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Abstract
In this paper, let X be a uniformly convex Banach space which either is uniformly
smooth or has a weakly continuous duality map. We introduce and consider
three-step Mann iterations for finding a common solution of a general system of
variational inequalities (GSVI) and a fixed point problem (FPP) of an infinite family of
nonexpansive mappings in X . Here three-step Mann iterations are based on
Korpelevich’s extragradient method, the viscosity approximation method and the
Mann iteration method. We prove the strong convergence of this method to a
common solution of the GSVI and the FPP, which solves a variational inequality on
their common solution set. We also give a weak convergence theorem for three-step
Mann iterations involving the GSVI and the FPP in a Hilbert space. The results
presented in this paper improve, extend, supplement and develop the corresponding
results announced in the earlier and very recent literature.
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1 Introduction
Let X be a real Banach space whose dual space is denoted by X∗. The normalized duality
mapping J : X → X∗ is defined by

J(x) =
{
x∗ ∈ X∗ :

〈
x,x∗〉 = ‖x‖ = ∥∥x∗∥∥}, ∀x ∈ X,

where 〈·, ·〉 denotes the generalized duality pairing. It is an immediate consequence of the
Hahn-Banach theorem that J(x) is nonempty for each x ∈ X. Let U = {x ∈ X : ‖x‖ = }
denote the unite sphere of X. A Banach space X is said to be uniformly convex if for each
ε ∈ (, ], there exists δ >  such that for all x, y ∈U ,

‖x – y‖ ≥ ε ⇒ ‖x + y‖/ ≤  – δ.
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It is known that a uniformly convex Banach space is reflexive and strictly convex. A Banach
space X is said to be smooth if the limit

lim
t→

‖x + ty‖ – ‖x‖
t

exists for all x, y ∈U ; in this case, X is also said to have a Gateaux differentiable norm. X is
said to have a uniformly Gateaux differentiable norm if for each y ∈U , the limit is attained
uniformly for x ∈ U . Moreover, it is said to be uniformly smooth if this limit is attained
uniformly for x, y ∈U . The norm ofX is said to be the Frechet differential if for each x ∈U ,
this limit is attained uniformly for y ∈ U .
Let C be a nonempty closed convex subset of X, and let T : C → C be a nonlinear map-

ping. Denote by Fix(T) the set of fixed points of T , i.e., Fix(T) = {x ∈ C : Tx = x}. Recall
thatT is nonexpansive if ‖Tx–Ty‖ ≤ ‖x–y‖ for all x, y ∈ C. Amapping f : C → C is said to
be a contraction on C if there exists a constant ρ in (, ) such that ‖f (x) – f (y)‖ ≤ ρ‖x– y‖
for all x, y ∈ C. A mapping A : C → X is said to be accretive if for each x, y ∈ C there exists
j(x – y) ∈ J(x – y) such that 〈Ax –Ay, j(x – y)〉 ≥ .
Recently, Yao et al. [] combined the viscosity approximation method and the Mann

iteration method and gave the following hybrid viscosity approximation method.
Let C be a nonempty closed convex subset of a real uniformly smooth Banach space X,

let T : C → C be a nonexpansive mapping such that Fix(T) �= ∅ and f ∈ ΞC with a contrac-
tive coefficient ρ ∈ (, ), where ΞC is the collection of all contractive self-mappings on C.
For an arbitrary x ∈ C, define {xn} in the following way:

⎧⎨
⎩yn = αnxn + ( – αn)Txn,

xn+ = βnf (xn) + ( – βn)yn, ∀n≥ ,
(YCY)

where {αn} and {βn} are two sequences in (, ). They proved under certain control con-
ditions on the sequences {αn} and {βn} that {xn} converges strongly to a fixed point of T .
Subsequently, Ceng and Yao [] under the convergence of no parameter sequences to zero
proved that the sequence {xn} generated by (YCY) converges strongly to a fixed point of T .
Such a result includes [, Theorem ] as a special case.

Theorem . (see [, Theorem .]) Let C be a nonempty closed convex subset of a uni-
formly smooth Banach space X. Let T : C → C be a nonexpansive mapping with Fix(T) �= ∅
and f ∈ ΞC with a contractive coefficient ρ ∈ (, ).Given sequences {αn} and {βn} in [, ],
the following control conditions are satisfied:

(i) ≤ βn ≤  – ρ , ∀n≥ n for some integer n ≥ ;
(ii)

∑∞
n= βn =∞;

(iii)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(iv) limn→∞( βn+

–(–βn+)αn+
– βn

–(–βn)αn ) = .
For an arbitrary x ∈ C, let {xn} be generated by (YCY). Then

xn → q ⇐⇒ βn
(
f (xn) – xn

) → ,

where q ∈ Fix(T) solves the VIP

〈
q – f (q), J(q – p)

〉 ≤ , ∀p ∈ Fix(T).
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Let C be a nonempty closed convex subset of a real Banach space X , and f ∈ ΞC with
a contractive coefficient ρ ∈ (, ). Let {Tn}∞n= be an infinite family of nonexpansive self-
mappings on C, and let {λn}∞n= be a sequence of nonnegative numbers in [, ]. For any
n≥ , define a self-mapping Wn on C as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Un,n+ = I,

Un,n = λnTnUn,n+ + ( – λn)I,

Un,n– = λn–Tn–Un,n + ( – λn–)I,

. . . ,

Un,k = λkTkUn,k+ + ( – λk)I,

Un,k– = λk–Tk–Un,k + ( – λk–)I,

. . . ,

Un, = λTUn, + ( – λ)I,

Wn =Un, = λTUn, + ( – λ)I.

(CWY)

Such a mapping Wn is called the W-mapping generated by Tn,Tn–, . . . ,T and λn,λn–,
. . . ,λ; see [].

In , Ceng et al. [] introduced and analyzed the following hybrid viscosity approx-
imation method for finding a common fixed point of an infinite family of nonexpansive
mappings in a strictly convex and reflexive Banach space, which either is uniformly smooth
or has a weakly continuous duality map Jϕ with gauge ϕ.

Theorem . (see [, Theorem .]) Let C be a nonempty closed convex subset of a re-
flexive and strictly convex Banach space X. Assume, in addition, that X either is uniformly
smooth or has a weakly continuous duality map Jϕ with gauge ϕ. Let {Tn}∞n= be an in-
finite family of nonexpansive self-mappings on C such that the common fixed point set
F :=

⋂∞
n= Fix(Tn) �= ∅ and f ∈ ΞC with a contractive coefficient ρ ∈ (, ). Given sequences

{αn}, {βn} and {λn} in [, ], the following conditions are satisfied:
(i) ≤ βn ≤  – ρ , ∀n≥ n for some n ≥ , and

∑∞
n= βn =∞;

(ii)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(iii) limn→∞( βn+

–(–βn+)αn+
– βn

–(–βn)αn ) = ;
(iv)  < λn ≤ b < , ∀n≥  for some constant b ∈ (, ).

For an arbitrary x ∈ C, let {xn} be generated by

⎧⎨
⎩yn = αnxn + ( – αn)Wnxn,

xn+ = βnf (xn) + ( – βn)yn, ∀n≥ ,

where Wn is the W-mapping generated by Tn,Tn–, . . . ,T and λn,λn–, . . . ,λ. Then

xn → q ∈ F ⇐⇒ βn
(
f (xn) – xn

) → .

In this case,
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(i) if X is uniformly smooth, then q ∈ F solves the VIP

〈
q – f (q), J(q – p)

〉
, ∀p ∈ F ;

(ii) if X has a weakly continuous duality map Jϕ with gauge ϕ, then q ∈ F solves the VIP

〈
q – f (q), Jϕ(q – p)

〉
, ∀p ∈ F .

