the unit disc, then Theorem  immediately leads to the following inequality
that strengthens the Bonnesen isoperimetric inequality ().

Corollary  Let K be a domain of area A, bounded by a simple closed curve of length P in
the Euclidean plane R. Let r and R be, respectively, the inscribed radius and circumscribed
radius of K , then

P – πA ≥ π(R – r) +
[
π (R + r) – P

], ()

where the equality holds if and only if K is a disc.

http://www.journalofinequalitiesandapplications.com/content/2013/1/540
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One immediate consequence of Theorem  is the following mixed isoperimetric in-
equality:

P
P


 – πAA ≥ ,

where the equality holds if and only if K and K are discs.
One may wish to consider the following Bonnesen-style mixed inequality:

P
P


 – πAA ≥ BK,K ,

where BK,K is an invariant of K and K. BK,K is, of course, assumed to be nonnegative
and vanishes only when both K and K are discs.
The inequality () can be rewritten as the following several inequalities:

P
P


 – πAA ≥ (PP – πAt);

P
P


 – πAA ≥ (PP –

πA

t
); r ≤ t ≤ R, ()

P
P


 – πAA ≥ π(

A

t
–At),

Therefore, we obtain the following Bonnesen-style mixed inequalities.

Corollary  Let Kk (k = , ) be two convex domains in the Euclidean plane R with areas
Ak and perimeters Pk . Then for r ≤ t ≤ R, we have

P
P


 – πAA ≥ πA

 (R – t) +
[
πA(t + R) – PP

];
P
P


 – πAA ≥ πA

 (t – r) +
[
πA(r + t) – PP

];
P
P


 – πAA ≥ (PP – πAr);

P
P


 – πAA ≥

(
πA

r
– PP

)

;

P
P


 – πAA ≥ π

(
A

r
–Ar

)

;

P
P


 – πAA ≥ (PP – πAt);

P
P


 – πAA ≥

(
PP –

πA

t

)

;

P
P


 – πAA ≥ π

(
A

t
–At

)

;

P
P


 – πAA ≥ (πAR – PP);

P
P


 – πAA ≥

(
PP –

πA

R

)

;

P
P


 – πAA ≥ π

(
AR –

A

R

)

.

()

Each inequality holds as an equality if and only if both K and K are discs.
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On the other hand, let us consider the following Bonnesen quadratic polynomial

BK,K (t) = πAt – PPt + πA.

It is clear that BK,K () >  and BK,K (+∞) > . IfK is convex, then themixed isoperimet-

ric inequality guarantees that two roots PP±
√

�(K,K)
πA

of BK,K (t) =  exist and satisfy

 <
PP –

√
�(K,K)

πA
≤ r ≤ R ≤ PP +

√
�(K,K)

πA
< +∞. ()

The condition for existence of root(s) of the Bonnesen quadratic equation BK,K (t) =  is
the following symmetric mixed isoperimetric inequality:

�(K,K) = P
P


 – πAA ≥ . ()

The Bonnesen function BK,K (t) = πAt – PPt + πA attains minimum value
–�(K,K)

πA
at t = PP

πA
. The Bonnesen quadratic trinomial has only one root when

�(K,K) = . This means that both K and K are discs. This immediately leads to the
following results.

Theorem  Let Kk (k = , ) be two convex domains of areas Ak and perimeters Pk in R.
Then

πAt – PPt + πA ≥ –
�(K,K)

πA
. ()

Theorem  Let Kk (k = , ) be two convex domains of areas Ak and perimeters Pk in the
Euclidean plane R. Then we have

PP –
√

�(K,K)
πA

≤ r ≤ PP

πA
≤ R ≤ PP +

√
�(K,K)

πA
. ()

Each equality holds if and only if K and K are discs.

The following known Bonnesen-style inequalities are immediate consequences of
Corollary , Theorem  and Theorem  when letting K be the unit disc (cf. [, , ,
, , , , , ]).

Corollary  Let K be a plane domain of area A, bounded by a simple closed curve of
length P. Let r and R be, respectively, the in-radius and out-radius of K . Then for any disc
of radius t, r ≤ t ≤ R, we have the following Bonnesen-style inequalities:

P – πA ≥ (P – π t);

P – πA ≥ π(t – r) +
[
π (t + r) – P

];
P – πA ≥ π(R – t) +

[
π (R + t) – P

];
P – πA ≥

(
P –

A
t

)

; P – πA ≥
(
A
t
– π t

)

; ()
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P – πA ≥ A
(

r
–


R

)

; P – πA ≥ P
(
R – r
R + r

)

;

P – πA ≥ A
(

r
–

t

)

; P – πA ≥ P
(
t – r
t + r

)

;

P – πA ≥ A
(

t
–


R

)

; P – πA ≥ P
(
R – t
R + t

)

;

P –
√
P – πA
π

≤ r ≤ t ≤ R≤ P +
√
P – πA
π

.

Each equality holds if and only if K is a disc.

It should be noted that the first inequality in () is due to Bonnesen, and he only de-
rived some inequalities for -dimensional case and never had any progress for higher di-
mensions or -dimensional surface of constant curvature. One would be interested in the
situations in higher dimensional space Rn and in the surface of constant curvature. Related
development in those areas can be found in [, , , –] and []. More details for
the isoperimetric inequality and Bonnesen style inequalities can be found in [–].
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