On the other hand, Cai and Bu [] considered the following general system of variational
inequalities (GSVI) in a real smooth Banach space X, which involves finding (x∗, y∗) ∈
C ×C such that

⎧⎨
⎩〈μBy∗ + x∗ – y∗, J(x – x∗)〉 ≥ , ∀x ∈ C,

〈μBx∗ + y∗ – x∗, J(x – y∗)〉 ≥ , ∀x ∈ C,
(.)

where C is a nonempty, closed and convex subset of X, B,B : C → X are two nonlinear
mappings and μ and μ are two positive constants. Here, the set of solutions of GSVI
(.) is denoted by GSVI(C,B,B). In particular, if X =H , a real Hilbert space, then GSVI
(.) reduces to the following GSVI of finding (x∗, y∗) ∈ C ×C such that

⎧⎨
⎩〈μBy∗ + x∗ – y∗,x – x∗〉 ≥ , ∀x ∈ C,

〈μBx∗ + y∗ – x∗,x – y∗〉 ≥ , ∀x ∈ C,
(.)

which is studied in Ceng et al. []. The set of solutions of problem (.) is still denoted by
GSVI(C,B,B). In particular, if B = B = A, then problem (.) reduces to the new system
of variational inequalities (NSVI), introduced and studied by Verma []. Further, if x∗ = y∗

additionally, then the NSVI reduces to the classical variational inequality problem (VIP)
of finding x∗ ∈ C such that

〈
Ax∗,x – x∗〉 ≥ , ∀x ∈ C. (.)

The solution set of VIP (.) is denoted byVI(C,A). Variational inequality theory has been
studied quite extensively and has emerged as an important tool in the study of a wide class
of obstacle, unilateral, free, moving, equilibrium problems. It is now well known that the
variational inequalities are equivalent to the fixed point problems, the origin of which can
be traced back to Lions and Stampacchia []. This alternative formulation has been used
to suggest and analyze the projection iterative method for solving variational inequalities
under the conditions that the involved operator must be strongly monotone and Lipschitz
continuous.
In , Korpelevich [] proposed an iterative algorithm for solving VIP (.) in Eu-

clidean space Rn:

⎧⎨
⎩yn = PC(xn – τAxn),

xn+ = PC(xn – τAyn), ∀n≥ ,
(.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/539
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with τ >  a given number, which is known as the extragradient method (see also [, ]).
The literature on theVIP is vast andKorpelevich’s extragradientmethodhas received great
attention from many authors, who improved it in various ways; see, e.g., [, , –] and
references therein, to name but a few.
In particular, whenever X is still a real smooth Banach space, B = B = A and x∗ = y∗,

then GSVI (.) reduces to the variational inequality problem (VIP) of finding x∗ ∈ C such
that

〈
Ax∗, J

(
x – x∗)〉 ≥ , ∀x ∈ C, (.)

which was considered by Aoyama et al. []. Note that VIP (.) is connected with the
fixed point problem for a nonlinear mapping (see, e.g., []), the problem of finding a zero
point of a nonlinear operator (see, e.g., []) and so on. It is clear that VIP (.) extends
VIP (.) from Hilbert spaces to Banach spaces.
In order to find a solution of VIP (.), Aoyama et al. [] introduced the followingMann

iterative scheme for an accretive operator A:

xn+ = αnxn + ( – αn)ΠC(xn – λnAxn), ∀n≥ , (.)

where ΠC is a sunny nonexpansive retraction from X onto C. Then they proved a weak
convergence theorem. For related work, please see [] and the references therein.
Beyond doubt, it is an interesting and valuable problemof constructing some algorithms

with strong convergence for solving GSVI (.) which contains VIP (.) as a special case.
Very recently, Cai and Bu [] constructed an iterative algorithm for solving GSVI (.)
and a fixed point problem of an infinite family of nonexpansive mappings in a uniformly
convex and -uniformly smooth Banach space. They proved the strong convergence of the
proposed algorithm by virtue of the following inequality in a -uniformly smooth Banach
space X.

Lemma . (see []) Let X be a -uniformly smooth Banach space. Then

‖x + y‖ ≤ ‖x‖ + 
〈
y, J(x)

〉
+ ‖κy‖, ∀x, y ∈ X,

where κ is the -uniformly smooth constant of X and J is the normalized duality mapping
from X into X∗.

Theorem . (see [, Theorem .]) Let C be a nonempty closed convex subset of a uni-
formly convex and -uniformly smooth Banach space X. Let ΠC be a sunny nonexpan-
sive retraction from X onto C. Let the mapping Bi : C → X be βi-inverse-strongly ac-
cretive with  < μi < βi

κ
for i = , . Let f be a contraction of C into itself with a coef-

ficient ρ ∈ (, ). Let {Tn}∞n= be an infinite family of nonexpansive mappings of C into
itself such that F =

⋂∞
i= Fix(Ti) ∩ Ω �= ∅, where Ω is a fixed point set of the mapping

G := ΠC(I – μB)ΠC(I – μB). For arbitrarily given x ∈ C, let {xn} be a sequence gen-
erated by

⎧⎨
⎩yn = αnf (xn) + ( – αn)Gxn,

xn+ = βnxn + ( – βn)Tnyn, ∀n≥ .

http://www.journalofinequalitiesandapplications.com/content/2013/1/539
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Suppose that {αn} and {βn} are two sequences in (, ) satisfying the following conditions:
(i) limn→∞ αn =  and

∑∞
n= αn =∞;

(ii)  < lim infn→∞ βn ≤ lim supn→∞ βn < .
Assume that

∑∞
n= supx∈D ‖Tn+x – Tnx‖ < ∞ for any bounded subset D of C, and let T be

a mapping of C into X defined by Tx = limn→∞ Tnx for all x ∈ C and suppose that Fix(T) =⋂∞
n= Fix(Tn). Then {xn} converges strongly to q ∈ F , which solves the following VIP:

〈
q – f (q), J(q – p)

〉 ≤ , ∀p ∈ F .

For the convenience of implementing the argument techniques in [], the authors []
used the following inequality in a real smooth and uniform convex Banach space X.

Proposition . (see []) Let X be a real smooth and uniform convex Banach space, and
let r > .Then there exists a strictly increasing, continuous and convex function g : [, r] →
R, g() =  such that

g
(‖x – y‖) ≤ ‖x‖ – 

〈
x, J(y)

〉
+ ‖y‖, ∀x, y ∈ Br ,

where Br = {x ∈ X : ‖x‖ ≤ r}.

In this paper, letX be a uniformly convex Banach spacewhich either is uniformly smooth
or has a weakly continuous duality map. Let C be a nonempty closed convex subset of X,
ΠC be a sunny nonexpansive retraction from X onto C and f ∈ ΞC with a contractive
coefficient ρ ∈ (, ). Motivated and inspired by the research going on in this area, we
introduce and analyze three-step Mann iterations for finding a common solution of GSVI
(.) and a fixed point problem (FPP) of an infinite family of nonexpansive self-mappings
on C. Here, three-step Mann iterations are based on Korpelevich’s extragradient method,
the viscosity approximationmethod and theMann iterationmethod.We prove the strong
convergence of this method to a common solution of GSVI (.) and the FPP, which solves
a variational inequality on their common solution set. We also give a weak convergence
theorem for three-step Mann iterations involving GSVI (.) and the FPP in the case of
X = H , a Hilbert space. The results presented in this paper improve, extend, supplement
and develop the corresponding results announced in the earlier and very recent literature;
see, e.g., [, –, ].

2 Preliminaries
Let X be a real Banach space.We define a function ρ : [,∞)→ [,∞) called the modulus
of smoothness of X as follows:

ρ(τ ) = sup

{


(‖x + y‖ + ‖x – y‖) –  : x, y ∈ X,‖x‖ = ,‖y‖ = τ

}
.

It is known thatX is uniformly smooth if and only if limτ→ ρ(τ )/τ = . Let q be a fixed real
number with  < q ≤ . Then a Banach space X is said to be q-uniformly smooth if there
exists a constant c >  such that ρ(τ )≤ cτ q for all τ > . As pointed out in [], no Banach
space is q-uniformly smooth for q > . In addition, it is also known that J is single-valued
if and only if X is smooth, whereas if X is uniformly smooth, then the mapping J is norm-
to-norm uniformly continuous on bounded subsets of X. If X has a uniformly Gateaux

http://www.journalofinequalitiesandapplications.com/content/2013/1/539
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differentiable norm, then the duality mapping J is norm-to-weak∗ uniformly continuous
on bounded subsets of X. We use the notation ⇀ to indicate the weak convergence and
→ to indicate the strong convergence.
Let C be a nonempty closed convex subset of X. Recall that a mapping A : C → X is said

to be
(i) α-strongly accretive if for each x, y ∈ C, there exists j(x – y) ∈ J(x – y) such that

〈
Ax –Ay, j(x – y)

〉 ≥ α‖x – y‖

for some α ∈ (, );
(ii) β-inverse-strongly-accretive if for each x, y ∈ C, there exists j(x – y) ∈ J(x – y) such

that

〈
Ax –Ay, j(x – y)

〉 ≥ β‖Ax –Ay‖

for some β > ;
(iii) λ-strictly pseudocontractive [] (see also []) if for each x, y ∈ C, there exists

j(x – y) ∈ J(x – y) such that

〈
Ax –Ay, j(x – y)

〉 ≤ ‖x – y‖ – λ
∥∥x – y – (Ax –Ay)

∥∥

for some λ ∈ (, ).
It is worth emphasizing that the definition of the inverse strongly accretive mapping is

based on that of the inverse strongly monotone mapping, which was studied by so many
authors; see, e.g., [, , ].
We list some lemmas that will be used in the sequel. Lemma . can be found in [].

Lemma . is an immediate consequence of the subdifferential inequality of the function

‖ · ‖.

Lemma . Let {sn} be a sequence of nonnegative real numbers satisfying the condition

sn+ ≤ ( –μn)sn +μnνn, ∀n≥ ,

where {μn} and {νn} are sequences of real numbers such that
(i) {μn} ⊂ [, ] and

∑∞
n= μn =∞, or equivalently,

∞∏
n=

( –μn) := lim
n→∞

n∏
k=

( –μk) = ;

(ii) lim supn→∞ νn ≤ , or
∑∞

n= μn|νn| < ∞.
Then lim supn→∞ sn = .

Lemma . (see []) Let X be a real Banach space and J be the normalized duality map
on X. Then, for any given x, y ∈ X, the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 
〈
y, j(x + y)

〉
, ∀j(x + y) ∈ J(x + y).

http://www.journalofinequalitiesandapplications.com/content/2013/1/539
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Let D be a subset of C, and let Π be a mapping of C into D. Then Π is said to be sunny if

Π
[
Π (x) + t

(
x –Π (x)

)]
= Π (x),

whenever Π (x) + t(x–Π (x)) ∈ C for x ∈ C and t ≥ . Amapping Π of C into itself is called
a retraction ifΠ =Π . If amappingΠ of C into itself is a retraction, thenΠ (z) = z for every
z ∈ R(Π ), where R(Π ) is the range of Π . A subset D of C is called a sunny nonexpansive
retract of C if there exists a sunny nonexpansive retraction from C onto D.

The following lemma concerns the sunny nonexpansive retraction.

Lemma . (see []) Let C be a nonempty closed convex subset of a real smooth Banach
space X . Let D be a nonempty subset of C. Let Π be a retraction of C onto D. Then the
following are equivalent:

(i) Π is sunny and nonexpansive;
(ii) ‖Π (x) –Π (y)‖ ≤ 〈x – y, J(Π (x) –Π (y))〉, ∀x, y ∈ C;
(iii) 〈x –Π (x), J(y –Π (x))〉 ≤ , ∀x ∈ C, y ∈D.

It is well known that if X = H , a Hilbert space, then a sunny nonexpansive retraction
ΠC is coincident with the metric projection from X onto C; that is, ΠC = PC . If C is a
nonempty closed convex subset of a strictly convex and uniformly smooth Banach space
X and if T : C → C is a nonexpansive mapping with the fixed point set Fix(T) �= ∅, then
the set Fix(T) is a sunny nonexpansive retract of C.

Lemma . Let C be a nonempty closed convex subset of a smooth Banach space X . Let
ΠC be a sunny nonexpansive retraction from X onto C, and let B,B : C → X be nonlinear
mappings. For given x∗, y∗ ∈ C, (x∗, y∗) is a solution of GSVI (.) if and only if x∗ =ΠC(y∗ –
μBy∗), where y∗ =ΠC(x∗ –μBx∗).

Proof We can rewrite GSVI (.) as

⎧⎨
⎩〈x∗ – (y∗ –μBy∗), J(x – x∗)〉 ≥ , ∀x ∈ C,

〈y∗ – (x∗ –μBx∗), J(x – y∗)〉 ≥ , ∀x ∈ C,

which is obviously equivalent to

⎧⎨
⎩x∗ =ΠC(y∗ –μBy∗),

y∗ =ΠC(x∗ –μBx∗)

because of Lemma .. This completes the proof. �

In terms of Lemma ., we observe that

x∗ =ΠC
[
ΠC

(
x∗ –μBx∗) –μBΠC

(
x∗ –μBx∗)],

which implies that x∗ is a fixed point of the mapping G. Throughout this paper, the set of
fixed points of the mapping G is denoted by Ω .

http://www.journalofinequalitiesandapplications.com/content/2013/1/539
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Lemma . (see []) Let X be a uniformly smooth Banach space, C be a nonempty closed
convex subset of X, T : C → C be a nonexpansive mapping with Fix(T) �= ∅, and f ∈ ΞC .
Then the net {xt} defined by xt = tf (xt) + ( – t)Txt , ∀t ∈ (, ), converges strongly to a point
in Fix(T). If we define a mapping Q : ΞC → Fix(T) by Q(f ) := s – limt→ xt , ∀f ∈ ΞC , then
Q(f ) solves the VIP

〈
(I – f )Q(f ), J

(
Q(f ) – p

)〉 ≤ , ∀p ∈ Fix(T).

In particular, if f = u ∈ C is a constant, then the map u �→ Q(u) is reduced to the sunny
nonexpansive retraction of Reich type from C onto Fix(T), i.e.,

〈
Q(u) – u, J

(
Q(u) – p

)〉 ≤ , ∀p ∈ Fix(T).

Recall that a gauge is a continuous strictly increasing function ϕ : [,∞)→ [,∞) such
that ϕ() =  and ϕ(t) → ∞ as t → ∞. Associated to the gauge ϕ is the duality map Jϕ :
X → X∗ defined by

Jϕ(x) =
{
x∗ ∈ X∗ :

〈
x,x∗〉 = ‖x‖ϕ(‖x‖),∥∥x∗∥∥ = ϕ

(‖x‖)}, ∀x ∈ X.

We say that a Banach spaceX has a weakly continuous dualitymap if there exists a gauge ϕ

for which the duality map Jϕ is single-valued and weak-to-weak∗ sequentially continuous.
It is known that lp has a weakly continuous duality map with gauge ϕ(t) = tp– for all  <
p < ∞. Set

Φ(t) =
∫ t


ϕ(τ )dτ , ∀t ≥ .

Then Jϕ(x) = ∂Φ(‖x‖) for all x ∈ X, where ∂ denotes the subdifferential in the sense of
convex analysis; see [] for more details.
The first part of the following lemma is an immediate consequence of the subdifferential

inequality, and the proof of the second part can be found in [].

Lemma . Assume that X has a weakly continuous duality map Jϕ with gauge ϕ.
(i) For all x, y ∈ X , the following inequality holds:

Φ
(‖x + y‖) ≤ Φ

(‖x‖) + 〈
y, Jϕ(x + y)

〉
.

(ii) Assume that a sequence {xn} in X is weakly convergent to a point x. Then the
following identity holds:

lim sup
n→∞

Φ
(‖xn – y‖) = lim sup

n→∞
Φ

(‖xn – x‖) +Φ
(‖y – x‖), ∀y ∈ X.

Lemma . ([, Theorem . and its proof]) Let X be a reflexive Banach space and have a
weakly continuous duality map Jϕ with gauge ϕ, let C be a nonempty closed convex subset
of X, let T : C → C be a nonexpansive mapping with Fix(T) �= ∅, and let f ∈ ΞC . Then
{xt} defined by xt = tf (xt) + ( – t)Txt , ∀t ∈ (, ), converges strongly to a point in Fix(T) as
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t → +. Define Q :ΞC → Fix(T) by Q(f ) := s – limt→+ xt . Then Q(f ) solves the variational
inequality

〈
(I – f )Q(f ), Jϕ

(
Q(f ) – p

)〉 ≤ , ∀p ∈ Fix(T).

In particular, if f = u ∈ C is a constant, then the map u �→ Q(u) is reduced to the sunny
nonexpansive retraction of Reich type from C onto Fix(T), i.e.,

〈
Q(u) – u, Jϕ

(
Q(u) – p

)〉 ≤ , ∀p ∈ Fix(T).

Recall that X satisfies Opial’s property [] provided, for each sequence {xn} in X, the
condition xn ⇀ x implies

lim sup
n→∞

‖xn – x‖ < lim sup
n→∞

‖xn – y‖, ∀y ∈ X, y �= x.

It is known in [] that each lp ( ≤ p < ∞) enjoys this property, while Lp does not unless
p = . It is known in [] that every separable Banach space can be equivalently renormed
so that it satisfies Opial’s property. We denote by ωw(xn) the weak ω-limit set of {xn}, i.e.,

ωw(xn) =
{
x̄ ∈ X : xni ⇀ x̄ for some subsequence {xni} of {xn}

}
. (.)

Also, recall that in a Hilbert space H , the following equality holds:

∥∥λx+ ( – λ)y
∥∥ = λ‖x‖ + ( – λ)‖y‖ – λ( – λ)‖x– y‖, ∀x, y ∈H ,∀λ ∈ [, ]. (.)

Lemma . (see []) Let C be a nonempty closed convex subset of a strictly convex Ba-
nach space X. Let {Tn}∞n= be a sequence of nonexpansive mappings on C. Suppose that⋂∞

n= Fix(Tn) is nonempty. Let {λn} be a sequence of positive numbers with
∑∞

n= λn = .
Then a mapping S on C defined by Sx =

∑∞
n= λnTnx for x ∈ C is defined well, nonexpan-

sive and Fix(S) =
⋂∞

n= Fix(Tn) holds.

Lemma . (see []) Let C be a nonempty closed convex subset of a smooth Banach
space X . Let ΠC be a sunny nonexpansive retraction from X onto C, and let A : C → X
be an accretive mapping. Then, for all λ > ,

VI(C,A) = Fix
(
ΠC(I – λA)

)
.

Lemma . (see [, Lemma .]) Let C be a nonempty closed convex subset of a strictly
convex Banach space X . Let {Tn}∞n= be a sequence of nonexpansive self-mappings on C such
that

⋂∞
n= Fix(Tn) �= ∅, and let {λn}∞n= be a sequence of positive numbers in (,b] for some

b ∈ (, ). Then, for every x ∈ C and k ≥ , the limit limn→∞ Un,kx exists.

Using Lemma ., one can define a mappingW : C → C as follows:

Wx = lim
n→∞Wnx = lim

n→∞Un,x, ∀x ∈ C. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/539
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Such W is called the W -mapping generated by the sequences {Tn}∞n= and {λn}∞n=.
Throughout this paper, we always assume that {λn}∞n= is a sequence of positive numbers
in (,b] for some b ∈ (, ).

Lemma . (see [, Lemma .]) Let C be a nonempty closed convex subset of a strictly
convex Banach space X . Let {Tn}∞n= be a sequence of nonexpansive self-mappings on C such
that

⋂∞
n= Fix(Tn) �= ∅, and let {λn}∞n= be a sequence of positive numbers in (,b] for some

b ∈ (, ). Then Fix(W ) =
⋂∞

n= Fix(Tn).

Lemma . (see [, Lemma ]) Let {xn} and {zn} be bounded sequences in a Ba-
nach space X, and let {βn} be a sequence of nonnegative numbers in [, ] with  <
lim infn→∞ βn ≤ lim supn→∞ βn < . Suppose that xn+ = βnxn + ( – βn)zn for all integers
n≥  and lim supn→∞(‖zn+ – zn‖ – ‖xn+ – xn‖)≤ . Then limn→∞ ‖xn – zn‖ = .

Lemma. (see []) Given a number r > .A real Banach space X is uniformly convex if
and only if there exists a continuous strictly increasing function g : [,∞) → [,∞), g() =
 such that

∥∥λx + ( – λ)y
∥∥ ≤ λ‖x‖ + ( – λ)‖y‖ – λ( – λ)g

(‖x – y‖)

for all λ ∈ [, ] and x, y ∈ X such that ‖x‖ ≤ r and ‖y‖ ≤ r.

We will also use the following elementary lemmas in the sequel.

Lemma . (see []) Let {an} and {bn} be the sequences of nonnegative real numbers
such that

∑∞
n= bn < ∞ and an+ ≤ an + bn for all n ≥ . Then limn→∞ an exists.

Lemma . (Demiclosedness principle []) Assume that T is a nonexpansive self-
mapping of a nonempty closed convex subset C of a Hilbert space H . If T has a fixed point,
then I – T is demiclosed. That is, whenever xn ⇀ x in C and (I – T)xn → y in H , it follows
that (I – T)x = y. Here, I is the identity operator of H .

3 Main results
In this section, in order to prove our main results, we will use the following useful lemmas
whose proofs will be omitted since they can be proved by standard arguments.

Lemma . Let C be a nonempty closed convex subset of a smooth Banach space X, and
let the mapping Bi : C → X be ζi-strictly pseudocontractive and ηi-strongly accretive with
ζi + ηi ≥  for i = , . Then, for μi ∈ (, ], we have

∥∥(I –μiBi)x – (I –μiBi)y
∥∥ ≤

{√
 – ηi

ζi
+ ( –μi)

(
 +


ζi

)}
‖x – y‖, ∀x, y ∈ C

for i = , . In particular, if  – ζi
+ζi

( –
√

–ηi
ζi

) ≤ μi ≤ , then I – μiBi is nonexpansive for
i = , .
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Lemma . Let C be a nonempty closed convex subset of a smooth Banach space X. Let
ΠC be a sunny nonexpansive retraction from X onto C, and let the mapping Bi : C → X
be ζi-strictly pseudocontractive and ηi-strongly accretive with ζi + ηi ≥  for i = , . Let
G : C → C be the mapping defined by

G(x) =ΠC
[
ΠC(x –μBx) –μBΠC(x –μBx)

]
, ∀x ∈ C.

If  – ζi
+ζi

( –
√

–ηi
ζi

) ≤ μi ≤ , then G : C → C is nonexpansive.

We now state and prove the main result of this paper.

Theorem . Let C be a nonempty closed convex subset of a uniformly convex Banach
space X.Assume, in addition, that X either is uniformly smooth or has a weakly continuous
duality map Jϕ with gauge ϕ. Let ΠC be a sunny nonexpansive retraction from X onto C.
Let the mapping Bi : C → X be ζi-strictly pseudocontractive and ηi-strongly accretive with
ζi + ηi ≥  for i = , . Let f ∈ ΞC with a contractive coefficient ρ ∈ (, ). Let {λn}∞n= be a
sequence of positive numbers in (,b] for some b ∈ (, ) and {Tn}∞n= be an infinite family of
nonexpansive self-mappings on C such that F :=

⋂∞
n= Fix(Tn)∩Ω �= ∅,whereΩ is the fixed

point set of the mapping G = ΠC(I – μB)ΠC(I – μB) with  – ζi
+ζi

( –
√

–ηi
ζi

) ≤ μi ≤ 
for i = , . For an arbitrary x ∈ C, let {xn} be generated by

⎧⎪⎪⎨
⎪⎪⎩
zn = σnxn + ( – σn)Gxn,

yn = αnxn + ( – αn)Wnzn,

xn+ = βnf (xn) + ( – βn)yn, ∀n≥ ,

(.)

where Wn is the W-mapping generated by Tn,Tn–, . . . ,T and λn,λn–, . . . ,λ, and {αn},
{βn} and {σn} are sequences in [, ]. Suppose that the following conditions hold:

(i) ≤ βn ≤  – ρ , ∀n≥ n for some n ≥ , and
∑∞

n= βn =∞;
(ii) limn→∞ | βn+

–(–βn+)αn+
– βn

–(–βn)αn | =  and limn→∞ |σn+ – σn| = ;
(iii)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(iv)  < lim infn→∞ σn ≤ lim supn→∞ σn < .

Then

xn → q ∈ F ⇐⇒ βn
(
f (xn) – xn

) → .

In this case,
(i) if X is uniformly smooth, then q ∈ F solves the VIP

〈
q – f (q), J(q – p)

〉
, ∀p ∈ F ;

(ii) if X has a weakly continuous duality map Jϕ with gauge ϕ, then q ∈ F solves the VIP

〈
q – f (q), Jϕ(q – p)

〉 ≤ , ∀p ∈ F .

Proof First of all, let us show that {xn} is bounded. Indeed, taking an element p ∈ F =⋂∞
n= Fix(Tn) ∩ Ω arbitrarily, we obtain that Gp = p and p = Wnp for all n ≥ . By

http://www.journalofinequalitiesandapplications.com/content/2013/1/539
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Lemma ., we know that G is nonexpansive. It follows from the nonexpansivity of G
andWn that

‖zn – p‖ ≤ σn‖xn – p‖ + ( – σn)‖Gxn – p‖ ≤ ‖xn – p‖,
‖yn – p‖ ≤ αn‖xn – p‖ + ( – αn)‖Wnzn – p‖

≤ αn‖xn – p‖ + ( – αn)‖zn – p‖
≤ αn‖xn – p‖ + ( – αn)‖xn – p‖
= ‖xn – p‖

and

‖xn+ – p‖ ≤ βn
∥∥f (xn) – p

∥∥ + ( – βn)‖yn – p‖
≤ βn

(∥∥f (xn) – f (p)
∥∥ +

∥∥f (p) – p
∥∥)

+ ( – βn)‖xn – p‖
≤ βn

(
ρ‖xn – p‖ + ∥∥f (p) – p

∥∥)
+ ( – βn)‖xn – p‖

=
(
 – ( – ρ)βn

)‖xn – p‖ + βn
∥∥f (p) – p

∥∥
≤max

{
‖xn – p‖, ‖f (p) – p‖

 – ρ

}
.

By induction, we have

‖xn – p‖ ≤max

{
‖x – p‖, ‖f (p) – p‖

 – ρ

}
, ∀n≥ .

Hence {xn} is bounded, and so are the sequences {yn}, {zn}, {Gxn}, {Wnzn} and {f (xn)}.
Suppose that xn → q ∈ F as n → ∞. Then q =Gq and q =Wnq for all n ≥ . From (.)

it follows that

‖zn – q‖ ≤ σn‖xn – q‖ + ( – σn)‖Gxn – q‖
≤ σn‖xn – q‖ + ( – σn)‖xn – q‖
= ‖xn – q‖

and

‖yn – q‖ ≤ αn‖xn – q‖ + ( – αn)‖Wnzn – q‖
≤ αn‖xn – q‖ + ( – αn)‖zn – q‖
≤ αn‖xn – q‖ + ( – αn)‖xn – q‖
= ‖xn – q‖ →  (n→ ∞),

that is, xn → q. Again from (.) we obtain that

∥∥βn
(
f (xn) – xn

)∥∥ =
∥∥xn+ – xn – ( – βn)(yn – xn)

∥∥
≤ ‖xn+ – xn‖ + ( – βn)‖yn – xn‖ → .
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Conversely, suppose that βn(f (xn)–xn) →  (n→ ∞). Put γn = (–βn)αn for each n ≥ .
Then it follows from conditions (i) and (iii) that

αn ≥ γn = ( – βn)αn ≥ (
 – ( – ρ)

)
αn = ραn, ∀n≥ n,

and hence

 < lim inf
n→∞ γn ≤ lim sup

n→∞
γn < . (.)

Define ẑn by

xn+ = γnxn + ( – γn)ẑn, ∀n≥ . (.)

Observe that

ẑn+ – ẑn =
xn+ – γn+xn+

 – γn+
–
xn+ – γnxn

 – γn

=
βn+f (xn+) + ( – βn+)yn+ – γn+xn+

 – γn+
–

βnf (xn) + ( – βn)yn – γnxn
 – γn

=
(

βn+f (xn+)
 – γn+

–
βnf (xn)
 – γn

)
–
( – βn)[αnxn + ( – αn)Wnzn] – γnxn

 – γn

+
( – βn+)[αn+xn+ + ( – αn+)Wn+zn+] – γn+xn+

 – γn+

=
(

βn+f (xn+)
 – γn+

–
βnf (xn)
 – γn

)

+
( – βn+)( – αn+)Wn+zn+

 – γn+
–
( – βn)( – αn)Wnzn

 – γn

=
(

βn+f (xn+)
 – γn+

–
βnf (xn)
 – γn

)
+ (Wn+zn+ –Wnzn)

–
βn+

 – γn+
Wn+zn+ +

βn

 – γn
Wnzn

=
(

βn+

 – γn+
–

βn

 – γn

)
f (xn+) +

βn

 – γn

(
f (xn+) – f (xn)

)
+ (Wn+zn+ –Wnzn)

–
(

βn+

 – γn+
–

βn

 – γn

)
Wn+zn+ – (Wn+zn+ –Wnzn)

βn

 – γn

=
(

βn+

 – γn+
–

βn

 – γn

)(
f (xn+) –Wn+zn+

)
+

βn

 – γn

(
f (xn+) – f (xn)

)

+
 – γn – βn

 – γn
(Wn+zn+ –Wnzn).

It follows that

‖ẑn+ – ẑn‖ ≤
∣∣∣∣ βn+

 – γn+
–

βn

 – γn

∣∣∣∣∥∥f (xn+) –Wn+zn+
∥∥ +

βn

 – γn

∥∥f (xn+) – f (xn)
∥∥

+
 – γn – βn

 – γn
‖Wn+zn+ –Wnzn‖

http://www.journalofinequalitiesandapplications.com/content/2013/1/539


Ceng and Wen Journal of Inequalities and Applications 2013, 2013:539 Page 15 of 27
http://www.journalofinequalitiesandapplications.com/content/2013/1/539

≤
∣∣∣∣ βn+

 – γn+
–

βn

 – γn

∣∣∣∣(∥∥f (xn+)∥∥ + ‖Wn+zn+‖
)
+

ρβn

 – γn
‖xn+ – xn‖

+
 – γn – βn

 – γn

(‖Wn+zn+ –Wn+zn‖ + ‖Wn+zn –Wnzn‖
)

≤
∣∣∣∣ βn+

 – γn+
–

βn

 – γn

∣∣∣∣(∥∥f (xn+)∥∥ + ‖Wn+zn+‖
)
+

ρβn

 – γn
‖xn+ – xn‖

+
 – γn – βn

 – γn

(‖zn+ – zn‖ + ‖Wn+zn –Wnzn‖
)
. (.)

In the meantime, simple calculations show that

zn+ – zn = σn+(xn+ – xn) + ( – σn+)(Gxn+ –Gxn) + (σn+ – σn)(xn –Gxn),

which hence yields

‖zn+ – zn‖ ≤ σn+‖xn+ – xn‖ + ( – σn+)‖Gxn+ –Gxn‖ + |σn+ – σn|‖xn –Gxn‖
≤ σn+‖xn+ – xn‖ + ( – σn+)‖xn+ – xn‖ + |σn+ – σn|‖xn –Gxn‖
= ‖xn+ – xn‖ + |σn+ – σn|‖xn –Gxn‖. (.)

Taking into account the nonexpansivity of Tk and Un,k , from (CWY) we have

‖Wn+zn –Wnzn‖ = ‖λTUn+,zn – λTUn,zn‖
≤ λ‖Un+,zn –Un,zn‖
= λ‖λTUn+,zn – λTUn,zn‖
≤ λλ‖Un+,zn –Un,zn‖
≤ · · ·
≤ λλ · · ·λn‖Un+,n+zn –Un,n+zn‖
= λλ · · ·λn+‖Tn+zn – zn‖

≤M

n+∏
k=

λk , (.)

where supn≥ ‖Tn+zn – zn‖ ≤ M for some M > . Thus, from (.), (.) and (.), we
get

‖ẑn+ – ẑn‖

≤
∣∣∣∣ βn+

 – γn+
–

βn

 – γn

∣∣∣∣(∥∥f (xn+)∥∥ + ‖Wn+zn+‖
)
+

ρβn

 – γn
‖xn+ – xn‖

+
 – γn – βn

 – γn

(
‖xn+ – xn‖ + |σn+ – σn|‖xn –Gxn‖ +M

n+∏
k=

λk

)

≤ ‖xn+ – xn‖ +
∣∣∣∣ βn+

 – γn+
–

βn

 – γn

∣∣∣∣(∥∥f (xn+)∥∥ + ‖Wn+zn+‖
)
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+ |σn+ – σn|‖xn –Gxn‖ +M

n+∏
k=

λk

≤ ‖xn+ – xn‖ +M

(∣∣∣∣ βn+

 – γn+
–

βn

 – γn

∣∣∣∣ + |σn+ – σn| +
n+∏
k=

λk

)
,

where supn≥{‖f (xn)‖ + ‖Wnzn‖ + ‖Gxn‖ + ‖xn‖ +M} ≤ M for some M > . Then it im-
mediately follows that

‖ẑn+ – ẑn‖ – ‖xn+ – xn‖ ≤M

(∣∣∣∣ βn+

 – γn+
–

βn

 – γn

∣∣∣∣ + |σn+ – σn| +
n+∏
k=

λk

)
.

From condition (ii) and  < λk ≤ b < , ∀k ≥ , we deduce that

lim sup
n→∞

(‖ẑn+ – ẑn‖ – ‖xn+ – xn‖
) ≤ .

Hence by Lemma . we have

lim
n→∞‖ẑn – xn‖ = .

It follows from (.) and (.) that

lim
n→∞‖xn+ – xn‖ = lim

n→∞( – γn)‖ẑn – xn‖ = .

From (.) we have

xn+ – xn = βn
(
f (xn) – xn

)
+ ( – βn)(yn – xn).

This implies that

ρ‖yn – xn‖ ≤ ( – βn)‖yn – xn‖
=

∥∥xn+ – xn – βn
(
f (xn) – xn

)∥∥
≤ ‖xn+ – xn‖ +

∥∥βn
(
f (xn) – xn

)∥∥.
Since xn+ – xn →  and βn(f (xn) – xn)→ , we get

lim
n→∞‖yn – xn‖ = . (.)

Observe that

yn – xn = ( – αn)(Wnzn – xn). (.)

It follows from condition (iii), (.) and (.) that

lim
n→∞‖xn –Wnzn‖ = . (.)
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Also, utilizing Lemma ., we obtain from (.) that for p ∈ F

‖zn – p‖ = ∥∥σn(xn – p) + ( – σn)(Gxn – p)
∥∥

≤ σn‖xn – p‖ + ( – σn)‖Gxn – p‖ – σn( – σn)g
(‖xn –Gxn‖

)
≤ σn‖xn – p‖ + ( – σn)‖xn – p‖ – σn( – σn)g

(‖xn –Gxn‖
)

= ‖xn – p‖ – σn( – σn)g
(‖xn –Gxn‖

)
,

and hence

‖yn – p‖ ≤ αn‖xn – p‖ + ( – αn)‖Wnzn – p‖

≤ αn‖xn – p‖ + ( – αn)‖zn – p‖

≤ αn‖xn – p‖ + ( – αn)
[‖xn – p‖ – σn( – σn)g

(‖xn –Gxn‖
)]

= ‖xn – p‖ – ( – αn)σn( – σn)g
(‖xn –Gxn‖

)
.

Thus, we get

( – αn)σn( – σn)g
(‖xn –Gxn‖

) ≤ ‖xn – p‖ – ‖yn – p‖

≤ (‖xn – p‖ + ‖yn – p‖)‖xn – yn‖.

From (.), conditions (iii), (iv) and the boundedness of {xn} and {yn}, it follows that

lim
n→∞ g

(‖xn –Gxn‖
)
= .

Utilizing the properties of g , we have

lim
n→∞‖xn –Gxn‖ = . (.)

This immediately implies that

lim
n→∞‖zn – xn‖ = lim

n→∞( – σn)‖Gxn – xn‖ = . (.)

Note that

‖xn –Wnxn‖ ≤ ‖xn –Wnzn‖ + ‖Wnzn –Wnxn‖ ≤ ‖xn –Wnzn‖ + ‖zn – xn‖,

which together with (.) and (.) implies that

lim
n→∞‖xn –Wnxn‖ = .

Also, note that

‖Wxn – xn‖ ≤ ‖Wxn –Wnxn‖ + ‖Wnxn – xn‖.
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From [, Remark .] (see also [, Remark .]), we have

lim
n→∞‖Wxn –Wnxn‖ = .

It follows that

lim
n→∞‖Wxn – xn‖ = . (.)

In terms of (.) and Lemma ., W : C → C is a nonexpansive mapping such that
Fix(W ) =

⋂∞
n= Fix(Tn). Define a mapping Vx = ( – θ )Wx + θGx, where θ is a constant

in (, ). Then by Lemma ., we have that Fix(V ) = Fix(W )∩ Fix(G) = F . Moreover, from
(.) and (.), we get

‖Vxn – xn‖ ≤ ( – θ )‖Wxn – xn‖ + θ‖Gxn – xn‖ → ,

that is,

lim
n→∞‖Vxn – xn‖ = . (.)

In the following, we discuss two cases.
(i) Firstly, suppose that X is uniformly smooth. Let xt be the unique fixed point of the

contraction mapping Tt given by

Ttx = tf (x)( – t)Vx, ∀t ∈ (, ).

By Lemma ., we can define q := s – limt→+ xt , and q ∈ Fix(V ) = F solves the VIP

〈
q – f (q), J(q – p)

〉
, ∀p ∈ F .

Let us show that

lim sup
n→∞

〈
f (q) – q, J(xn – q)

〉 ≤ . (.)

Note that

xt – xn = t
(
f (xt) – xn

)
+ ( – t)(Vxt – xn).

Applying Lemma ., we derive

‖xt – xn‖

≤ ( – t)‖Vxt – xn‖ + t
〈
f (xt) – xn, J(xt – xn)

〉
≤ ( – t)

(‖Vxt –Vxn‖ + ‖Vxn – xn‖
) + t

〈
f (xt) – xt , J(xt – xn)

〉
+ t‖xt – xn‖

≤ ( – t)‖xt – xn‖ + an(t) + t
〈
f (xt) – xt , J(xt – xn)

〉
+ t‖xt – xn‖,
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where

an(t) = ‖Vxn – xn‖
(
‖xt – xn‖ + ‖Vxn – xn‖

) → 
(
due to (.)

)
.

The last inequality implies

〈
xt – f (xt), J(xt – xn)

〉 ≤ t

‖xt – xn‖ + 

t
an(t).

It follows that

lim sup
n→∞

〈
xt – f (xt), J(xt – xn)

〉 ≤M
t

, (.)

where M >  is a constant such that M ≥ ‖xt – xn‖ for all n ≥  and small enough
t ∈ (, ). Taking the lim sup as t → + in (.) and noticing the fact that the two lim-
its are interchangeable due to the fact that the duality map J is uniformly norm-to-norm
continuous on any bounded subset of X, we get (.).
Now, let us show that xn → q as n → ∞.
Indeed, utilizing Lemma ., we obtain from (.) that

‖zn – q‖ ≤ σn‖xn – q‖ + ( – σn)‖Gxn – q‖ ≤ ‖xn – q‖,
‖yn – q‖ ≤ αn‖xn – q‖ + ( – αn)‖Wnzn – q‖

≤ αn‖xn – q‖ + ( – αn)‖zn – q‖

≤ αn‖xn – q‖ + ( – αn)‖xn – q‖

= ‖xn – q‖, (.)

and hence

‖xn+ – q‖ = ∥∥βn
(
f (xn) – f (q)

)
+ ( – βn)(yn – q) + βn

(
f (q) – q

)∥∥

≤ ∥∥βn
(
f (xn) – f (q)

)
+ ( – βn)(yn – q)

∥∥ + βn
〈
f (q) – q, J(xn+ – q)

〉
≤ βn

∥∥f (xn) – f (q)
∥∥ + ( – βn)‖yn – q‖ + βn

〈
f (q) – q, J(xn+ – q)

〉
≤ βnρ‖xn – q‖ + ( – βn)‖xn – q‖ + βn

〈
f (q) – q, J(xn+ – q)

〉
=

(
 – ( – ρ)βn

)‖xn – q‖ + βn
〈
f (q) – q, J(xn+ – q)

〉
=

(
 – ( – ρ)βn

)‖xn – q‖ + ( – ρ)βn
〈f (q) – q, J(xn+ – q)〉

 – ρ
. (.)

Therefore, applying Lemma . to (.), we conclude from (.) and condition (i) that
xn → q as n→ ∞.
(ii) Secondly, suppose that X has a weakly continuous duality map Jϕ with gauge ϕ. Let

xt be the unique fixed point of the contraction mapping Tt given by

Ttx = tf (x) + ( – t)Vx, ∀t ∈ (, ).
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By Lemma ., we can define q := s – limt→+ xt , and q ∈ Fix(V ) = F solves the VIP

〈
q – f (q), Jϕ(q – p)

〉 ≤ , ∀p ∈ F . (.)

Let us show that

lim sup
n→∞

〈
f (q) – q, Jϕ(xn – q)

〉 ≤ . (.)

We take a subsequence {xnk } of {xn} such that

lim sup
n→∞

〈
f (q) – q, Jϕ(xn – q)

〉
= lim

k→∞
〈
f (q) – q, Jϕ(xnk – q)

〉
. (.)

Since X is reflexive and {xn} is bounded, we may further assume that xnk ⇀ x̄ for some
x̄ ∈ C. Since Jϕ is weakly continuous, utilizing Lemma .(ii), we have

lim sup
k→∞

Φ
(‖xnk – x‖) = lim sup

k→∞
Φ

(‖xnk – x̄‖) +Φ
(‖x – x̄‖), ∀x ∈ X.

Put Γ (x) = lim supk→∞ Φ(‖xnk – x‖), ∀x ∈ X. It follows that

Γ (x) = Γ (x̄) +Φ
(‖x – x̄‖), ∀x ∈ X.

From (.), we have

Γ (Vx̄) = lim sup
k→∞

Φ
(‖xnk –Vx̄‖)

= lim sup
k→∞

Φ
(‖Vxnk –Vx̄‖)

≤ lim sup
k→∞

Φ
(‖xnk – x̄‖) = Γ (x̄). (.)

Furthermore, observe that

Γ (Vx̄) = Γ (x̄) +Φ
(‖Vx̄ – x̄‖). (.)

Combining (.) with (.), we obtain

Φ
(‖Vx̄ – x̄‖) ≤ .

Hence Vx̄ = x̄ and x̄ ∈ Fix(V ) = F . Thus, from (.) and (.), it is easy to see that

lim sup
n→∞

〈
f (q) – q, Jϕ(xn – q)

〉
=

〈
f (q) – q, Jϕ(x̄ – q)

〉 ≤ .

Therefore, we deduce that (.) holds.
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Next, let us show that xn → q as n→ ∞. Indeed, utilizing Lemma .(i), we obtain from
(.) that

‖zn – q‖ ≤ σn‖xn – q‖ + ( – σn)‖Gxn – q‖ ≤ ‖xn – q‖,
‖yn – q‖ ≤ αn‖xn – q‖ + ( – αn)‖Wnzn – q‖

≤ αn‖xn – q‖ + ( – αn)‖zn – q‖
≤ ‖xn – q‖,

and hence

Φ
(‖xn+ – q‖)
=Φ

(∥∥βn
(
f (xn) – q

)
+ ( – βn)(yn – q)

∥∥)
=Φ

(∥∥βn
(
f (xn) – f (q)

)
+ ( – βn)(yn – q) + βn

(
f (q) – q

)∥∥)
≤ Φ

(∥∥βn
(
f (xn) – f (q)

)
+ ( – βn)(yn – q)

∥∥)
+ βn

〈
f (q) – q, Jϕ(xn+ – q)

〉
≤ Φ

(
βn

∥∥f (xn) – f (q)
∥∥ + ( – βn)‖yn – q‖) + βn

〈
f (q) – q, Jϕ(xn+ – q)

〉
≤ Φ

(
βnρ‖xn – q‖ + ( – βn)‖xn – q‖) + βn

〈
f (q) – q, Jϕ(xn+ – q)

〉
≤ (

 – ( – ρ)βn
)
Φ

(‖xn – q‖) + βn
〈
f (q) – q, Jϕ(xn+ – q)

〉
=

(
 – ( – ρ)βn

)
Φ

(‖xn – q‖) + ( – ρ)βn
〈f (q) – q, Jϕ(xn+ – q)〉

 – ρ
. (.)

Applying Lemma . to (.), we conclude from (.) and condition (i) that

Φ
(‖xn – q‖) →  (n→ ∞),

which implies that ‖xn – q‖ →  (n → ∞), i.e., xn → q (n → ∞). This completes the
proof. �

Corollary . The conclusion in Theorem . still holds, provided the conditions (i)-(iv)
are replaced by the following:

(i) ≤ βn ≤  – ρ , ∀n≥ n for some n ≥ ;
(ii) limn→∞ |βn – βn+| =  and

∑∞
n= βn =∞;

(iii) limn→∞ |αn – αn+| =  and  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(iv) limn→∞ |σn – σn+| =  and  < lim infn→∞ σn ≤ lim supn→∞ σn < .

Proof Observe that

βn+

 – ( – βn+)αn+
–

βn

 – ( – βn)αn

=
(βn+ – βn) – βn+αn + βnαn+ + βn+βnαn – βnβn+αn+

( – ( – βn+)αn+)( – ( – βn)αn)

=
(βn+ – βn) – βn+(αn – αn+) – αn+(βn+ – βn) + βnβn+(αn – αn+)

( – ( – βn+)αn+)( – ( – βn)αn)

=
(βn+ – βn)( – αn+) – βn+(αn – αn+)( – βn)

( – ( – βn+)αn+)( – ( – βn)αn)
.
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Since limn→∞ |βn – βn+| =  and limn→∞ |αn – αn+| = , it follows that

lim
n→∞

∣∣∣∣ βn+

 – ( – βn+)αn+
–

βn

 – ( – βn)αn

∣∣∣∣ = .

Consequently, all the conditions of Theorem . are satisfied. So, utilizing Theorem .,
we obtain the desired result. �

Corollary . Let C be a nonempty closed convex subset of a uniformly convex Banach
space X.Assume, in addition, that X either is uniformly smooth or has a weakly continuous
duality map Jϕ with gauge ϕ. Let ΠC be a sunny nonexpansive retraction from X onto C.
Let the mapping Bi : C → X be ζi-strictly pseudocontractive and ηi-strongly accretive with
ζi + ηi ≥  for i = , . Let f ∈ ΞC with a contractive coefficient ρ ∈ (, ). Let {λn}∞n= be a
sequence of positive numbers in (,b] for some b ∈ (, ) and {Tn}∞n= be an infinite family of
nonexpansive self-mappings on C such that F :=

⋂∞
n= Fix(Tn)∩Ω �= ∅,whereΩ is the fixed

point set of the mapping G = ΠC(I – μB)ΠC(I – μB) with  – ζi
+ζi

( –
√

–ηi
ζi

) ≤ μi ≤ 
for i = , . Suppose that {αn}, {βn} and {σn} are sequences in [, ] satisfying the following
conditions:

(i) limn→∞ βn =  and
∑∞

n= βn =∞;
(ii) limn→∞ |σn+ – σn| = ;
(iii)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(iv)  < lim infn→∞ σn ≤ lim supn→∞ σn < .

Then, for an arbitrary but fixed x ∈ C, the sequence {xn} defined by (.) converges strongly
to some q ∈ F .Moreover,

(i) if X is uniformly smooth, then q ∈ F solves the VIP

〈
q – f (q), J(q – p)

〉
, ∀p ∈ F ;

(ii) if X has a weakly continuous duality map Jϕ with gauge ϕ, then q ∈ F solves the VIP

〈
q – f (q), Jϕ(q – p)

〉 ≤ , ∀p ∈ F .

Proof Repeating the same arguments as those in the proof of Theorem ., we know that
{xn} is bounded, and so are the sequences {yn}, {zn}, {Gxn}, {Wnzn} and {f (xn)}. Since
limn→∞ βn = , it is easy to see that the following hold:

(i) βn(f (xn) – xn)→  (n→ ∞);
(ii)  ≤ βn ≤  – ρ , ∀n≥ n for some integer n ≥ ;
(iii) limn→∞ | βn+

–(–βn+)αn+
– βn

–(–βn)αn | = .
Therefore, all the conditions of Theorem . are satisfied. So, utilizing Theorem ., we
derive the desired result. �

To end this paper, we give a weak convergence theorem for three-step Mann iterations
(.) involving GSVI (.) and an infinite family of nonexpansive mappings T,T, . . . in a
Hilbert space H .

Theorem . Let C be a nonempty closed convex subset of a Hilbert space H . Let the
mapping Bi : C → H be βi-inverse strongly monotone for i = , . Let f ∈ ΞC with a con-
tractive coefficient ρ ∈ (, ). Let {λn}∞n= be a sequence of positive numbers in (,b] for
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some b ∈ (, ), and let {Tn}∞n= be an infinite family of nonexpansive self-mappings on
C such that F :=

⋂∞
n= Fix(Tn) ∩ Ω �= ∅, where Ω is the fixed point set of the mapping

G = PC(I – μB)PC(I – μB) with  < μi ≤ βi for i = , . Suppose that {αn}, {βn} and
{σn} are sequences in [, ] satisfying the following conditions:

(i)
∑∞

n= βn < ∞;
(ii)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(iii)  < lim infn→∞ σn ≤ lim supn→∞ σn < .

Then, for an arbitrary but fixed x ∈ C, the sequence {xn} defined by (.) converges weakly
to a point in F .

Proof First of all, by Lemma ., we know that G : C → C is nonexpansive. Take an arbi-
trary p ∈ F . Repeating the same arguments as those in the proof of Theorem ., we know
that {xn} is bounded, and so are the sequences {yn}, {zn}, {Gxn}, {Wnzn} and {f (xn)}.
It follows from (.) and (.) that

‖zn – p‖ = σn‖xn – p‖ + ( – σn)‖Gxn – p‖ – σn( – σn)‖xn –Gxn‖

≤ σn‖xn – p‖ + ( – σn)‖xn – p‖ – σn( – σn)‖xn –Gxn‖

= ‖xn – p‖ – σn( – σn)‖xn –Gxn‖,
‖yn – p‖ = αn‖xn – p‖ + ( – αn)‖Wnzn – p‖ – αn( – αn)‖xn –Wnzn‖

≤ αn‖xn – p‖ + ( – αn)‖zn – p‖ – αn( – αn)‖xn –Wnzn‖

≤ αn‖xn – p‖ + ( – αn)
[‖xn – p‖ – σn( – σn)‖xn –Gxn‖

]
– αn( – αn)‖xn –Wnzn‖

= ‖xn – p‖ – ( – αn)σn( – σn)‖xn –Gxn‖ – αn( – αn)‖xn –Wnzn‖,

and hence

‖xn+ – p‖ ≤ ( – βn)‖yn – p‖ + βn
∥∥f (xn) – p

∥∥

≤ ‖yn – p‖ + βn
∥∥f (xn) – p

∥∥

≤ ‖xn – p‖ – ( – αn)σn( – σn)‖xn –Gxn‖

– αn( – αn)‖xn –Wnzn‖ + βn
∥∥f (xn) – p

∥∥

≤ ‖xn – p‖ + βn
∥∥f (xn) – p

∥∥. (.)

Since
∑∞

n= βn < ∞ and {f (xn)} is bounded, we obtain ∑∞
n= βn‖f (xn) – p‖ < ∞. Utilizing

Lemma ., we conclude that limn→∞ ‖xn –p‖ exists. Furthermore, it follows from (.)
that for all e≥ ,

( – αn)σn( – σn)‖xn –Gxn‖ + αn( – αn)‖xn –Wnzn‖

≤ ‖xn – p‖ – ‖xn+ – p‖ + βn
∥∥f (xn) – p

∥∥. (.)

Since βn → ,  < lim infn→∞ αn ≤ lim supn→∞ αn <  and

 < lim inf
n→∞ σn ≤ lim sup

n→∞
σn < ,
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we deduce from (.) that

lim
n→∞‖xn –Gxn‖ =  and lim

n→∞‖xn –Wnzn‖ = . (.)

It immediately follows that

lim
n→∞‖zn – xn‖ = lim

n→∞( – σn)‖Gxn – xn‖ = . (.)

Note that

‖xn –Wnxn‖ ≤ ‖xn –Wnzn‖ + ‖Wnzn –Wnxn‖ ≤ ‖xn –Wnzn‖ + ‖zn – xn‖.

Thus, from (.) and (.) we have

lim
n→∞‖xn –Wnxn‖ = . (.)

Also, observe that

‖Wxn – xn‖ ≤ ‖Wxn –Wnxn‖ + ‖Wnxn – xn‖.

From [, Remark .] (see also [, Remark .]), we have

lim
n→∞‖Wxn –Wnxn‖ = .

This implies immediately that

lim
n→∞‖Wxn – xn‖ = .

Now, let us show that ωw(xn) ⊂ F (see (.)). Indeed, let x̄ ∈ ωw(xn). Then there exists
a subsequence {xnk } of {xn} such that xnk ⇀ x̄. Since xn –Wxn →  and xn – Gxn → ,
by Lemma ., we know that x̄ ∈ Fix(W ) and x̄ ∈ Fix(G). Thus, x̄ ∈ Fix(W ) ∩ Fix(G) = F
according to Lemmas . and ..
Finally, let us show that ωw(xn) is a singleton. Indeed, let {xml } be another subsequence

of {xn} such that xml ⇀ x̂. Then x̂ also lies in F . If x̄ �= x̂, by Opial’s property of H , we reach
the following contradiction:

lim
n→∞‖xn – x̄‖ = lim

k→∞
‖xnk – x̄‖

< lim
k→∞

‖xnk – x̂‖ = lim
l→∞

‖xml – x̂‖

< lim
l→∞

‖xml – x̄‖ = lim
n→∞‖xn – x̄‖.

This implies that ωw(xn) is a singleton. Consequently, {xn} converges weakly to a point
in F . �

Remark . Our Theorem . improves, extends, supplements and develops Ceng et al.
[, Theorem .], Cai and Bu [, Theorem .] and Ceng and Yao [, Theorem .] in the
following aspects.
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(i) The problem of finding a point q ∈ ⋂∞
i= Fix(Ti) ∩ Ω in our Theorem . is more

general and more subtle than the problem of finding a point q ∈ ⋂∞
i= Fix(Ti) in [, Theo-

rem .], and the problem of finding a point q ∈ Fix(T) in [, Theorem .].
(ii) The iterative scheme in [, Theorems .] is extended to develop the iterative scheme

(.) of our Theorem . by virtue of the iterative schemes of [, Theorem .] and [, The-
orem .]. The iterative scheme (.) of our Theorem . is more advantageous and more
flexible than the iterative schemes of [, Theorem .] and [, Theorem .] because it can
be applied to solving two problems (i.e., GSVI (.), fixed point problem of infinitely many
nonexpansive mappings) and involves several parameter sequences {σn}, {αn} and {βn}.
(iii) Our Theorem . extends and generalizes Ceng and Yao [, Theorem .] from a

nonexpansive mapping to a countable family of nonexpansive mappings, and Ceng and
Yao [, Theorems .] to the setting of infinitely many nonexpansive mappings and GSVI
(.) for two strictly pseudocontractive and strongly accretive mappings. In themeantime,
our Theorem . drops the following restrictions in Cai and Bu [, Theorem .]:
Assume that

∑∞
n= supx∈D ‖Tn+x – Tnx‖ < ∞ for any bounded subset D of C, and let

T be a mapping of C into X defined by Tx = limn→∞ Tnx for all x ∈ C and suppose that
Fix(T) =

⋂∞
n= Fix(Tn).

(iv) The iterative scheme (.) in our Theorem . is very different from every one in
[, Theorem .], [, Theorem .] and [, Theorem .] because the mapping Tn in [,
Theorem.] and themappingT in [, Theorem.] are replaced by the sameW -mapping
Wn in the iterative scheme (.) of our Theorem ., and (.) in our Theorem . is three-
stepMann iterations for finding a point q ∈ ⋂∞

i= Fix(Ti)∩Ω in comparison with two-step
Mann iterations for finding a point q ∈ ⋂∞

i= Fix(Ti) in [, Theorem .].
(v) Cai and Bu’s proof in [, Theorem .] depends on the argument techniques in [],

the inequality in -uniformly smooth Banach spaces (see Lemma .) and the inequality
in smooth and uniform convex Banach spaces (see Proposition .). However, the proof
of our Theorem . does not depend on the argument techniques in [], the inequality
in -uniformly smooth Banach spaces (see Lemma .), and the inequality in smooth and
uniform convex Banach spaces (see Proposition .). It depends only on the inequality in
uniform convex Banach spaces (see Lemma . in Section  of this paper), the properties
of reflexive Banach space having a weakly continuous duality map Jϕ with gauge ϕ, and
the properties of the W -mapping (see Lemmas .-. and .-. in Section  of this
paper).
(vi) The assumption of the uniformly convex and -uniformly smooth Banach space X

in [, Theorem .] is weakened to the one of the uniformly convex Banach space X which
either has a weakly continuous duality map Jϕ with gauge ϕ or is uniformly smooth in
our Theorem .. Moreover, our Theorem . shows that the assumption of the uniformly
smooth Banach space X in [, Theorem .] can be replaced by the assumption of the uni-
formly convex Banach space X having a weakly continuous duality map Jϕ with gauge ϕ in
our Theorem .. It is worth emphasizing that there is no assumption on the convergence
of parameter sequences {αn}, {βn} and {σn} to the zero in our Theorem ..
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